Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 11, Issue 3 (2024)
  4. Almost everywhere continuity of conditio ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • More
    Article info Full article

Almost everywhere continuity of conditional expectations
Volume 11, Issue 3 (2024), pp. 247–263
Alberto Alonso ORCID icon link to view author Alberto Alonso details   Fernando Brambila-Paz ORCID icon link to view author Fernando Brambila-Paz details  

Authors

 
Placeholder
https://doi.org/10.15559/23-VMSTA240
Pub. online: 11 January 2024      Type: Research Article      Open accessOpen Access

Received
22 February 2023
Revised
22 November 2023
Accepted
25 November 2023
Published
11 January 2024

Abstract

A necessary and sufficient condition on a sequence ${\{{\mathcal{A}_{n}}\}_{n\in \mathbb{N}}}$ of σ-subalgebras which assures convergence almost everywhere of conditional expectations for functions in ${L^{\infty }}$ is given. It is proven that for $f\in {L^{\infty }}(\mathcal{A})$
\[ \mathsf{E}(f|{\mathcal{A}_{n}})\stackrel{a.e.}{\longrightarrow }\mathsf{E}(f|{\mathcal{A}_{\mu a.e.}}).\]

References

[1] 
Alonso, A.: A counterexample on the continuity of conditional expectations. J. Math. Anal. Appl. 129(1), 1–5 (1988). MR0921373. https://doi.org/10.1016/0022-247X(88)90229-6
[2] 
Alonso, A., Brambila-Paz, F.: ${L^{p}}$-continuity of conditional expectations. J. Math. Anal. Appl. 221(1), 161–176 (1998). MR1619139. https://doi.org/10.1006/jmaa.1998.5818
[3] 
Boylan, E.S.: Equiconvergence of martingales. Ann. Math. Stat. 42(2), 552–559 (1971). MR0290422. https://doi.org/10.1214/aoms/1177693405
[4] 
Fetter, H.: On the continuity of conditional expectations. J. Math. Anal. Appl. 61(1), 227–231 (1977). MR0455110. https://doi.org/10.1016/0022-247X(77)90157-3
[5] 
Gehr, T., Misailovic, S., Tsankov, P., Vanbever, L., Wiesmann, P., Vechev, M.: Bayonet: probabilistic inference for networks. ACM SIGPLAN Not. 53(4), 586–602 (2018). https://doi.org/10.1145/3296979.3192400
[6] 
Kozen, D.: Kolmogorov extension, martingale convergence, and compositionality of processes. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 692–699 (2016). MR3776789. https://doi.org/10.1145/2933575.2933610
[7] 
Neveu, J.: Mathematical Foundations of the Calculus of Probability. Holden-Day Series in Probability and Statistics (1965). MR0198505
[8] 
Vidmar, M.: A couple of remarks on the convergence of σ-fields on probability spaces. Stat. Probab. Lett. 134, 86–92 (2018). MR3758585. https://doi.org/10.1016/j.spl.2017.10.017

Full article PDF XML
Full article PDF XML

Copyright
© 2024 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Conditional expectations probability

Metrics
since March 2018
458

Article info
views

140

Full article
views

369

PDF
downloads

68

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy