Models of space-time random fields on the sphere        
        
    
        Volume 9, Issue 2 (2022), pp. 139–156
            
    
                    Pub. online: 3 February 2022
                    
        Type: Research Article
            
                
             Open Access
Open Access
        
            
    
                Received
12 November 2021
                                    12 November 2021
                Revised
15 January 2022
                                    15 January 2022
                Accepted
19 January 2022
                                    19 January 2022
                Published
3 February 2022
                    3 February 2022
Abstract
General models of random fields on the sphere associated with nonlocal equations in time and space are studied. The properties of the corresponding angular power spectrum are discussed and asymptotic results in terms of random time changes are found.
            References
 Alrawashdeh, M.S., Kelly, J.F., Meerschaert, M.M., Scheffler, H.-P.: Applications of inverse tempered stable subordinators. Comput. Math. Appl. 73(6), 892–905 (2017). MR3623093. https://doi.org/10.1016/j.camwa.2016.07.026
 Anh, V.V., Broadbridge, P., Olenko, A., Wang Yu, G.: On approximation for fractional stochastic partial differential equations on the sphere. Stoch. Environ. Res. Risk Assess. 32, 2585–2603 (2018). https://doi.org/10.1007/s00477-018-1517-1
 Anh, V.V., Leonenko, N.N., Sikorskii, A.: Stochastic representation of fractional Bessel–Riesz motion. Chaos Solitons Fractals 102, 135–139 (2017). MR3672004. https://doi.org/10.1016/j.chaos.2017.04.039
 Anh, V.V., Olenko, A., Wang Yu, G.: Fractional stochastic partial differential equation for random tangent fields on the sphere. Theory Probab. Math. Stat. 104, 3–22 (2021). https://doi.org/10.1090/tpms/1142
 Aubin, T.: Some Nonlinear Problems in Riemannian Geometry. Springer Monographs in Mathematics. Springer, Berlin (1998). MR1636569. https://doi.org/10.1007/978-3-662-13006-3
 Bertoin, J.: Subordinators: examples and applications. In: Bernard, P. (ed.) Lectures on Probability Theory and Statistics. Lecture Notes in Mathematics, vol. 1717. Springer, Berlin, Heidelberg (1999). MR1746300. https://doi.org/10.1007/978-3-540-48115-7_1
 Bingham, N.H., Symons, T.L.: Gaussian random fields on the sphere and sphere cross line. Stoch. Process. Appl. In press. Available online 4 September 2019. https://doi.org/10.1016/j.spa.2019.08.007
 Broadbridge, P., Kolesnik, A.D., Leonenko, N., Olenko, A.: Random spherical hyperbolic diffusion. J. Stat. Phys. 177, 889–916 (2019). MR4031900. https://doi.org/10.1007/s10955-019-02395-0
 Buchak, K., Sakhno, L.: On the governing equations for Poisson and Skellam processes time-changed by inverse subordinators. Theory Probab. Math. Stat. 98, 91–104 (2019). MR3824680. https://doi.org/10.1090/tpms/1064
 Capitanelli, R., D’Ovidio, M.: Fractional equations via convergence of forms. Fract. Calc. Appl. Anal. 22, 844–870 (2019). MR4023098. https://doi.org/10.1515/fca-2019-0047
 Chen, Z.-Q.: Time fractional equations and probabilistic representation. Chaos Solitons Fractals 102, 168–174 (2017). MR3672008. https://doi.org/10.1016/j.chaos.2017.04.029
 Dautray, V., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Thechnology. Vol. 3. Spectral Theory and Applications. Springer, Berlin (1990). MR1064315
 D’Ovidio, M.: Coordinates changed random fields on the sphere. J. Stat. Phys. 154, 1153–1176 (2014). MR3164607. https://doi.org/10.1007/s10955-013-0911-9
 D’Ovidio, M., Leonenko, N., Orsingher, E.: Fractional spherical random fields. Stat. Probab. Lett. 116, 146–156 (2016). MR3508533. https://doi.org/10.1016/j.spl.2016.04.011
 D’Ovidio, M., Nane, E.: Time dependent random fields on spherical non-homogeneous surfaces. Stoch. Process. Appl. 124, 2098–2131 (2014). MR3188350. https://doi.org/10.1016/j.spa.2014.02.001
 Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North Holland Mathematics Studies, vol. 204. Elsevier Science, Amsterdam (2006). MR2218073
 Kochubei, A.N.: General fractional calculus, evolution equations, and renewal processes. Integral Equ. Oper. Theory 71(4), 583–600 (2011). MR2854867. https://doi.org/10.1007/s00020-011-1918-8
 Lan, X., Xiao, Y.: Regularity properties of the solution to a stochastic heat equation driven by a fractional Gaussian noise on ${S^{2}}$. J. Math. Anal. Appl. 476, 27–52 (2019). MR3944417. https://doi.org/10.1016/j.jmaa.2019.01.077
 Lang, A., Schwab, C.: Isotropic Gaussian random fields on the sphere: regularity, fast simulation and stochastic partial differential equations. Ann. Appl. Probab. 25(6), 3047–3094 (2015). MR3404631. https://doi.org/10.1214/14-AAP1067
 Marinucci, D., Peccati, G.: Ergodicity and Gaussianity for spherical random fields. J. Math. Phys. 52, 043301 (2010). MR2662485. https://doi.org/10.1063/1.3329423
 Marinucci, D., Peccati, G.: Random Fields on the Sphere: Representation, Limit Theorems and Cosmological Applications. Cambridge University Press, Cambridge (2011). MR2840154. https://doi.org/10.1017/CBO9780511751677
 Schoenberg, I.J.: Positive definite functions on spheres. Duke Math. J. 9(1), 96–108 (1942). MR0005922. https://doi.org/10.1215/S0012-7094-42-00908-6
 Toaldo, B.: Convolution-type derivatives, hitting-times of subordinators and time-changed ${C_{0}}$-semigroups. Potential Anal. 42, 115–140 (2015). MR3297989. https://doi.org/10.1007/s11118-014-9426-5
 Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angular Momentum. World Scientific Publishing Co. Pte. Ltd., Singapore (2008). MR1022665. https://doi.org/10.1142/0270
 Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1946). MR0005923
 Yosida, K.: Brownian motion on the surface of the 3-sphere. Ann. Math. Stat. 20(2), 292–296 (1949). MR0030152. https://doi.org/10.1214/aoms/1177730038
 
            