Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 11, Issue 2 (2024)
  4. Power law in Sandwiched Volterra Volatil ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Power law in Sandwiched Volterra Volatility model
Volume 11, Issue 2 (2024), pp. 169–194
Giulia Di Nunno   Anton Yurchenko-Tytarenko ORCID icon link to view author Anton Yurchenko-Tytarenko details  

Authors

 
Placeholder
https://doi.org/10.15559/24-VMSTA246
Pub. online: 23 January 2024      Type: Research Article      Open accessOpen Access

Received
2 November 2023
Revised
11 January 2024
Accepted
12 January 2024
Published
23 January 2024

Abstract

The paper presents an analytical proof demonstrating that the Sandwiched Volterra Volatility (SVV) model is able to reproduce the power-law behavior of the at-the-money implied volatility skew, provided the correct choice of the Volterra kernel. To obtain this result, the second-order Malliavin differentiability of the volatility process is assessed and the conditions that lead to explosive behavior in the Malliavin derivative are investigated. As a supplementary result, a general Malliavin product rule is proved.

References

[1] 
Alòs, E., León, J.A., Vives, J.: On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility. Finance Stoch. 11(4), 571–589 (2007). MR2335834. https://doi.org/10.1007/s00780-007-0049-1
[2] 
Andersen, L.B.G., Piterbarg, V.V.: Moment explosions in stochastic volatility models. Finance Stoch. 11(1), 29–50 (2006). MR2284011. https://doi.org/10.1007/s00780-006-0011-7
[3] 
Azmoodeh, E., Sottinen, T., Viitasaari, L., Yazigi, A.: Necessary and sufficient conditions for Hölder continuity of Gaussian processes. Stat. Probab. Lett. 94, 230–235 (2014). https://doi.org/10.1016/j.spl.2014.07.030. MR3257384
[4] 
Bayer, C., Friz, P., Gatheral, J.: Pricing under rough volatility. Quant. Finance 16(6), 887–904 (2016). MR3494612. https://doi.org/10.1080/14697688.2015.1099717
[5] 
Biagini, F., Guasoni, P., Pratelli, M.: Mean-variance hedging for stochastic volatility models. Math. Finance 10(2), 109–123 (2000). MR1802593. https://doi.org/10.1111/1467-9965.00084
[6] 
Bollerslev, T., Mikkelsen, H.O.: Modeling and pricing long memory in stock market volatility. J. Econom. 73(1), 151–184 (1996). https://doi.org/10.1016/0304-4076(95)01736-4
[7] 
Comte, F., Renault, E.: Long memory in continuous-time stochastic volatility models. Math. Finance 8(4), 291–323 (1998). MR1645101. https://doi.org/10.1111/1467-9965.00057
[8] 
Delemotte, J., De Marco, S., Segonne, F.: Yet another analysis of the SP500 at-the-money skew: Crossover of different power-law behaviours. SSRN Electron. J. (2023). https://doi.org/10.2139/ssrn.4428407
[9] 
Di Nunno, G., Mishura, Y., Yurchenko-Tytarenko, A.: Option pricing in Volterra sandwiched volatility model. arXiv:2209.10688 (2022). https://doi.org/10.48550/ARXIV.2209.10688
[10] 
Di Nunno, G., Mishura, Y., Yurchenko-Tytarenko, A.: Drift-implicit Euler scheme for sandwiched processes driven by Hölder noises. Numer. Algorithms 93(2), 459–491 (2023). MR4586188. https://doi.org/10.1007/s11075-022-01424-6
[11] 
Di Nunno, G., Mishura, Y., Yurchenko-Tytarenko, A.: Sandwiched SDEs with unbounded drift driven by Hölder noises. Adv. Appl. Probab. 55(3), 927–964 (2023). MR4624032. https://doi.org/10.1017/apr.2022.56
[12] 
Di Nunno, G., Kubilius, K., Mishura, Y., Yurchenko-Tytarenko, A.: From constant to rough: A survey of continuous volatility modeling. Mathematics 11(19), 4201 (2023). https://doi.org/10.3390/math11194201
[13] 
Di Nunno, G., Øksendal, B., Proske, F.: Malliavin Calculus for Lévy Processes with Applications to Finance, 1st edn. Springer, Berlin, Heidelberg (2009). MR2460554
[14] 
Ding, Z., Granger, C.W.J.: Modeling volatility persistence of speculative returns: A new approach. J. Econom. 73(1), 185–215 (1996). MR1410004. https://doi.org/10.1016/0304-4076(95)01737-2
[15] 
Ding, Z., Granger, C.W.J., Engle, R.F.: A long memory property of stock market returns and a new model. J. Empir. Finance 1(1), 83–106 (1993). https://doi.org/10.1016/0927-5398(93)90006-d
[16] 
Fouque, J.-P., Papanicolaou, G., Sircar, R., Sølna, K.: Maturity cycles in implied volatility. Finance Stoch. 8(4) (2004). MR2212113. https://doi.org/10.1007/s00780-004-0126-7
[17] 
Fukasawa, M.: Volatility has to be rough. Quant. Finance 21(1), 1–8 (2021). MR4188876. https://doi.org/10.1080/14697688.2020.1825781
[18] 
Funahashi, H., Kijima, M.: Does the Hurst index matter for option prices under fractional volatility? Ann. Finance 13(1), 55–74 (2017). MR3623799. https://doi.org/10.1007/s10436-016-0289-1
[19] 
Funahashi, H., Kijima, M.: A solution to the time-scale fractional puzzle in the implied volatility. Fractal Fract. 1(1), 14 (2017). https://doi.org/10.3390/fractalfract1010014
[20] 
Gatheral, J., Jaisson, T., Rosenbaum, M.: Volatility is rough. Quant. Finance 18(6), 933–949 (2018). MR3805308. https://doi.org/10.1080/14697688.2017.1393551
[21] 
Hu, Y., Nualart, D., Song, X.: A singular stochastic differential equation driven by fractional Brownian motion. Stat. Probab. Lett. 78(14), 2075–2085 (2008). MR2458016. https://doi.org/10.1016/j.spl.2008.01.080
[22] 
Hytönen, T., van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach Spaces. Volume I: Martingales and Littlewood-Paley theory, 1st edn. Springer, Cham, Switzerland (2016). MR3617205
[23] 
Lee, R.W.: Implied volatility: Statics, dynamics, and probabilistic interpretation. In: Recent Advances in Applied Probability, pp. 241–268. Kluwer Academic Publishers, Boston (2006). MR2102956. https://doi.org/10.1007/0-387-23394-6_11
[24] 
Lobato, I.N., Velasco, C.: Long memory in stock-market trading volume. J. Bus. Econ. Stat. 18(4), 410–427 (2000). MR1802045. https://doi.org/10.2307/1392223
[25] 
Nualart, D.: The Malliavin Calculus and Related Topics. Springer, Berlin/Heidelberg (2006). MR2200233
[26] 
Ocone, D.L., Karatzas, I.: A generalized Clark representation formula, with application to optimal portfolios. Stoch. Stoch. Rep. 34(3–4), 187–220 (1991). MR1124835. https://doi.org/10.1080/17442509108833682
[27] 
Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, Berlin, Heidelberg (1999). MR1725357. https://doi.org/10.1007/978-3-662-06400-9
[28] 
Rough Volatility Literature. https://sites.google.com/site/roughvol/home/rough-volatility-literature?authuser=0. Accessed: 2023-10-30.
[29] 
Willinger, W., Taqqu, M.S., Teverovsky, V.: Stock market prices and long-range dependence. Finance Stoch. 3(1), 1–13 (1999). https://doi.org/10.1007/s007800050049

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2024 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
SVV model stochastic volatility sandwiched process Gaussian Volterra noise Malliavin calculus

MSC2010
91G30 60H10 60H35 60G22

Funding
The present research is carried out within the frame and support of the ToppForsk project nr. 274410 of the Research Council of Norway with the title STORM: Stochastics for Time-Space Risk Models.

Metrics
since March 2018
591

Article info
views

198

Full article
views

250

PDF
downloads

87

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy