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Abstract In this paper, the asmptotics is considered for the distribution tail of a randomly
stopped sum Sν = X1 + · · · + Xν of independent identically distributed consistently vary-
ing random variables with zero mean, where ν is a counting random variable independent
of {X1, X2, . . .}. The conditions are provided for the relation P(Sν > x) ∼ Eν P(X1 > x) to
hold, as x → ∞, involving the finiteness of E|X1|. The result improves that of Olvera-Cravioto
[14], where the finiteness of a moment E|X1|r for some r > 1 was assumed.

Keywords Heavy-tailed distribution, Consistently varying distribution, Randomly stopped
sum

2020 MSC 60E05, 60F10, 60G40

1 Introduction and preliminaries

Let X,X1, X2, . . . be independent identically distributed (i.i.d.) random variables
(r.v.s). Denote a sequence of partial sums {Sn, n � 0} by

S0 = 0, Sn := X1 + · · · + Xn, n � 1. (1)
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In this paper, we consider the randomly stopped sum

Sν = X1 + · · · + Xν,

where ν is a counting r.v. taking values in N0 := {0, 1, 2, . . . }. We assume that ν is
nondegenerate at zero, i.e. P(ν =0)<1, and that ν is independent of {X,X1, X2, . . . }.
Denote FX, Fν and FSν the distributions of X, ν and Sν , respectively. In the case
where primary r.v.s are heavy-tailed and nonnegative, the standard result states that if
ν has finite mean Eν, and its distribution tail is lighter than the tail of X, then

FSν (x) ∼
x→∞Eν FX(x). (2)

For important contributions, see Stam [15], Daley et al. [4], Embrechts et al. [7], Faÿ
et al. [8]. In Section 4 of the last paper, the case of nonnegative regularly varying
summands was examined in detail. Note that, generally, relationship (2) can be ob-
tained under different conditions on r.v.s X and ν (see, e.g., Daley et al. [4]). More
precisely, (2) holds under various heavy-tailed distribution classes, moment condi-
tions on X and ν, relationships between the distribution tails FX and Fν (typically,
Fν(x) = o(FX(x))). Usually, weakening the conditions on Fν , stronger conditions on
FX are assumed. In the case of real-valued r.v.s, the conditions for (2) depend also on
the sign of the mean μ = EX if it exists. For instance, in the case of negative mean,
the relation (2) holds for all subclasses of S ∗ (see definition below), which includes
most subexponential distributions with finite mean, see Denisov et al. [6, Theorem 1].

In this paper, we pose the problem under what ‘minimal’ moment conditions re-
lation (2) holds in the case of real-valued consistently varying distribution FX with
zero mean. Recall that the class of consistently varying distributions (see definition
below) contains the regularly varying class of distributions.

Before formulating and discussing the main result of the paper, we will introduce
the related subclasses of heavy-tailed distributions, some notions, and known results.
We will say that a distribution F = 1 − F is on R := (−∞,∞) if F(x) > 0
for all x ∈ R. All limiting relations are assumed as x → ∞ unless it is stated
to the contrary. For two eventually positive functions a(x) and b(x), a(x) ∼ b(x)

means that lim a(x)/b(x) = 1; a(x) � b(x) means that 0 < lim inf a(x)/b(x) �
lim sup a(x)/b(x) < ∞. We denote a+ := max{a, 0}, a− := − min{a, 0}.

• A distribution F on R is said to be heavy-tailed, denoted F ∈ H , if its
Laplace–Stieltjes transform satisfies∫ ∞

−∞
eδxdF(x) = ∞ for any δ > 0.

Otherwise, F is said to be light-tailed.

Next we introduce the heavy-tailed distribution subclasses which will be used in
the paper.

• A distribution F on R is said to be regularly varying with index α � 0 and
denoted F ∈ R(α) if its tail satisfies

lim
F(xy)

F (x)
= y−α for any y > 0.
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F ∈ R(0) is said to be slowly varying distribution.

• A distribution F onR is said to be consistently varying, denoted by F ∈ C , if

lim
y↘1

lim inf
x→∞

F(xy)

F (x)
= 1. (3)

• A distribution F on R is said to belong to dominatedly varying class of distri-
butions, denoted F ∈ D , if

lim sup
F(xy)

F (x)
< ∞

for all (or, equivalently, for some) y ∈ (0, 1).

It holds that C ⊂ D ⊂ H .
Next, for a distribution F onR denote

F ∗(y) := lim inf
x→∞

F(xy)

F (x)
, F

∗
(y) := lim sup

x→∞
F(xy)

F (x)
, y > 1, (4)

and introduce the upper and lower Matuszewska indices by equalities

J+
F = − lim

y→∞
log F ∗(y)

log y
, J−

F = − lim
y→∞

log F
∗
(y)

log y
.

Clearly, 0 � J−
F � J+

F � ∞. It is well known that F ∈ D if and only if J+
F < ∞.

• Set F+(x) := F(x)1{x�0}. A distribution F on R is said to be subexponential
and denoted F ∈ S if F+ ∗ F+(x) ∼ 2F(x).

Note that F ∈ S implies

F ∗n(x) ∼ nF(x) for all n � 2,

see, e.g., Foss et al. [9, Corollary 3.20].

• A distribution F onR with mF := ∫ ∞
0 F(u)du ∈ (0,∞) belongs to S ∗ (or is

strong subexponential) if∫ x

0
F(x − y)F (y)dy ∼ 2mF F(x).

It holds that C ⊂ S ∗ ⊂ S provided the mean is finite.
More details on the mentioned heavy-tailed classes can be found in the recent

book [11].

First, we formulate some known results for class C .

Proposition 1. Let X,X1, X2, . . . be i.i.d. real-valued r.v.s with the common distri-
bution FX ∈ C and let ν be an independent counting r.v. Let either of conditions
hold:
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(a) Eνp+1 < ∞ for some p > J+
FX

, or

(b) E|X| < ∞, Fν(x) = o(FX(x)), or

(c) E|X| < ∞, Eν < ∞ and EX < 0.

Then

FSν (x) ∼ EνFX(x). (5)

PROOF. In the case of nonnegative r.v.s, part (a) of the proposition can be found
in Leipus and Šiaulys [10, Corollary 3]. We provide a short proof for the case of
distributions onR. Write

FSν (x) =
∞∑

n=1

F ∗n
X (x)P(ν = n), x � 0.

Since C ⊂ S , we have F ∗n
X (x) ∼ nFX(x) for any n � 1. In addition, as C ⊂ D ,

according to Theorem 3 in Daley et al. [4], for any p > J+
FX

, there exists a finite
positive constant C, independent of x and n, such that

sup
x∈R

F ∗n
X (x)

FX(x)
� Cnp+1. (6)

This implies (5) by the dominated convergence theorem. Part (b) can be found in
Ng et al. [13, Theorem 2.3] or Denisov et al. [6, Corollary 3]. Part (c) follows from
Denisov et al. [6, Theorem 1] and relationship C ⊂ S ∗ (in the case of regularly
varying distributions, see Borovkov and Borovkov [2, Theorem 7.1.1]).

We will focus our attention to the case where EX = 0 and show that in this
case the result in part (b) can be improved replacing o(·)-condition to O(·)-condition.
Note that, in the case of zero mean and in the more general setup, Olvera-Cravioto
[14, Theorem 2.1 (b)] obtained the following result.

Proposition 2. Let X,X1, X2, . . . be i.i.d. real-valued r.v.s with the common distri-
bution FX ∈ C , and let ν be an independent counting r.v. Assume that J−

FX
> 0,

E|X|r < ∞ for some r > 1, EX = 0 and Fν(x) = O(FX(x)). Then (5) holds.

As noted by Olvera-Cravioto [14], the proof of the result follows the standard
heavy-tailed techniques from Nagaev [12], Borovkov [1] (see also Borovkov and
Borovkov [2]), based on the exponential bounds for sums of truncated r.v.s. More-
over, it was conjectured that the requirement E|X|r < ∞, r > 1 might be weakened
with a different proof technique.

In our paper we prove that the result of Proposition 2 indeed holds under the
condition E|X| < ∞, accordingly modifying the proof. Specifically, some ideas from
Cline and Hsing [3], Tang [16] and Danilenko and Šiaulys [5] have been used in the
proof of the main result. Apparently, the alternative proof of the main result can be
constructed using the bounds in Theorem 1 of Tang and Yan [18].
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2 Main results

Theorem 1. Let X,X1, X2, . . . be i.i.d. r.v.s with the distribution FX ∈ C , and let
ν be an independent counting r.v. If E|X| < ∞, EX = 0, J−

FX
> 0, and Fν(x) =

O(FX(x)), then (5) holds.

Observe that conditions E|X| < ∞ and Fν(x) = O(FX(x)) imply finiteness of
the moment Eν < ∞. The statement of the theorem follows from Propositions 3
and 4 below in which the upper and lower asymptotic bounds are obtained.

Remark 1. Note that, in the case of dominatedly varying distribution FX with finite
mean, the condition Fν(x) = O(FX(x)) (both for μ > 0 and μ � 0) is sufficient for
the relationship FSν (x) � FX(x) (see, e.g., Leipus and Šiaulys [10], Yang and Gao
[19]). Taking into account the closure of class D under weak tail equivalence, this
yields that the distribution of random sum Sν is in D .

Proposition 3. Let X,X1, X2, . . . be i.i.d. r.v.s with the common distribution
FX ∈ S , and let ν be an independent counting r.v. with finite mean Eν. Then

lim inf
FSν (x)

EνFX(x)
� 1.

Proposition 4. Under the conditions of Theorem 1,

lim sup
FSν (x)

EνFX(x)
� 1.

From the main theorem we obtain the following statement for regularly varying
distributions. To the best of our knowledge, this is a new result.

Corollary 1. Let X,X1, X2, . . . be i.i.d. r.v.s with the distribution FX ∈ R(α), α � 1,
and let ν be an independent counting r.v. If E|X| < ∞, EX = 0, and Fν(x) =
O(FX(x)), then (5) holds.

Remark that if FX ∈ R(α), α > 1, then the condition E|X| < ∞ is automatically
satisfied.

3 Proof of Proposition 3

For K ∈ N and large x we have

FSν (x) � P(Sν > x, ν � K) =
K∑

n=1

F ∗n
X (x)P(ν = n).

Since F ∗n
X (x) ∼ nFX(x), we get that

lim inf
FSν (x)

EνFX(x)
� 1

Eν

K∑
n=1

nP(ν = n) = Eν1{ν�K}
Eν

.

The assertion of the proposition follows now from the last estimate by passing K to
infinity.
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4 Proof of Proposition 4

Let K ∈ N and δ ∈ (0, 1) be temporarily fixed numbers. For sufficiently large x we
have

FSν (x) = P(Sν > x, ν � K) + P
(
Sν > x,K < ν � xδ−1)

+ P
(
Sν > x, ν > xδ−1)

=
K∑

n=1

P(Sn > x)P(ν = n)

+
∑

K<n�xδ−1

P
(
Sn > x,∪n

k=1

{
Xk > x(1 − δ)

})
P(ν = n)

+
∑

K<n�xδ−1

P
(
Sn > x,∩n

k=1

{
Xk ≤ x(1 − δ)

})
P(ν = n)

+ P
(
Sν > x, ν > xδ−1)

�
K∑

n=1

F ∗n
X (x)P(ν = n) +

∑
K<n�xδ−1

nFX

(
x(1 − δ)

)
P(ν = n)

+
∑

K<n�xδ−1

P

( n∑
k=1

X̂k > x

)
P(ν = n) + Fν

(
xδ−1)

=: J1 + J2 + J3 + J4, (7)

where X̂k := min{Xk, x(1 − δ)}.
Since FX ∈ C ⊂ S , it holds that F ∗n

X (x) ∼ nFX(x) for any fixed n. Therefore,

J1 � (1 + δ)FX(x)Eν1{ν�K} (8)

for sufficiently large x � x1(K, δ).
In addition,

J2 � FX

(
x(1 − δ)

)
Eν1{ν>K}, (9)

J3 � Eν max
n�xδ−1

P(
∑n

k=1 X̂k > x)

n
. (10)

Using the bound in Lemma 1 (i) for the class D and the condition Fν(x) = O(FX(x)),
we obtain

J4 = Fν(xδ−1)

FX(xδ−1)

FX(xδ−1)

FX(x)
FX(x)

� c1
FX(xδ−1)

FX(x)
FX(x) � c2 δ

J−
FX

/2
FX(x) (11)

for large x � x2(δ) with some positive constants c1 and c2.
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Substituting estimates (8)–(11) into (7), we obtain

FSν (x)

EνFX(x)
� max

{ J1

FX(x)Eν1{ν�K}
,

J2

FX(x)Eν1{ν>K}

}

+ J3

FX(x)Eν
+ J4

FX(x)Eν

� max

{
1 + δ,

FX(x(1 − δ))

FX(x)

}
+ max

n�xδ−1

P(
∑n

k=1 X̂k > x)

nFX(x)

+ c2

Eν
δ

J−
FX

/2

for x � max{x1(K, δ), x2(δ)}. Therefore,

lim sup
FSν (x)

EνFX(x)
� max

{
1 + δ, lim sup

FX(x(1 − δ))

FX(x)

}

+ lim sup
FX(x(1 − δ))

FX(x)
lim sup max

n�xδ−1

P(
∑n

k=1 X̂k > x)

nFX(x(1 − δ))

+ c2

Eν
δ
J−
FX

/2

= max

{
1 + δ, lim sup

FX(x(1 − δ))

FX(x)

}
+ c2

Eν
δ
J−
FX

/2

according to Lemma 2. The desired upper bound is then obtained taking δ ↘ 0.

5 Auxiliary lemmas

The first auxiliary lemma can be found in Tang and Tsitsiashvili [17, Lemma 3.5].

Lemma 1. Let the distribution F ∈ D with lower and upper Matuszewska indices
J−

F and J+
F , respectively.

(i) If J−
F > 0, then for any 0 � p1 < J−

F there exist positive constants C1 =
C1(p1) and D1 = D1(p1), such that

F(y)

F (x)
� C1

(
x

y

)p1

(12)

for all x � y � D1.

(ii) For any p2 > J+
F � 0 there exist positive constants C2 = C2(p2) and D2 =

D2(p2), such that

F(y)

F (x)
� C2

(
x

y

)p2

(13)

for all x � y � D2.

(iii) For any p > J+
F it holds that x−p = o(F (x)).

The following lemma is crucial in the proof of Proposition 4.
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Lemma 2. Let X,X1, X2, . . . be i.i.d. real-valued r.v.s with the dominatedly varying
distribution FX ∈ D . If E|X| < ∞, EX = 0, then, for any δ ∈ (0, 1),

lim max
n�xδ−1

P
(∑n

k=1 X̂k > x
)

nFX(x(1 − δ))
= 0,

where X̂k := min{Xk, x(1 − δ)}.
PROOF. For any δ ∈ (0, 1), set

a = a(x, n) := max

{
log

1

n FX(x(1 − δ))
, 1

}
, x ∈ R, n ∈ N.

The assumption E|X| < ∞ implies that xFX(x(1 − δ)) → 0 as x → ∞. Since
a(x, n) is nonincreasing in n, we get that for any δ ∈ (0, 1)

min
n�xδ−1

a(x, n) � log
1

xδ−1FX(x(1 − δ))
→ ∞ (14)

and a(x, n) = log(1/(nFX(x(1 − δ)))) for large x (x � x3(δ)) and n � xδ−1.
By the exponential Markov inequality, for any h, x > 0, we have

P

( n∑
k=1

X̂k > x

)
� e−hx

E exp

{
h

n∑
k=1

X̂k

}

= e−hx
(
1 + E

(
ehX̂1 − 1

))n
.

Thus, by inequality 1 + z � ez, z ∈ R,

P
( ∑n

k=1 X̂k > x
)

nFX(x(1 − δ))
� exp

{−hx + a + nE
(
ehX̂1 − 1

)}
. (15)

Split the expectation E(ehX̂1 − 1) as follows:

E
(
ehX̂1 − 1

) = K1 + K2 + K3 + K4, (16)

where

K1 :=
∫

(−∞,0]
(
ehu − 1

)
dFX(u),

K2 :=
∫

(0,x(1−δ)a−2]
(
ehu − 1

)
dFX(u),

K3 :=
∫

(x(1−δ)a−2,x(1−δ)]
(
ehu − 1

)
dFX(u),

K4 := (
ehx(1−δ) − 1

)
FX

(
x(1 − δ)

)
.

The inequalities |ez − 1| � |z|, |ez − z − 1| � z2/2, z � 0, imply that

K1 = hEX1{X�0} + E
(
ehX − hX − 1

)
1{X�0}
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= −hEX− + E
(
ehX − 1

)
1{X�−h−1/4} − hEX1{X�−h−1/4}

+ E
(
ehX − hX − 1

)
1{−h−1/4<X�0}

� −hEX− + 2hE|X|1{X�−h−1/4} + h3/2

2
. (17)

The inequality ez − 1 � zez, z � 0, implies that

K2 � hehx(1−δ)a−2
∫

(0,x(1−δ)a−2]
u dFX(u)

� hehx(1−δ)a−2
EX+. (18)

In addition, observe that

K3,K4 � ehx(1−δ)FX

(
x(1 − δ)a−2). (19)

Substituting estimates (17), (18), (19) into (15)–(16), we get

P
( ∑n

k=1 X̂k > x
)

nFX(x(1 − δ))

� exp
{
2nehx(1−δ)FX

(
x(1 − δ)a−2)}

× exp

{
−hx + a + nh

(
2E|X|1{X�−h−1/4} + h1/2

2
− EX− + e

hx(1−δ)

a2 EX+
)}

.

According to Lemma 1 (iii), (x(1 − δ))p FX(x(1 − δ)) → ∞ for any p > J+
FX

.
Hence, for large x (x � x4(δ, p) > x3(δ)),

max
1�n�xδ−1

a(x, n) � log
(x(1 − δ))p

FX(x(1 − δ))(x(1 − δ))p
� p log

(
x(1 − δ)

)
. (20)

This relation implies that

min
1�n�xδ−1

x(1 − δ)a−2 → ∞

and, since FX ∈ D , by Lemma 1 (ii), it holds

FX(x(1 − δ)a−2)

FX(x(1 − δ))
� c3a

2p (21)

for any p > J+
FX

, large x (x � x5(δ, p) > x4(δ, p)) and some positive constant
c3 = c3(δ, p).

Therefore, by condition EX = EX+ − EX− = 0, we get

P
( ∑n

k=1 X̂k > x
)

nFX(x(1 − δ))

� exp
{
2c3na2pehx(1−δ)FX

(
x(1 − δ)

)}
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× exp

{
−hx + a + nh

(
2E|X|1{X�−h−1/4} + h1/2

2
+ (

e
hx(1−δ)

a2 − 1
)
EX+

)}
=: P1P2 (22)

for h > 0, n � xδ−1 and large x (x � x5(δ, p)).
Now, for x > 0 set

h = h(x, n) := max

{
a(x, n) − 2p log a(x, n)

x(1 − δ)
,

1

x(1 − δ)

}
.

By (14), for large x (x � x6(δ, p) > x5(δ, p)),

h = a − 2p log a

x(1 − δ)
.

Hence, from (20) we obtain, that for x � x6(δ, p)

max
n�xδ−1

h(x, n) �
maxn�xδ−1 a(x, n)

x(1 − δ)
� p log(x(1 − δ))

x(1 − δ)
→ 0. (23)

With this choice of h, we obtain that, for large x (x � x6(δ, p)) and any n �
xδ−1,

P1 = exp
{
2c3na2pea−2p log aFX

(
x(1 − δ)

)}
= exp

{
2c3eanFX

(
x(1 − δ)

)}
= e2c3 . (24)

For P2, we have for large x and n � xδ−1

P2 = exp

{
− aδ

1 − δ
+ 2p log a

1 − δ
+ n

a − 2p log a

x(1 − δ)

(
2E|X|1{X�−h−1/4} + h1/2

2

+ (
e(a−2p log a)a−2 − 1

)
EX+

)}

� exp

{
− aδ

1 − δ
+ 2p log a

1 − δ
+ a

δ(1 − δ)

(
2E|X|1{X�−h−1/4} + h1/2

2

+ (
e1/a − 1

)
EX+

)}
. (25)

Since, by (14) and (23), minn�xδ−1 a(x, n) → ∞ and maxn�xδ−1 h(x, n) → 0, for
large x (x � x7(δ, p) > x6(δ, p)), it holds that

max
n�xδ−1

(
2E|X|1{X�−h−1/4} + h1/2

2
+ (

e1/a − 1
)
EX+

)
� δ2

2
.

Substituting this bound into (25), we obtain that, for large x,

max
n�xδ−1

P2 � max
n�xδ−1

exp

{
− aδ

1 − δ
+ 2p log a

1 − δ
+ aδ

2(1 − δ)

}

= max
n�xδ−1

exp

{
−aδ − 4p log a

2(1 − δ)

}
→ 0.

This, together with (22) and (24), implies the statement of the lemma.
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