Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 11, Issue 1 (2024)
  4. A note on randomly stopped sums with zer ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

A note on randomly stopped sums with zero mean increments
Volume 11, Issue 1 (2024), pp. 31–42
Remigijus Leipus   Jonas Šiaulys ORCID icon link to view author Jonas Šiaulys details  

Authors

 
Placeholder
https://doi.org/10.15559/23-VMSTA236
Pub. online: 5 December 2023      Type: Research Article      Open accessOpen Access

Received
22 September 2023
Revised
29 October 2023
Accepted
3 November 2023
Published
5 December 2023

Abstract

In this paper, the asmptotics is considered for the distribution tail of a randomly stopped sum ${S_{\nu }}={X_{1}}+\cdots +{X_{\nu }}$ of independent identically distributed consistently varying random variables with zero mean, where ν is a counting random variable independent of $\{{X_{1}},{X_{2}},\dots \}$. The conditions are provided for the relation $\mathbb{P}({S_{\nu }}\gt x)\sim \mathbb{E}\nu \hspace{0.1667em}\mathbb{P}({X_{1}}\gt x)$ to hold, as $x\to \infty $, involving the finiteness of $\mathbb{E}|{X_{1}}|$. The result improves that of Olvera-Cravioto [14], where the finiteness of a moment $\mathbb{E}|{X_{1}}{|^{r}}$ for some $r\gt 1$ was assumed.

References

[1] 
Borovkov, A.A.: Estimates for the distribution of sums and maxima of sums of random variables without the Cramer condition. Sib. Math. J. 41, 811–848 (2000). MR1803562. https://doi.org/10.1007/BF02674739
[2] 
Borovkov, A.A., Borovkov, K.A.: Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions. Cambridge University Press, Cambridge (2008). MR2424161. https://doi.org/10.1017/CBO9780511721397
[3] 
Cline, D.B.H., Hsing, T.: Large Deviation Probabilities for Sums and Maxima of Random Variables with Heavy or Subexponential Tails. Preprint, Texas A&M University (1991)
[4] 
Daley, D.J., Omey, E., Vesilo, R.: The tail behaviour of a random sum of subexponential random variables and vectors. Extremes 10, 21–39 (2007). MR2397550. https://doi.org/10.1007/s10687-007-0033-3
[5] 
Danilenko, S., Šiaulys, J.: Randomly stopped sums of not identically distributed heavy tailed random variables. Stat. Probab. Lett. 113, 84–93 (2016). MR3480399. https://doi.org/10.1016/j.spl.2016.03.001
[6] 
Denisov, D., Foss, S., Korshunov, D.: Asymptotics of randomly stopped sums in the presence of heavy tails. Bernoulli 16, 971–994 (2010). MR2759165. https://doi.org/10.3150/10-BEJ251
[7] 
Embrechts, P., Goldie, C.M., Veraverbeke, N.: Subexponentiality and infinite divisibility. Adv. Appl. Probab. 44, 1142–1172 (2012)
[8] 
Faÿ, G., González-Arévalo, B., Mikosch, T., Samorodnitsky, G.: Modeling teletraffic arrivals by a Poisson cluster process. Queueing Syst. 54, 121–140 (2006). MR2268057. https://doi.org/10.1007/s11134-006-9348-z
[9] 
Foss, S., Korshunov, D., Zachary, S.: An Introduction to Heavy-Tailed and Subexponential Distributions. Springer, New York (2013). MR2810144. https://doi.org/10.1007/978-1-4419-9473-8
[10] 
Leipus, R., Šiaulys, J.: Closure of some heavy-tailed distribution classes under random convolution. Lith. Math. J. 52, 249–258 (2012). MR3020941. https://doi.org/10.1007/s10986-012-9171-7
[11] 
Leipus, R., Šiaulys, J., Konstantinides, D.: Closure Properties for Heavy-Tailed and Related Distributions. Springer, Cham (2023). MR4660026. https://doi.org/10.1007/978-3-031-34553-1
[12] 
Nagaev, S.V.: On the asymptotic behavior of one-sided large deviation probabilities. Theory Probab. Appl. 26, 362–366 (1982). MR0616627
[13] 
Ng, K.W., Tang, Q.H., Yang, H.: Maxima of sums of heavy-tailed random variables. ASTIN Bull. 32, 43–55 (2002). MR1928012. https://doi.org/10.2143/AST.32.1.1013
[14] 
Olvera-Cravioto, M.: Asymptotics for weighted random sums. Adv. Appl. Probab. 44, 1142–1172 (2012). MR3052852
[15] 
Stam, A.J.: Regular variation of the tail of a subordinated probability distribution. Adv. Appl. Probab. 5, 287–307 (1973). MR0339353. https://doi.org/10.2307/1426038
[16] 
Tang, Q.: Insensitivity to negative dependence of the asymptotic behavior of precise large deviations. Electron. J. Probab. 11, 107–120 (2006). MR2217811. https://doi.org/10.1214/EJP.v11-304
[17] 
Tang, Q., Tsitsiashvili, G.: Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks. Stoch. Process. Appl. 108, 299–325 (2003). MR2019056. https://doi.org/10.1016/j.spa.2003.07.001
[18] 
Tang, Q., Yan, J.: A sharp inequality for the tail probabilities of sums of i.i.d. r.v.’s with dominatedly varying tails. Sci. China Ser. A 45, 1006–1011 (2002). MR1942914. https://doi.org/10.1007/BF02879983
[19] 
Yang, Y., Gao, Q.: On closure properties of heavy-tailed distributions for random sums. Lith. Math. J. 54, 366–377 (2014). MR3240977. https://doi.org/10.1007/s10986-014-9249-5

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2024 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Heavy-tailed distribution Consistently varying distribution Randomly stopped sum 60E05 60F10 60G40

Metrics
since March 2018
481

Article info
views

123

Full article
views

285

PDF
downloads

70

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy