Random walks with sticky barriers        
        
    
        Volume 9, Issue 3 (2022), pp. 245–263
            
    
                    Pub. online: 16 March 2022
                    
        Type: Research Article
            
                
             Open Access
Open Access
        
            
    
                Received
11 December 2021
                                    11 December 2021
                Revised
17 February 2022
                                    17 February 2022
                Accepted
19 February 2022
                                    19 February 2022
                Published
16 March 2022
                    16 March 2022
Abstract
A new class of multidimensional locally perturbed random walks called random walks with sticky barriers is introduced and analyzed. The laws of large numbers and functional limit theorems are proved for hitting times of successive barriers.
            References
 Bingham, N., Goldie, C., Teugels, J.: Regular Variation vol. 27. Cambridge university press (1989). MR0898871. https://doi.org/10.1017/CBO9780511721434
 Bohle, D., Marynych, A., Meiners, M.: A fundamental problem of hypothesis testing with finite inventory in e-commerce. Appl. Stoch. Models Bus. Ind. 37(3), 454–474 (2021). MR4274564. https://doi.org/10.1002/asmb.2574
 Carlsson, H., Nerman, O.: An alternative proof of Lorden’s renewal inequality. Adv. Appl. Probab. 18(4), 1015–1016 (1986). MR0867097. https://doi.org/10.2307/1427260
 Glynn, P.W., Whitt, W.: Ordinary CLT and WLLN versions of $L=\lambda W$. Math. Oper. Res. 13(4), 674–692 (1988). MR0971918. https://doi.org/10.1287/moor.13.4.674
 Harrison, J.M., Shepp, L.A.: On skew Brownian motion. Ann. Probab. 9(2), 309–313 (1981). MR0606993
 Iksanov, A.: Renewal Theory for Perturbed Random Walks and Similar Processes. Probability and Its Applications, p. 250. Birkhäuser (2016). MR3585464. https://doi.org/10.1007/978-3-319-49113-4
 Iksanov, A., Pilipenko, A.: A functional limit theorem for locally perturbed random walks. Probab. Math. Stat. 36(2), 353–368 (2016). MR3593029
 Janson, S.: Moments for first-passage and last-exit times, the minimum, and related quantities for random walks with positive drift. Adv. Appl. Probab. 18(4), 865–879 (1986). MR0867090. https://doi.org/10.2307/1427253
 Minlos, R., Zhizhina, E.: Limit diffusion process for a non-homogeneous random walk on a one-dimensional lattice. Russ. Math. Surv. 52(2), 327 (1997). MR1480138. https://doi.org/10.1070/RM1997v052n02ABEH001778
 Pilipenko, A., Prikhod’ko, Y.: On the limit behavior of a sequence of Markov processes perturbed in a neighborhood of the singular point. Ukr. Math. J. 67(4), 564–583 (2015). MR3432463. https://doi.org/10.1007/s11253-015-1101-5
 
                 
            