Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 11, Issue 1 (2024)
  4. Gamma mixed fractional Lévy Ornstein–Uhl ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Gamma mixed fractional Lévy Ornstein–Uhlenbeck process
Volume 11, Issue 1 (2024), pp. 63–83
Héctor Araya ORCID icon link to view author Héctor Araya details   Johanna Garzón   Rolando Rubilar-Torrealba  

Authors

 
Placeholder
https://doi.org/10.15559/23-VMSTA237
Pub. online: 5 December 2023      Type: Research Article      Open accessOpen Access

Received
16 January 2023
Revised
14 September 2023
Accepted
12 November 2023
Published
5 December 2023

Abstract

In this article, a non-Gaussian long memory process is constructed by the aggregation of independent copies of a fractional Lévy Ornstein–Uhlenbeck process with random coefficients. Several properties and a limit theorem are studied for this new process. Finally, some simulations of the limit process are shown.

References

[1] 
Aalen, O.O., Gjessing, H.K.: Survival models based on the Ornstein-Uhlenbeck process. Lifetime Data Anal. 10, 407–423 (2004). MR2125423. https://doi.org/10.1007/s10985-004-4775-9
[2] 
Barndorff-Nielsen, O.E., Shephard, N.: Non-Gaussian OU based models and some of their uses in financial economics. J. R. Stat. Soc., Ser. B, Stat. Methodol. 63(2), 167–241 (2001). MR1841412. https://doi.org/10.1111/1467-9868.00282
[3] 
Bender, C., Knobloch, R., Oberacker, P.: Maximal inequalities for fractional Lévy and related processes. Stoch. Anal. Appl. 33, 701–714 (2015). MR3359822. https://doi.org/10.1080/07362994.2015.1036167
[4] 
Bender, C., Lindner, A., Schicks, M.: Finite variation of fractional Lévy processes. J. Theor. Probab. 25, 594–612 (2012). MR2914443. https://doi.org/10.1007/s10959-010-0339-y
[5] 
Billingsley, P.: Convergence of Probability Measures. Wiley, New York-London-Sydney (1968). MR0233396
[6] 
Butler, M.A., King, A.A.: Phylogenetic comparative analysis: A modeling approach for adaptive evolution. Am. Nat. 164, 683–695 (2004)
[7] 
Cheridito, P., Kawaguchi, H., Maejima, M.: Fractional Ornstein-Uhlenbeck processes. Electron. J. Probab. 8, 1–14 (2003). MR1961165. https://doi.org/10.1214/EJP.v8-125
[8] 
Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman and Hall/CRC Financial Mathematics Series, Florida (2003). MR2042661
[9] 
Douissi, S., Es-Sebaiy, K., Tudor, C.A.: Hermite Ornstein-Uhlenbeck process mixed with a Gamma distribution. Publ. Math. (Debr.) 8443, 1–22 (2020). MR4062581. https://doi.org/10.5486/pmd.2020.8443
[10] 
Es-Sebaiy, K., Tudor, C.A.: Fractional Ornstein-Uhlenbeck process mixed with a Gamma distribution. Fractals 23(2), 1550032 (2015). MR3375690. https://doi.org/10.1142/S0218348X15500322
[11] 
Fink, H., Klüppelberg, C.: Fractional Lévy-driven Ornstein-Uhlenbeck processes and stochastic differential equations. Bernoulli 17, 484–506 (2011). MR2798001. https://doi.org/10.3150/10-BEJ281
[12] 
Glaser, S.: A law of large numbers for the power variation of fractional Lévy processes. Stoch. Anal. Appl. 33, 1–20 (2015). MR3285245. https://doi.org/10.1080/07362994.2014.962045
[13] 
Igloi, E., Terdik, G.: Long-range dependence trough Gamma-mixed Ornstein-Uhlenbeck process. Electron. J. Probab. 4, 1–33 (1999). MR1713649. https://doi.org/10.1214/EJP.v4-53
[14] 
Kahl, C.: Modelling and Simulation of Stochastic Volatility in Finance. Universal-Publishers, Boca Raton (2008)
[15] 
Klüppelberg, C., Matsui, M.: Generalized fractional Lévy processes with fractional Brownian motion limit. Adv. Appl. Probab. 47, 1108–1131 (2015). MR3433298. https://doi.org/10.1239/aap/1449859802
[16] 
Maejima, M., Tudor, C.A.: Wiener integrals with respect to the Hermite process and a non-central limit theorem. Stoch. Anal. Appl. 25(5), 1043–1056 (2007). MR2352951. https://doi.org/10.1080/07362990701540519
[17] 
Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968). MR0242239. https://doi.org/10.1137/1010093
[18] 
Marquardt, T.: Fractional Lévy processes with an application to long memory moving average processes. Bernoulli 6(12), 1099–1126 (2006). MR2274856. https://doi.org/10.3150/bj/1165269152
[19] 
Marquardt, T.: Multivariate fractionally integrated CARMA processes. J. Multivar. Anal. 98, 1705–1725 (2007). MR2392429. https://doi.org/10.1016/j.jmva.2006.07.001
[20] 
Marquardt, T., James, L.F.: Generating long memory models based on CARMA processes. Technical report, 1–19 (2007)
[21] 
Marquardt, T., Stelzer, R.: Multivariate CARMA processes. Stoch. Process. Appl. 117, 96–120 (2007). MR2287105. https://doi.org/10.1016/j.spa.2006.05.014
[22] 
Mishura, Y., Zili, M.: Stochastic Analysis of Mixed Fractional Gaussian Processes. Elsevier Ltd, United States (2018). MR3793191
[23] 
Ricciardi, L.M., Sacerdote, L.: The Ornstein-Uhlenbeck process as a model for neuronal activity. Biol. Cybern. 35, 1–9 (1979)
[24] 
Shen, G.J., Wang, Q.B., Yin, X.W.: Parameter estimation for the discretely observed Vasicek model with small fractional Lévy noise. Acta Math. Sin. Engl. Ser. 36, 443–461 (2020). MR4083410. https://doi.org/10.1007/s10114-020-9121-y
[25] 
Taqqu, M.S., Stoev, S.: Simulation methods for linear fractional stable motion and FARIMA using Fast Furier Transform. Fractals 12(1), 95–121 (2004). MR2052735. https://doi.org/10.1142/S0218348X04002379
[26] 
Tikanmäki, H., Mishura, Y.: Fractional Lévy processes as a result of compact interval integral transformation. Stoch. Anal. Appl. 29, 1081–1101 (2011). MR2847337. https://doi.org/10.1080/07362994.2011.610172
[27] 
Uhlenbeck, G.E., Ornstein, L.S.: On the theory of the Brownian motion. Phys. Rev. 36, 823–841 (1930)
[28] 
Vasicek, O.: An equilibrium characterization of the term structure. J. Financ. Econ. 5(2), 177–188 (1977)
[29] 
Wang, Q., Yin, X.: Least squares estimator for Vasicek model driven by fractional Lévy processes. J. Adv. Math. 14(2), 8013–8024 (2018)

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2024 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Fractional Lévy process Ornstein–Uhlenbeck process non-Gaussian process random coefficients

MSC2010
60G10 60G17 60H05 60H30

Funding
Héctor Araya was partially supported by Proyecto Fondecyt 11230051, Proyecto ECOS210037 and Mathamsud AMSUD210023. Johanna Garzón was partially supported by HERMES project 58557 and Mathamsud AMSUD210023.

Metrics
since March 2018
468

Article info
views

196

Full article
views

269

PDF
downloads

65

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy