Applications of a change of measures technique for compound mixed renewal processes to the ruin problem        
        
    
        Volume 9, Issue 1 (2022), pp. 45–64
            
    
                    Pub. online: 23 December 2021
                    
        Type: Research Article
            
                
             Open Access
Open Access
        
            
    
                Received
25 August 2021
                                    25 August 2021
                Revised
3 November 2021
                                    3 November 2021
                Accepted
3 November 2021
                                    3 November 2021
                Published
23 December 2021
                    23 December 2021
Abstract
In the present paper the change of measures technique for compound mixed renewal processes, developed in Tzaninis and Macheras [ArXiv:2007.05289 (2020) 1–25], is applied to the ruin problem in order to obtain an explicit formula for the probability of ruin in a mixed renewal risk model and to find upper and lower bounds for it.
            References
 Albrecher, H., Constantinescu, C., Loisel, S.: Explicit ruin formulas for models with dependence among risks. Insur. Math. Econ. 48, 265–270 (2011) MR2799308. https://doi.org/10.1016/j.insmatheco.2010.11.007
 Asmussen, S.: Busy period analysis, rare events and transient behaviour in fluid models. J. Appl. Math. Stoch. Anal. 7, 269–299 (1994) MR1301702. https://doi.org/10.1155/S1048953394000262
 Asmussen, S.: Stationary distribution for fluid models with or without Brownian noise. Stoch. Models 11, 21–49 (1995) MR1316767. https://doi.org/10.1080/15326349508807330
 Asmussen, S., Albrecher, H.: Ruin Probabilities, 2nd edn. World Scientific Publishing, London (2010) MR2766220. https://doi.org/10.1142/9789814282536
 Boogaert, P., De Waegenaere, A.: Simulation of ruin probabilities. Stoch. Models 9, 95–99 (1990) MR1084493. https://doi.org/10.1016/0167-6687(90)90020-E
 Cohn, D.L.: Measure Theory, 2nd edn. Birkhäuser Advanced Texts (2013) MR3098996. https://doi.org/10.1007/978-1-4614-6956-8
 Dassios, A., Embrechts, P.: Martingales and insurance risk. Stoch. Models 5, 181–217 (1989) MR1000630. https://doi.org/10.1080/15326348908807105
 Delbaen, F., Haezendock, J.: A martingale approach to premium calculation principles in an arbitrage free market. Insur. Math. Econ. 8, 269–277 (1989) MR1029895. https://doi.org/10.1016/0167-6687(89)90002-4
 Faden, A.M.: The existence of regular conditional probabilities: Necessary and sufficient conditions. Ann. Probab. 13, 288–298 (1985) MR0770643
 Grandell, J.: Mixed Poisson Processes. Chapman & Hall (1997) MR1463943. https://doi.org/10.1007/978-1-4899-3117-7
 Gut, A.: Stopped Random Walks: Limit Theorems and Applications, 2nd edn. Springer, New York (2009) MR2489436. https://doi.org/10.1007/978-0-387-87835-5
 Huang, W.J.: On the characterization of point processes with the exchangeable and Markov properties. Sankhya, Ser. A 52, 16–27 (1990) MR1176273
 Lyberopoulos, D.P., Macheras, N.D.: Some characterizations of mixed Poisson processes. Sankhya, Ser. A 74, 57–79 (2012) MR3010292. https://doi.org/10.1007/s13171-012-0011-y
 Lyberopoulos, D.P., Macheras, N.D.: A characterization of martingale-equivalent compound mixed Poisson processes. ArXiv:1905.07629, 1–28 (2019)
 Lyberopoulos, D.P., Macheras, N.D., Tzaninis, S.M.: On the equivalence of various definitions of mixed Poisson processes. Math. Slovaca 69, 453–468 (2019) MR3925926. https://doi.org/10.1515/ms-2017-0238
 Macheras, N.D., Tzaninis, S.M.: Some characterizations for Markov processes as mixed renewal processes. Math. Slovaca 68, 1477–1494 (2018) MR3881559. https://doi.org/10.1515/ms-2017-0196
 Macheras, N.D., Tzaninis, S.M.: A characterization of equivalent martingale measures in a renewal risk model with applications to premium calculation principles. Mod. Stoch. Theory Appl. 7, 43–60 (2020) MR4085675. https://doi.org/10.15559/20-vmsta148
 Palmowski, Z., Rolski, T.: A note on martingale inequalities for fluid models. Stat. Probab. Lett. 31, 13–21 (1996) MR1421764. https://doi.org/10.1016/S0167-7152(96)00007-7
 Palmowski, Z., Rolski, T.: Superposition of alternating on-off flows and a fluid model. Ann. Appl. Probab. 8, 524–541 (1998) MR1624957. https://doi.org/10.1214/aoap/1028903537
 Ridder, A.: Fast simulation of Markov fluid models. J. Appl. Probab. 33, 786–804 (1996) MR1401475. https://doi.org/10.1017/s002190020010021x
 Rolski, T., Schmidli, H., Schmidt, V., Teugels, J.L.: Stochastic Processes for Insurance and Finance. Wiley, Chichester (1999) MR1680267. https://doi.org/10.1002/9780470317044
 Schmidli, H.: Lundberg inequalities for a Cox model with a piecewise constant intensity. J. Appl. Probab. 33, 196–210 (1996) MR1371967. https://doi.org/10.1017/s0021900200103857
 Schmidli, H.: An extension to the renewal theorem and an application to risk theory. Ann. Appl. Probab. 7, 121–133 (1997) MR1428752. https://doi.org/10.1214/aoap/1034625255
 Schmidt, K.D.: Lectures on Risk Theory. B.G. Teubner, Stuttgart (1996) MR1402016. https://doi.org/10.1007/978-3-322-90570-3
 Segerdahl, C.-G.: Stochastic processes and practical working models or why is the Pólya process approach defective in modern practice and how to cope with its deficiencies? Scand. Actuar. J. 3–4, 146–166 (1970) MR0350918. https://doi.org/10.1080/03461238.1970.10405661
 Tzaninis, S.M., Macheras, N.D.: A characterization of equivalent martingale probability measures in a mixed renewal risk model with applications in Risk Theory. ArXiv:2007.09051, 1–23 (2020)
 Tzaninis, S.M., Macheras, N.D.: A characterization of progressively equivalent probability measures preserving the structure of a compound mixed renewal process. ArXiv:2007.05289, 1–25 (2020)
 
                 
            