Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 11, Issue 2 (2024)
  4. Optimal estimation of the local time and ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Optimal estimation of the local time and the occupation time measure for an α-stable Lévy process
Volume 11, Issue 2 (2024), pp. 149–168
Chiara Amorino ORCID icon link to view author Chiara Amorino details   Arturo Jaramillo   Mark Podolskij  

Authors

 
Placeholder
https://doi.org/10.15559/24-VMSTA243
Pub. online: 6 February 2024      Type: Research Article      Open accessOpen Access

Received
6 May 2023
Revised
31 October 2023
Accepted
2 January 2024
Published
6 February 2024

Abstract

A novel theoretical result on estimation of the local time and the occupation time measure of an α-stable Lévy process with $\alpha \in (1,2)$ is presented. The approach is based upon computing the conditional expectation of the desired quantities given high frequency data, which is an ${L^{2}}$-optimal statistic by construction. The corresponding stable central limit theorems are proved and a statistical application is discussed. In particular, this work extends the results of [20], which investigated the case of the Brownian motion.

References

[1] 
Altmeyer, R., Chorowski, J.: Estimation error for occupation time functionals of stationary Markov processes. Stoch. Process. Appl. 128(6), 1830–1848 (2018). MR3797645. https://doi.org/10.1016/j.spa.2017.08.013
[2] 
Ayache, A., Xiao, Y.: Harmonizable fractional stable fields: Local nondeterminism and joint continuity of the local times. Stoch. Process. Appl. 126(1), 171–185 (2016). MR3426515. https://doi.org/10.1016/j.spa.2015.08.001
[3] 
Barlow, M.T.: Continuity of local times for Lévy processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 69, 23–35 (1985). MR0775850. https://doi.org/10.1007/BF00532583
[4] 
Barlow, M.T.: Necessary and sufficient conditions for the continuity of local times of Lévy processes. Ann. Probab. 16(4), 1389–1427 (1988). MR0958195
[5] 
Berman, S.M.: Local times and sample function properties of stationary Gaussian processes. Trans. Am. Math. Soc. 137, 277–299 (1969). MR0239652. https://doi.org/10.2307/1994804
[6] 
Berman, S.M.: Gaussian processes with stationary increments: Local times and sample function properties. Ann. Math. Stat. 41(4), 1260–1272 (1970). MR0272035. https://doi.org/10.1214/aoms/1177696901
[7] 
Borodin, A.N.: On the character of convergence to Brownian local time. I, II. Probab. Theory Relat. Fields 72(2), 231–250, 251–277 (1986). MR0836277. https://doi.org/10.1007/BF00699106
[8] 
Cohen, S.N.: A martingale representation theorem for a class of jump processes (2013). arXiv preprint. arXiv:1310.6286
[9] 
Florens-Zmirou, D.: On estimating the diffusion coefficient from discrete observations. J. Appl. Probab. 30, 790–804 (1993). MR1242012. https://doi.org/10.2307/3214513
[10] 
Geman, D., Horowitz, J.: Occupation densities. Ann. Probab. 8(1), 1–67 (1980). MR0556414. https://doi.org/10.1214/aop/1176994824
[11] 
Getoor, R.K., Kesten, H.: Continuity of local times of Markov processes. Compos. Math. 24, 277–303 (1972). MR0310977
[12] 
Hong, M., Liu, H., Xu, F.: Limit theorems for additive functionals of some self-similar Gaussian processes (2023). Preprint
[13] 
Jacod, J.: On continuous conditional Gaussian martingales and stable convergence in law. Seminaire de Probabilites XXXI, vol. 232. Springer, Berlin, Heidelberg (1997). MR1478732. https://doi.org/10.1007/BFb0119308
[14] 
Jacod, J.: Rates of convergence to the local time of a diffusion. Ann. Inst. Henri Poincaré B, Probab. Stat. 34(4), 505–544 (1998). MR1632849. https://doi.org/10.1016/S0246-0203(98)80026-5
[15] 
Jaramillo, A., Nourdin, I., Peccati, G.: Approximation of fractional local times: Zero energy and derivatives. Ann. Appl. Probab. 31(5), 2143–2191 (2021). MR4332693. https://doi.org/10.1214/20-aap1643
[16] 
Jaramillo, A., Nourdin, I., Nualart, D., Peccati, G.: Limit theorems for additive functionals of the fractional Brownian motion. Ann. Probab. 51(3), 1066–1111 (2023). MR4583063. https://doi.org/10.1214/22-aop1612
[17] 
Jeganathan, P.: Convergence of functionals of sums of r.v.s to local times of fractional stable motions. Ann. Probab. 32(3), 1771–1795 (2004). MR2073177. https://doi.org/10.1214/009117904000000658
[18] 
Jeganathan, P.: Limit laws for the local times of fractional Brownian and stable motions (2006). Working paper, available at: https://www.isibang.ac.in/~statmath/eprints/2006/11.pdf
[19] 
Jeganathan, P.: Limit theorems for functionals of sums that converge to fractional Brownian and stable motions (2008). Working paper, available at: https://cowles.yale.edu/sites/default/files/files/pub/d16/d1649.pdf
[20] 
Ivanovs, J., Podolskij, M.: Optimal estimation of the supremum and occupation times of a self-similar Lévy process. Electron. J. Stat. 16(1), 892–934 (2022). MR4372664. https://doi.org/10.1214/21-ejs1928
[21] 
Kesten, H.: Hitting probabilities of single points for processes with stationary independent increments. Mem. Amer. Math. Soc. 93 (1969). MR0272059
[22] 
Papanicolaou, G.C., Stroock, D., Varadhan, S.R.S.: Martingale approach to some limit theorems. Papers from the Duke Turbulence Conference 6, ii+120 (1976). MR0461684
[23] 
Podolskij, M., Rosenbaum, M.: Comment on: Limit of random measures associated with the increments of a Brownian semimartingale. Asymptotic behavior of local times related statistics for fractional Brownian motion. J. Financ. Econom. 16(4), 588–598 (2018). https://doi.org/10.1093/jjfinec/nbx036
[24] 
Renyi, A.: On stable sequences of events. Sankhya, Ser. A 25, 293–302 (1963). MR0170385
[25] 
Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer (1999). MR1725357. https://doi.org/10.1007/978-3-662-06400-9
[26] 
Rosen, J.: Second order limit laws for the local times of stable processes. In: Séminaire de Probabilités, XXV. Lecture Notes in Mathematics, vol. 1485, pp. 407–424. Springer, Berlin (1991). MR1187796. https://doi.org/10.1007/BFb0100872

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2024 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
High frequency data local time mixed normal distribution occupation time stable Lévy processes

MSC2010
62E17 60F05 11N60

Funding
The authors gratefully acknowledge financial support of ERC Consolidator Grant 815703 “STAMFORD: Statistical Methods for High Dimensional Diffusions.”

Metrics
since March 2018
507

Article info
views

170

Full article
views

218

PDF
downloads

66

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy