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Abstract In the present paper the change of measures technique for compound mixed re-
newal processes, developed in Tzaninis and Macheras [ArXiv:2007.05289 (2020) 1–25], is
applied to the ruin problem in order to obtain an explicit formula for the probability of ruin in
a mixed renewal risk model and to find upper and lower bounds for it.

Keywords Compound mixed renewal process, change of measures, progressively
equivalent measures, regular conditional probabilities, ruin probability

2020 MSC 60G55, 91G05, 28A50, 60A10, 60G44, 60K05

1 Introduction

The notion of the renewal risk model traces back to Sparre Andersen [2], and it has
played a key role in classical Risk Theory as a natural generalization of the classical
Cramér–Lundberg risk model. In its standard framework both claims and interarrival
times form two sequences of i.i.d. random variables, which are also assumed to be
mutually independent. However, these independence assumptions can be too restric-
tive as far as actuarial applications are considered, and generalizations to dependence
scenarios must be developed.

In practice, insurance portfolios tend to be inhomogeneous and a mixture of
smaller homogeneous ones that are identified by the realizations of a random variable
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(or vector) Θ . Such portfolios are usually modelled via (compound) mixed count-
ing processes, with the typical example being that of the (compound) mixed Poisson
one (MPP for short). In the case of (compound) MPPs, the sequence of the inter-
arrival times W is P -conditionally independent and P -conditionally exponentially
distributed, something that leads to an interesting dependence structure between the
interarrival times and reveals a connection between (compound) MPPs and exchange-
ability.

Mixed renewal processes (MRPs for short) serve as a proper generalization of
MPPs, which has not been much considered in the literature, but they are interest-
ing from both theoretical and applied point of view. Their study is mathematically
challenging, as they are not, in general, Markov processes (see [14], Theorem 3, and
[19], Proposition 3.2) and they have a close connection to exchangeable stochastic
processes (see [14], Corollary on p. 20, and [17], Theorem 4.2). As far as practical
models are considered, MRPs seem to have interesting applications in both life in-
surance (see, e.g., [8]) and nonlife insurance mathematics (see, e.g., [29] and [30]). It
is worth noticing that Segerdahl [29] was the first who considered MRPs, in an actu-
arial context, as an alternative to the classical Pólya–Lundberg process (i.e. a mixed
Poisson-gamma one).

The change of measures technique has been successfully applied to various theo-
ries such as queues and fluid flows (Asmussen [3, 4], Palmowski and Rolski [21, 22]),
ruin theory (Dassios and Embrechts [9], Asmussen [3], Asmussen and Albrecher [5],
Schmidli [25–27]), simulation (Boogaert and De Waegenaere [6], Ridder [23]) and
pricing of insurance risks (premium calculation principles) (Delbaen and Haezen-
donck [10], Lyberopoulos and Macheras [16], Macheras and Tzaninis [20, 31]). The
process of interest is usually Markovian and, under a suitably chosen new probability
measure, it is again a Markov process with some “nicer” desired properties.

In [31], the same problem was investigated for the class of compound MRPs. In
the same paper, given an aggregate claims process S being a MRP under P , a full
characterization of all probability measures Q, which are progressively equivalent
to P and preserve the structure of S, but with some better desired properties, was
provided, see [31] Theorem 4.5 and Corollary 4.8 as well as Proposition 4.15. In
the present paper by utilizing the aforementioned change of measures technique an
explicit formula and bounds for the probability of ruin in a mixed renewal risk model
are obtained.

Part of Proposition 4.15 from [31] is Proposition 3.1, formulated for the purposes
of the present paper and being the starting point for applications to the ruin problem.
Proposition 3.1, as well as Proposition 3.2, extend the corresponding results for the
renewal risk model (see, e.g., [27], Lemmas 8.4 and 8.6, respectively) to the com-
pound MRPs.

A first consequence of Proposition 3.1 is Proposition 4.1, where an upper bound
for the ruin probability within finite time is obtained. Another implication of Propo-
sition 3.1 is Proposition 4.2, where it is proven, that if the net profit condition is
fulfilled under an original measure P , and S is a compound MRP under P then under
the new measure resulting from Proposition 3.1 the process S will be of the same
type, except that the net profit condition will no longer be fulfilled and ruin will al-
ways occur within finite time. Thus, the ruin problem becomes easier to handle, since
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by Proposition 4.2 under the new measure the probability of ruin is equal to 1, some-
thing that gives the opportunity to express the ruin probability under P as a quantity
under the new measure, see Theorem 4.1, and to find upper and lower bounds for it,
see Corollary 4.2.

2 Preliminaries

Throughout this paper, unless stated otherwise, (Ω,Σ,P ) is an arbitrary but fixed
probability space. Given a topology T on Ω write B(Ω) for its Borel σ -algebra
on Ω , i.e. the σ -algebra generated by T. The measure theoretic terminology is stan-
dard and generally follows [7]. For the definitions of real-valued random variables and
random variables, cf., e.g., [7], p. 308. Notation PX := PX(θ) := K(θ) denotes that
X is distributed according to the law K(θ), where θ ∈ D ⊆ R

d (d ∈ N) is the param-
eter of the distribution. Denote again by K(θ) the distribution function induced by the
probability distribution K(θ). Notation Ga(b, a), where a, b ∈ (0,∞), stands for the
law of gamma distribution (cf., e.g., [28], p. 180). In particular, Ga(b, 1) = Exp(b)

stands for the law of exponential distribution. For two real-valued random variables
X and Y write X = Y P -a.s. if {X �= Y } is a P -null set. If A ⊆ Ω , then Ac := Ω \A,
while χA denotes the indicator (or characteristic) function of the set A. For a map
f : D → E and for a nonempty set A ⊆ D denote by f � A the restriction of
f to A. Write EP [X | F] for a version of a conditional expectation (under P ) of
a P -integrable random variable X given a σ -subalgebra F of Σ . For X := χE with
E ∈ Σ set P(E | F) := EP [χE | F]. For the unexplained terminology of Probability
and Risk Theory, see [28].

Given two measurable spaces (Ω,Σ) and (Υ,H), a function k from Ω × H into
[0, 1] is a Σ-H -Markov kernel if it has the following properties:

(k1) The set-function B �→ k(ω,B) is a probability measure on H for any fixed
ω ∈ Ω .

(k2) The function ω �→ k(ω,B) is Σ-measurable for any fixed B ∈ H .

In particular, given a real-valued random variable X on Ω and a d-dimensional ran-
dom vector Θ on Ω , a conditional distribution of X over Θ is a σ(Θ)-B-Markov
kernel denoted by PX|Θ := PX|σ(Θ) and satisfying for each B ∈ B the condition

PX|Θ(•, B) = P(X−1[B] | σ(Θ))(•) P � σ(Θ) − a.s.

Clearly, for every Bd -B-Markov kernel k, the map K(Θ) from Ω ×B into [0, 1]
defined by means of

K(Θ)(ω,B) := (k(•, B) ◦ Θ)(ω) for any (ω, B) ∈ Ω × B

is a σ(Θ)-B-Markov kernel. Then for θ = Θ(ω) with ω ∈ Ω the probability mea-
sures k(θ, •) are distributions on B and so one may write K(θ)(•) instead of k(θ, •).
Consequently, in this case K(Θ) will be denoted by K(Θ).

For any real-valued random variables X, Y on Ω the conditional distributions
PX|Θ and PY |Θ are P � σ(Θ)-equivalent (in symbols, PX|Θ = PY |Θ P � σ(Θ)-a.s.),
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if there exists a P -null set M ∈ σ(Θ) such that for any ω /∈ M and B ∈ B the
equality PX|Θ(ω,B) = PY |Θ(ω,B) holds true.

For the definition of a P -conditionally (stochastically) independent process over
σ(Θ) as well as of a P -conditionally identically distributed process over σ(Θ), cf.,
e.g., [31], p. 4. Recall that a process is P -conditionally (stochastically) independent
or identically distributed given Θ , if it is conditionally independent or identically
distributed over the σ -algebra σ(Θ).

Henceforth, unless stated otherwise, Θ is a d-dimensional random vector on Ω

with values in D ⊆ R
d (d ∈ N). Furthermore, simply write “conditionally” in the

place of “conditionally given Θ” whenever conditioning refers to Θ .
A family N := {Nt }t∈R+ of random variables from (Ω,Σ) into (R,B(R)) is

called a counting (or claim number) process, if there exists a P -null set ΩN ∈ Σ

such that the process N restricted on Ω \ ΩN takes values in N0 ∪ {∞}, has right-
continuous paths, presents jumps of size (at most) one, vanishes at t = 0 and increases
to infinity. Without loss of generality one may and do assume, that ΩN = ∅. Denote
by T := {Tn}n∈N0 and W := {Wn}n∈N the (claim) arrival process and (claim)
interarrival process, respectively (cf., e.g., [28], Section 1.1, p. 6, for the definitions)
associated with N . Note also that every arrival process induces a counting process,
and vice versa (cf., e.g., [28], Theorem 2.1.1).

Furthermore, let X := {Xn}n∈N be a sequence of positive real-valued random
variables on Ω , and for any t ≥ 0 define

St :=
{∑Nt

k=1 Xk if t > 0;
0 if t = 0.

Accordingly, the sequence X is said to be the claim size process, and the family
S := {St }t∈R+ of real-valued random variables on Ω is said to be the aggregate
claims process induced by the pair (N,X). Recall that a pair (N,X) is called a risk
process, if N is a counting process, X is P -i.i.d. and the processes N and X are
P -independent (see [28], Chapter 6, Section 6.1).

3 A change of measures technique for compound mixed renewal processes

Recall that a counting process N is a P -mixed renewal process with mixing
parameter Θ and interarrival time conditional distribution K(Θ) (written P -
MRP(K(Θ)) for short), if the induced interarrival process W is P -conditionally in-
dependent and

∀ n ∈ N [PWn|Θ = K(Θ) P � σ(Θ)-a.s.]
(see also [17], Definition 3.1, or [19], Definition 3.2(b)). In particular, if the distri-
bution PΘ of Θ is degenerate at some point θ0 ∈ D, then the counting process N

becomes a P -renewal process with interarrival time distribution K(θ0) (written P -
RP(K(θ0)) for short).

Accordingly, an aggregate claims process S induced by a P -risk process (N,X)

such that N is a P -MRP(K(Θ)) is called a compound mixed renewal process with
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parameters K(Θ) and PX1 (P -CMRP(K(Θ), PX1) for short). In particular, if PΘ is
degenerate at θ0 ∈ D, then S is called a compound renewal process with parame-
ters K(θ0) and PX1 (P -CRP(K(θ0), PX1) for short).

Throughout what follows denote again by K(Θ) and K(θ) the conditional distri-
bution function and the distribution function induced by the conditional probability
distribution K(Θ) and the probability distribution K(θ), respectively.

Remark 3.1. (a) For any n ∈ N the interarrival times Wn of a P -MRP(K(Θ)) remain
P -identically distributed (see [31], Remark 2.1) but they fail to be P -independent.
In fact, assuming that E2

P [W1 | Θ] ∈ L1(P ) and applying standard computations
along with the fact that W is P -conditionally i.i.d., it follows that CovP (Wn,Wm) =
VarP (EP [W1 | Θ]) > 0 for any n,m ∈ N with n �= m.

(b) Applying [17], Theorem 4.2, which holds true under some mild assumptions
satisfied by the majority of the probability spaces appearing in applied Probability
Theory, one gets that there exists a d-dimensional random vector Θ such that W is
P -conditionally i.i.d. if and only if the sequence W is P -exchangeable (recall that a
sequence of random variables is called exchangeable if the joint distribution of the
sequence is invariant under the permutation of the indices); hence exchangeability
seems to be an appealing way to introduce a dependence structure between the claim
interarrival times of a counting process. Actually, exchangeability seems to be a nat-
ural assumption in the risk model context (see [1], Remark 2.7), implying that the
assumption that N is a MRP may be seen also as a natural one, in order to model this
kind of dependence between claim interarrival times.

The following conditions for the quadruplet (P,W,X,Θ) (or, if no confusion
arises, for the probability measure P ) will be useful throughout the paper:

(a1) the pair (W,X) is P -conditionally independent;

(a2) the random vector Θ and the process X are P -(unconditionally) independent.

Since conditioning is involved in the definition of (compound) mixed renewal
processes, it is natural to expect that regular conditional probabilities (or disintegra-
tions) will play a key. To this purpose recall the following definition (cf., e.g., [31],
Definition 3.2).

Definition 3.1. The family {Pθ }θ∈D of probability measures on Σ is called a regular
conditional probability (rcp for short) of P over PΘ if

(d1) for each E ∈ Σ the map θ �→ Pθ(E) is B(D)-measurable;

(d2)
∫

Pθ(E)PΘ(dθ) = P(E) for each E ∈ Σ .

The family {Pθ }θ∈D is consistent with Θ if, for each B ∈ B(D), the equality
Pθ(Θ

−1(B)) = 1 holds for PΘ -almost every θ ∈ B.
A rcp {Pθ }θ∈D of P over PΘ consistent with Θ is essentially unique, if for

any other rcp {P̃θ }θ∈D of P over PΘ consistent with Θ there exists a PΘ -null set
N ∈ B(D) such that for any θ /∈ N the equality Pθ = P̃θ holds true.

Regular conditional probabilities seem to have a bad reputation when it comes to
applications, and that is probably due to the facts that their own existence is not al-
ways guaranteed (see [18], Examples 4 and 5) and their construction usually involves
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manipulations with Radon–Nikodým derivatives. Nevertheless, as the spaces used in
applied Probability Theory are mainly Polish ones, such rcps always exist (see [11],
Theorem 6), and in fact they can be explicitly constructed for the class of (compound)
mixed renewal processes (see [31], Proposition 4.1).

From now on the family {Pθ }θ∈D is a rcp of P over PΘ consistent with Θ .
Let S be the aggregate claims process induced by the counting process N and the

claim size process X. Fix on arbitrary u ∈ Υ and t ∈ R+, and define the function
ru
t : Ω×D → R by means of ru

t (ω, θ) := u+c(θ)·t−St (ω) for any (ω, θ) ∈ Ω×D,
where c is a positive B(D)-measurable function. For arbitrary but fixed θ ∈ D, the
process ru(θ) := {ru

t (θ)}t∈R+ defined by ru
t (θ) := ru

t (ω, θ) for any ω ∈ Ω , is
called the reserve process induced by the initial reserve u, the premium intensity
or premium rate c(θ) and the aggregate claims process S (see [28], Section 7.1,
pp. 155–156, for the definition).

Define the real-valued function Ru
t (Θ) on Ω by means of Ru

t (Θ) := ru
t ◦ (idΩ ×

Θ). The process Ru(Θ) := {Ru
t (Θ)}t∈R+ is called the reserve process induced by

the initial reserve u, the stochastic premium intensity or stochastic premium rate
c(Θ) and the aggregate claims process S.

Remark 3.2. The most common choice for the premium rate in Risk Theory is that of
a positive constant c (cf., e.g., [12], p. 215, [27], p. 83, or [28], p. 155). Nevertheless,
mixed claim number processes are widely used in order to model claim counts in
a portfolio of risks which is thought to be inhomogeneous and a mixture of smaller
homogeneous ones which can be identified by the realization of the random vector Θ;
hence the choice of a stochastic premium rate c(Θ) instead of a constant premium rate
c seems natural, as the homogeneous portfolios may have different premium rates.

Remark 3.3. Assume that S is a P -CMRP(K(Θ), PX1), define the function κ : D ×
R+ → R by means of

κ(θ, r) := κθ (r) for any (θ, r) ∈ D × R+,

and for fixed r ∈ R+ denote by κΘ the random variable defined by the formula

κΘ(r)(ω) := κΘ(ω)(r) for any ω ∈ Ω.

According to [31], Proposition 3.3, there exists a PΘ -null set LP ∈ B(D) such
that S is a Pθ -CRP(K(θ), (Pθ )X1) with (Pθ )X1 = PX1 for any θ /∈ LP . For any
r ∈ R+ such that EP [erX1] < ∞ and any θ ∈ Lc

P let κθ (r) be the unique solution to
the equation

MX1(r) · (Mθ)W1

(−κθ (r) − c(θ) · r
) = 1, (1)

where MX1 and (Mθ)W1 are the moment generating function of X1 and W1 under the
measures P and Pθ , respectively (such a solution exists by, e.g., [24], Lemma 11.5.1(a)).
Note that the latter condition is in fact a version of the well-known Cramér–Lundberg
equation (cf., e.g., [27], p. 133). Condition (1), along with [31], Lemma 4.13, implies
that κΘ(r) is the P � σ(Θ)-a.s. unique solution to the equation

MX1(r) · EP

[
e
−
(
κΘ(r)+c(Θ)·r

)
W1 | Θ

] = 1 P � σ(Θ)-a.s. (2)
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F := {Ft }t∈R+ , where Ft := σ(FS
t ∪ σ(Θ)), denotes the canonical filtration

generated by S and Θ; FS∞ := σ(
⋃

t∈R+ FS
t ) and F∞ := σ(FS∞ ∪ σ(Θ)). For the

definition of a (P,Z)-martingale, where Z = {Zt }t∈R+ is a filtration for (Ω,Σ),
cf., e.g., [28], p. 25. A (P,Z)-martingale {Zt }t∈R+ is P -a.s. positive, if Zt is P -
a.s. positive for each t ≥ 0. For Z = F write “martingale” instead of “(P,Z)-
martingale”, for simplicity.

Notations 3.1. (a) The class of all real-valued B(Υ )-measurable functions γ such
that EP

[
eγ (X1)

] = 1 will be denoted by FP := FP,X1,ln. The class of all real-valued
B(D)-measurable functions ξ on D such that PΘ({ξ > 0}) = 1 and EP [ξ(Θ)] = 1
is denoted by R+(D) := R+(D,B(D), PΘ).

(b) Denote by Mk(D) (k ∈ N) the class of all B(D)-B(Rk)-measurable functions
on D. For each ρ ∈ Mk(D), the class of all probability measures Q on Σ satisfying
(a1) and (a2), being progressively equivalent to P , i.e. Q � Ft ∼ P � Ft for any t ≥
0 (in the sense of absolute continuity), and such that S is a Q-CMRP(�(ρ(Θ)),QX1)

is denoted by MS,�(ρ(Θ)) := MS,�(ρ(Θ)),P,X1 . In the special case d = k and ρ :=
idD write MS,�(Θ) := MS,�(ρ(Θ)) for simplicity.

(c) For given ρ ∈ Mk(D) and θ ∈ D, denote by MS,�(ρ(θ)) the class of all
probability measures Qθ on Σ , such that Qθ � Ft ∼ Pθ � Ft for any t ∈ R+ and S

is a Qθ -CRP(�(ρ(θ)), (Qθ )X1).

Henceforth, Υ := (0,∞), Ω := Υ N×Υ N×D, Σ := B(Ω), K(Θ) and {Pθ }θ∈D

are as in [31], Proposition 4.1, P ∈ MS,K(Θ), and assume that EP [W1|Θ] ∈ Υ P �
σ(Θ)-a.s.

The following proposition is a part of Proposition 4.15 from [31]. Since it is the
basic tool for the proofs of the results, it is restated exactly in the form needed for the
purposes of the present paper.

Proposition 3.1. For any r ∈ R+ such that EP [erX1] < ∞, and for any θ /∈ LP ,
let κθ (r) be the unique solution to Equation (1), and let κΘ(r) be as in Remark 3.3.
Fix on arbitrary r ∈ R+ as above and put ρr(Θ) := κΘ(r) + c(Θ) · r . For each pair
(γ, ξ) ∈ FP × R+(D) with γ (x) := r · x − lnEP [er·X1] for any x ∈ Υ , there exists
a unique probability measure Qr ∈ MS,�(ρr (Θ)), where

�(ρr(Θ))(B) :=
EP [χ

W−1
1 [B] · e−ρr (Θ)·W1 | Θ]

EP [e−ρr (Θ)·W1 | Θ] P � σ(Θ)-a.s.

for any B ∈ B(Υ ), determined by the condition

Qr(A) =
∫

A

M
(γ,r)
t (Θ) dP for all 0 ≤ u ≤ t and A ∈ Fu, (RRMξ )

with M(γ,r)(Θ) := {M(γ,r)
t (Θ)}t∈R+ being a P -a.s. positive martingale, fulfilling the

condition
M

(γ,r)
t (Θ) = ξ(Θ) · M̃

(γ,r)
t (Θ) P � σ(Θ)-a.s.

Moreover, there exist an essentially unique rcp {Qr
θ }θ∈D of Qr over Qr

Θ consis-
tent with Θ and a PΘ -null set L∗∗ ∈ B(D), satisfying for any θ /∈ L∗∗ the conditions
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Qr
θ ∈ MS,�(ρr (θ)) and

Qr
θ (A) =

∫
A

M̃
(γ,r)
t (θ) dPθ for all 0 ≤ u ≤ t and A ∈ Fu, (RRMθ )

with

M̃
(γ,r)
t (θ) = er·St−ρr (θ)·TNt +lnEP [er·X1 ] ·

∫ ∞
Jt

e−ρr (θ)·w (Pθ )W1(dw)

1 − K(θ)(Jt )
,

where Jt := t − TNt and M̃(γ,r)(θ) := {M̃(γ,r)
t (θ)}t∈R+ is a Pθ -a.s. positive martin-

gale.

In the following example Proposition 3.1 is applied for an initial probability mea-
sure P ∈ MS,Exp(Θ), where Θ is a positive real valued random variable, i.e. when S

is a compound mixed Poisson process (cf., e.g., [16], p. 4, for its definition).

Example 3.1. Take D := Υ and assume that P ∈ MS,Exp(Θ), where Θ is a positive
real-valued random variable. For any r ∈ R+ such that MX1(r) := EP [erX1] < ∞,
consider the functions γ and ξ , defined by means of γ (x) := r · x − ln MX1(r) for

any x ∈ Υ and ξ(θ) := e−r·θ
EP [e−r·Θ ] for any θ ∈ D. An easy computation justifies that

(γ, ξ) ∈ FP ×R+(D). Thus, applying Proposition 3.1, there exist a probability mea-
sure Qr ∈ MS,�(ρr (Θ)), determined by (RRMξ ), an essentially unique rcp {Qr

θ }θ∈D

of Qr over Qr
Θ consistent with Θ and a PΘ -null set L∗∗ ∈ B(D) such that conditions

Qr
θ ∈ MS,�(ρr (θ)) and (RRMθ ) hold for any θ /∈ L∗∗.

Fix an arbitrary θ /∈ L∗∗. Since by [31], Proposition 3.3, the aggregate claims
process S is a Pθ -CPP(θ, PX1) with PX1 = (Pθ )X1 , it follows by [27], condition
(5.3) on p. 89, that κθ (r) = θ · (MX1(r) − 1) − c(θ) · r , implying that ρr(θ) :=
κθ (r) + c(θ) · r = θ · (MX1(r) − 1). Thus,

�(ρr(θ))(B) =
EPθ [χW−1

1 [B] · e−ρr (θ)·W1]
EPθ [e−ρr (θ)·W1] =

∫
B

e−θ ·(MX1 (r)−1)·w (Pθ )W1(dw)∫
e−θ ·(MX1 (r)−1)·w (Pθ )W1(dw)

for any B ∈ B(Υ ). But since (Pθ )W1 = Exp(θ), the latter equality becomes

�(ρr(θ))(B) =
∫

B

θ · MX1(r) · e−θ ·MX1 (r)·w λ(dw),

where λ denotes the Lebesgue probability measure; hence �(ρr(θ)) = Exp(θ ·
MX1(r)), or equivalently �(ρr(Θ)) = Exp(Θ · MX1(r)) P � σ(Θ)-a.s. by [19],
Lemma 3.2, implying that Qr ∈ MS,Exp(Θ·MX1 (r)). In this situation conditions
(RRMθ ) and (RRMξ ) become

Qr
θ (A) =

∫
A

er·St−θ ·t ·(MX1 (r)−1) dPθ for all 0 ≤ u ≤ t and A ∈ Fu

and

Qr(A) =
∫

A

er·St−Θ·t ·(MX1 (r)−1)−Θ·r

EP [e−r·Θ ] dP for all 0 ≤ u ≤ t and A ∈ Fu,

respectively.
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Remark 3.4. It is worth noticing that in the special case when PW1 is absolutely con-
tinuous with respect to the Lebesgue measure λ restricted to B([0, 1]), the martingale
Lr(θ) := {Lr

t (θ)}t∈R+ for r ∈ R+, appearing in [27], Lemma 8.4, coincides with the
martingale M̃(γ,r)(θ) for any θ /∈ L∗∗, and for any t ∈ R+ condition

M
(γ,r)
t (Θ) = ξ(Θ) · Lr

t (Θ)

holds true P � σ(Θ)-a.s.

Lemma 3.1. For any r ∈ R+, θ /∈ L∗∗, Qr
θ and κθ (r) as in Proposition 3.1 condition

κ ′
θ (r) = EQr

θ
[X1]

EQr
θ
[W1] − c(θ),

holds true.

Proof. Fix an arbitrary r ∈ R+ and θ /∈ L∗∗ as in Proposition 3.1.
Since LP ⊆ L∗∗ by [31], Theorem 4.5, it follows by [31], Proposition 3.3, that

condition (1) can be rewritten in the form

(Mθ)X1(r) · (Mθ)W1(−c(θ) · r − κθ (r)) = 1. (3)

Differentiation with respect to r gives(
(Mθ)X1(r))

′ · (Mθ)W1(−c(θ) · r − κθ (r)
)

+ (Mθ)X1(r) · (
(Mθ)W1(−c(θ) · r − κθ (r))

)′ · (−c(θ) − κ ′
θ (r)) = 0 (4)

for all r in a neighbourhood of 0. The expectations EQr
θ
[X1] and EQr

θ
[W1] are given

by

EQr
θ
[X1] = EPθ

[
X1 · er·X1

]
EPθ [er·X1] = ((Mθ)X1(r))

′

(Mθ)X1(r)

and

EQr
θ
[W1] = EPθ

[
W1 · e−(r·c(θ)+κθ (r))·W1

]
EPθ [e−(r·c(θ)+κθ (r))·W1] =

(
(Mθ)W1(−r · c(θ) − κθ (r)

)
)′(

(Mθ)W1(−r · c(θ) − κθ (r)
) ,

respectively, implying along with condition (4) that

EQr
θ
[X1] · (Mθ)X1(r) · (Mθ)W1(−c(θ) · r − κθ (r))

+ (Mθ)X1(r) · EQr
θ
[W1] · (Mθ)W1(−c(θ) · r − κθ (r)) · (−c(θ) − κ ′

θ (r)) = 0.

The latter together with condition (3) gives

EQr
θ
[X1] + EQr

θ
[W1] · (−c(θ) − κ ′

θ (r)) = 0,

completing the proof.

The following proposition extends Lemma 8.6 of [27].
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Proposition 3.2. For any r ∈ R+, θ /∈ L∗∗, Qr
θ and κθ (r) as in Proposition 3.1, the

following statements hold true:

(i) limt→∞ ru
t (θ)−u

t
= −κ ′

θ (r) Qr
θ -a.s.;

(ii) limt→∞ Ru
t (Θ)−u

t
= −κ ′

Θ(r) Qr -a.s.;

(iii) if there exists a PΘ -null set L̂1 in B(D) such that for any θ /∈ L̂1 the condition
Pθ = Qr

θ holds, then the measures P and Qr are equivalent on F∞;

(iv) if there exists a PΘ -null set L̂2 in B(D) such that for any θ /∈ L̂2 the condition
Pθ �= Qr

θ holds, then the measures P and Qr are singular on F∞, i.e. there
exists a set E ∈ F∞ such that P(E) = 0 if and only if Qr(E) = 1.

Proof. Fix an arbitrary r ∈ R+ as in Proposition 3.1.
Ad (i): Fix an arbitrary θ /∈ L∗∗, and note that LP ⊆ L∗∗ by [31] T,heorem 4.5.

Since S is a Qr
θ -CRP by [31], Proposition 3.3, the strong law of large numbers yields

lim
t→∞

St

t
= EQr

θ
[X1]

EQr
θ
[W1] Qr

θ -a.s.

(cf., e.g., [13], Section 1.2, Theorem 2.3), or equivalently that

lim
t→∞

ru
t (θ) − u

t
= lim

t→∞
c(θ) · t − St

t
= c(θ) − EQr

θ
[X1]

EQr
θ
[W1] Qr

θ -a.s.,

implying along with Lemma 3.1, assertion (i).
Ad (ii): Consider the function v := χ{

limt→∞
rut −u

t
=−κ ′•(r)

} : Ω × D → [0, 1]

and put g := v ◦ (idΩ × Θ) = χ{
limt→∞

rut (Θ)−u

t
=−κ ′

Θ(r)

}. Since v ∈ L1(M), where

M := P ◦ (idΩ × Θ)−1, apply [15], Proposition 3.8(i), to get that

EQr [g | Θ] = EQr•
[
v•] ◦ Θ Qr � σ(Θ)-a.s.

or equivalently

Qr
( {

lim
t→∞

Ru
t (Θ) − u

t
= −κ ′

Θ(r)

}
| Θ

)
= Qr•

({
lim

t→∞
ru
t (•) − u

t
= −κ ′•(r)

})
◦ Θ Qr � σ(Θ)-a.s.

Then for any F ∈ B(D) it follows that∫
Θ−1[F ]

Qr

({
lim

t→∞
Ru

t (Θ) − u

t
= −κ ′

Θ(r)

}
| Θ

)
dQr

=
∫

F∩Lc∗∗
Qr

θ

({
lim

t→∞
ru
t (θ) − u

t
= −κ ′

θ (r)

})
Qr

Θ(dθ)

=
∫

Θ−1[F ]
dQr,
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where the last equality follows by (i); hence

Qr

({
lim

t→∞
Ru

t (Θ) − u

t
= −κ ′

Θ(r)

}
| Θ

)
= 1 Qr � σ(Θ)-a.s.,

implying that assertion (ii) holds true.
The proof of the statements (iii) and (iv) follow by Proposition 3.1 together with

[31], Proposition 3.11.

4 Applications to the ruin problem

In this section the change of measures technique for compound mixed renewal pro-
cesses appearing in Proposition 3.1 is applied to the ruin problem. In the first result
a bound for the finite time ruin probability is proven. In order to present it denote by
τ := τu the ruin time of the reserve process Ru(Θ) (u ∈ R+) (cf., e.g., [27], p. 84,
for the definition) and by ψ(u, t) := P({infv≤t Ru

v (Θ) < 0}) = P({τ ≤ t}) the finite
time ruin probability (cf., e.g., [5], p. 115) for the reserve process Ru(Θ) with respect
to P .

Proposition 4.1. Let r ∈ R+ be as in Proposition 3.1 and y, y ∈ R+ with 0 ≤ y <

y < ∞. The finite time ruin probability satisfies the condition

ψ(u, y · u) − ψ(u, y · u) ≤ EP

[
e−RΘ(y,y)·u] for any u ∈ R+,

where RΘ(y, y) := supr∈R+ min{r − κΘ(r) · y, r − κΘ(r) · y}.
Proof. Let r ∈ R+ be as in Proposition 3.1, fix arbitrary u, y, y ∈ R+ with 0 ≤ y <

y < ∞, and consider the functions γ (x) := r ·x−lnEP

[
er·X1

]
for any x ∈ Υ and ξ ∈

R+(D). Since (γ, ξ) ∈ FP × R+(D), it follows by Proposition 3.1 that there exists
a unique probability measure Qr ∈ MS,�(ρr (Θ)) determined by condition (RRMξ )
and such that the family M(γ,r)(Θ) is a P -a.s. positive martingale. But since τ is a
stopping time for F it follows by [27], Lemma 8.1, that

ψ(u, y · u) − ψ(u, y · u) = EQr

[
χ{y·u≤τ≤y·u} · 1

M
(γ,r)
τ (Θ)

]

≤ EQr

[
χ{y·u≤τ≤y·u} · e−r·u+max{κΘ(r)·y·u,κΘ(r)·y·u}

ξ(Θ)

]

≤ EQr

[
e− min{r−κΘ(r)·y,r−κΘ(r)·y}·u

ξ(Θ)

]
= EP

[
e− min{r−κΘ(r)·y,r−κΘ(r)·y}·u] ,

where the first inequality follows by Ru
τ = u+ c(Θ) · τ − Sτ < 0, Jτ = τ − TNτ = 0

and condition (2). Choosing now the exponent as small as possible, one gets

ψ(u, y · u) − ψ(u, y · u) ≤ EP

[
e−RΘ(y,y)·u] for any u ∈ R+,
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where RΘ(y, y) := supr∈R+ min{r −κΘ(r) ·y, r −κΘ(r) ·y}, completing in this way
the proof.

Remark 4.1. In the special case when PΘ is degenerate at some point θ0 ∈ D, the in-
equality appearing in Proposition 4.1 reduces to the well-known finite time Lundberg
inequality in a Sparre Andersen risk model

ψ(u, y · u) − ψ(u, y · u) ≤ e−Rθ0 (y,y)·u

for any u ∈ R+ and y, y ∈ R+ with 0 ≤ y < y < ∞ (cf., e.g., [27], p. 147).

Recall that for any arbitrary but fixed θ ∈ D the function ψθ : Υ → [0, 1] defined
by ψθ(u) := Pθ({inft∈R+ ru

t (θ) < 0}) is called the probability of ruin for the reserve
process ru(θ) with respect to Pθ (see [28], Section 7.1, p. 158, for the definition). The
function ψ : Υ → [0, 1] defined by ψ(u) := P({inft∈R+ Ru

t (Θ) < 0}) is called the
probability of ruin for the reserve process Ru(Θ) with respect to P .

When considering infinite time ruin probabilities in a mixed renewal risk model
one has to assume that the conditional net profit condition

c(Θ) >
EP [X1]

EP [W1 | Θ] P � σ(Θ)-a.s. (NPCΘ )

holds, in order to avoid a P -a.s. ruin (see [30], Lemma 5.3). Note that since S is a
P -CMRP(K(Θ), PX1) and conditions (a1) and (a2) are valid, one may apply [31],
Proposition 3.2, along with [15], Lemma 3.5, in order to show that condition (NPCΘ )
is equivalent to

c(θ) >
EPθ [X1]
EPθ [W1] for any θ /∈ L∗∗, (NPCθ )

where L∗∗ ∈ B(D) is the PΘ -null set appearing in Proposition 3.1. Fix an arbitrary
θ /∈ L∗∗. If condition (NPCθ ) holds true for any θ /∈ L∗∗ and r ∈ R+ is as in Propo-
sition 3.1, it follows by, e.g., [27], p. 133, that there exists an adjustment coefficient
R(θ) ∈ Υ with respect to Pθ .

Throughout what follows assume that condition (NPCΘ ) holds true and that
R(θ) ∈ Υ is an adjustment coefficient with respect to Pθ for any θ /∈ L∗∗.

The next result is an immediate consequence of Proposition 4.1 and extends the
celebrated Lundberg inequality to the case of CMRPs.

Corollary 4.1. The inequality

ψ(u) ≤ EP

[
e−R(Θ)·u] for any u ∈ R+

holds true.

The proof follows immediately by Proposition 4.1 for y = 0, y → ∞ and r =
R(θ).

Remark 4.2. Unfortunately, one cannot prove Corollary 4.1 directly from Proposi-
tion 3.1, as this would imply that the function γ should also depend on θ , resulting to
a claim size process that violates condition (a2) under Q.
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Example 4.1. Take D := (0, 1), let Θ be a real-valued random variable on Ω , and
assume that P ∈ MS,Exp(Θ) such that PX1 = Exp(η), η ∈ (1,∞), and PΘ =
Beta(1, 2) (cf., e.g., [28], p. 179, for the definition of a beta distribution). Since con-
ditions (a1) and (a2) hold true, it follows by [31], Proposition 3.3, that there exists
a PΘ -null set LP ∈ B(D) such that Pθ ∈ MS,Exp(θ) with (Pθ )X1 = PX1 for any
θ /∈ LP , implying that

EPθ [X1]
EPθ [W1] =

1
η

1
θ

= θ

η
for any θ /∈ LP .

Put c(θ) := θ
η−θ

for any θ ∈ D. Fix an arbitrary θ /∈ L∗∗. Since Pθ ∈ MS,Exp(θ)

with (Pθ )X1 = Exp(η) and condition (NPCθ ) is fulfilled, one can apply [28], Theo-
rem 7.4.5, to obtain that R(θ) = η− θ

c(θ)
= θ . Applying now Corollary 4.1 it follows

that

ψ(u) ≤ EP

[
e−Θ·u] = e−u + u − 1

u2 for any u ∈ Υ.

It should be clear by Proposition 4.1 and Corollary 4.1 that one cannot, in general,
expect to obtain exponential bounds in the case of CMRPs, as the adjustment coef-
ficient depends on the random vector Θ . However, applying Proposition 3.1 one can
obtain an explicit formula for the probability of ruin in infinite time, see Theorem 4.1,
which can lead to exponential bounds, see Corollary 4.2. In order to formulate The-
orem 4.1, one needs to establish the validity of the following proposition, which is
a consequence of Proposition 3.1, and allows one to construct a probability measure
QR∗

, being singular to the original probability measure P and such that ruin occurs
QR∗

-a.s.

Proposition 4.2. Let r ∈ R+ and L∗∗ be as in Proposition 3.1. If supθ∈Lc∗∗ R(θ)=:
R∗ exists in Υ and EP

[
eR∗·X1

]
< ∞, then for any pair (γ, ξ) as in Proposition 3.1

there exist a unique probability measure QR∗
determined by condition (RRMξ ) and

a rcp {QR∗
θ }θ∈D of QR∗

over QR∗
Θ consistent with Θ satisfying condition (RRMθ )

for any θ /∈ L∗∗, and such that for any u > 0 the probabilities of ruin ψQR∗
θ (u) and

ψQR∗
(u) with respect to QR∗

θ and QR∗
, respectively, are equal to 1.

Proof. Fix an arbitrary θ /∈ L∗∗ and assume that R∗ ∈ Υ and EP

[
eR∗·X1

]
< ∞.

By Proposition 3.1 it follows that there exist a unique probability measure QR∗ ∈
MS,�(ρR∗ (Θ)) determined by condition (RRMξ ) and a rcp {QR∗

θ }θ∈D of QR∗
over

QR∗
Θ consistent with Θ satisfying conditions QR∗

θ ∈ MS,�(ρR∗ (θ)) and (RRMθ ).
Because κ ′′

θ (r) > 0 by, e.g., [27], p. 133, it follows that the function κθ is strictly
convex, or equivalently that κ ′

θ is strictly increasing. Thus, since by, e.g., [27], p. 133,
conditions κθ (0) = κθ (R(θ)) = 0 and κ ′

θ (0) < 0 are valid, it follows that there exists
a point r0 ∈ (0, R(θ)) such that κ ′

θ (r0) = 0; hence κ ′
θ (r) > 0 for any r > r0. Because

r0 < R(θ) ≤ R∗ one deduces that κ ′
θ (R

∗) > 0. The latter, along with Lemma 3.1,
yields that

0 <
E

QR∗
θ

[X1]
E

QR∗
θ

[W1] − c(θ) ⇐⇒ c(θ) <
E

QR∗
θ

[X1]
E

QR∗
θ

[W1] ,
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implying that the net profit condition is violated with respect to QR∗
θ ; hence by [28],

Corollary 7.1.4, one has

ψQR∗
θ (u) = QR∗

θ ({ inf
t∈R+

ru
t (θ) < 0}) = 1 for any u > 0,

implying along with [31], Remark 3.4(b), that

ψQR∗
(u) = QR∗

({ inf
t∈R+

Ru
t < 0}) =

∫
D

ψQR∗
θ (u)QR∗

Θ (dθ) = 1 for any u > 0,

completing the whole proof.

In the following example, the assumptions R∗ < ∞ and EP

[
eR∗X1

]
< ∞ of

Proposition 4.2 hold.

Example 4.2. Assume that S is a P -CMPP(Θ) such that PX1 = Exp(η), η ∈ Υ ,
and PΘ = Beta(a, b), a, b ∈ (0,∞). According to [31], Proposition 3.3, there exists
a PΘ -null set LP ∈ B((0, 1)) such that S is a Pθ -CPP(θ) for any θ /∈ LP . Fix an
arbitrary θ /∈ LP and assume that c(θ) = 2·θ

η·(1+θ)
. By [28], Theorem 7.4.5, it follows

that R(θ) = η − θ
c(θ)

= η·(1−θ)
2 ∈ (0, η) is an adjustment coefficient with respect

to Pθ . Note that R∗ ∈ Υ , since supθ∈Lc
P

R(θ) = supθ∈Lc
P

η·(1−θ)
2 = η

2 . Furthermore,

EP

[
eR∗X1] = η

η−R∗ < ∞.

Theorem 4.1. Let (γ, ξ) be as in Proposition 3.1, u ∈ Υ and θ /∈ L∗∗. Under the
assumptions of Proposition 4.2 the following hold:

(i) ψθ(u) = E
QR∗

θ

[
eR∗ru

τ (θ)+κθ (R∗)·τ ] · e−R∗u;

(ii) ψ(u) = EQR∗
[

eR∗·Ru
τ (Θ)+κΘ (R∗)·τ

ξ(Θ)

]
· e−R∗·u.

Proof. Fix an arbitrary u ∈ Υ .
Ad (i): Let θ /∈ L∗∗ be arbitrary but fixed. Since by Proposition 3.1 the family

M̃(γ,R∗)(θ) is Pθ -a.s. positive martingale and τ is a stopping time for F , one may
apply [27], Lemma 8.1, to get

ψθ(u) =
∫

{τ<∞}
1

M̃
(γ,R∗)
τ (θ)

dQR∗
θ

= E
QR∗

θ

[
χ{τ<∞} · eR∗·ru

τ (θ)+κθ (R∗)·τ ] · e−R∗·u,

where the second equality follows from condition (3) for r = R∗ and the fact that
Jτ = 0. Because the probability of ruin with respect to QR∗

θ is equal to 1, by Propo-
sition 4.2, the previous condition yields

ψθ(u) = E
QR∗

θ

[
eR∗·ru

τ (θ)+κθ (R∗)·τ ] · e−R∗·u,

that is assertion (i) holds true.
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Ad (ii): Assertion (i) together with [31], Remark 3.4(b), implies

ψ(u) =
∫

ψθ(u) PΘ(dθ)

=
∫

E
QR∗

θ

[
eR∗·ru

τ (θ)+κθ (R∗)·τ

ξ(θ)

]
QR∗

Θ (dθ) · e−R∗·u

=
∫

EQR∗

[
eR∗·Ru

τ (Θ)+κΘ(R∗)·τ

ξ(Θ)
| Θ

]
dQR∗ · e−R∗·u,

where the last equality follows from [15], Proposition 3.8; hence

ψ(u) = EQR∗

[
eR∗·Ru

τ (Θ)+κΘ(R∗)·τ

ξ(Θ)

]
· e−R∗·u,

that is assertion (ii) holds true.

In the example that follows, an explicit formula for the probability of ruin in the
interesting case of constant premiums is obtained by applying Theorem 4.1.

Example 4.3. Let r ∈ R+ be as in Proposition 3.1, fix an arbitrary u > 0, assume that

c(θ) = c ∈ Υ for any θ ∈ D and put G :=
{
θ ∈ D : c > EPθ [X1]/EPθ [W1]

}
. Since

the net profit condition holds true for any θ ∈ Lc∗∗ ∩ G there exists an adjustment
coefficient R(θ) ∈ Υ with respect to Pθ for any θ ∈ Lc∗∗ ∩ G. Assume that R∗ =
supθ∈Lc∗∗∩G R(θ) ∈ Υ and EP [eR∗·X1] < ∞, and let (γ, ξ) be a pair of functions
as in Proposition 3.1. It then follows as in Proposition 4.2, that there exist a unique
probability measure QR∗

determined by condition (RRMξ ) and a rcp {QR∗
θ }θ∈D of

QR∗
over QR∗

Θ consistent with Θ satisfying condition (RRMθ ) for any θ /∈ L∗∗, and
such that ruin occurs QR∗

θ -a.s. for any θ ∈ Lc∗∗ ∩ G; hence

ψ(u)

=
∫

ψθ(u) PΘ(dθ)

=
∫

Lc∗∗∩G

ψθ(u) PΘ(dθ) +
∫

Lc∗∗∩Gc

ψθ (u) PΘ(dθ)

= EQR∗

[
χΘ−1(G) · eR∗·Ru

τ (Θ)+κΘ(R∗)·τ

ξ(Θ)

]
· e−R∗·u + EQR∗

[
χΘ−1(Gc) · 1

ξ(Θ)

]
,

where the third equality follows by Theorem 4.1 and the fact that ψθ(u) = 1 for

any θ ∈ Lc∗∗ ∩ Gc. It is clear that limu→∞ ψ(u) = EQR∗
[
χΘ−1(Gc) · 1

ξ(Θ)

]
≥ 0,

a condition implying that in the situation of constant premium intensities, there might
be cases where no matter how big is the initial capital u, the ruin probability ψ cannot
be reduced beyond a certain level. The previous condition also reveals a connection
between ψ and the choice of ξ , which clearly implies that a careful selection of ξ

must be undertaken.
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The following result shows that Theorem 4.1, along with Proposition 3.1, yields
upper and lower bounds of the probability of ruin under P .

Corollary 4.2. In the situation of Theorem 4.1, the following hold true:

(i) ψθ(u) ≥ E
QR∗

θ

[
eR∗·ru

τ (θ)
]

· e−R∗·u;

(ii) ψ(u) ≥ EQR∗
[

eR∗·Ru
τ (Θ)

ξ(Θ)

]
· e−R∗·u.

In particular, if condition EP

[
eR∗Θ]

< ∞ holds and if the function ξ : D → R

is defined by means of

ξ(θ) := eR∗θ

EP

[
eR∗Θ] for any θ ∈ D,

then there exist a unique probability measure νR∗ ∈ MS,�(ρ(Θ)) determined by con-
dition (RRMξ ) with R∗ in the place of r and a rcp {νR∗

θ }θ∈D of νR∗
over νR∗

Θ consis-
tent with Θ satisfying conditions νR∗

θ ∈ MS,�(ρ(θ)) and (RRMθ ) for any θ /∈ L∗∗,
and such that

ψ(u) ≤ EP

[
eR∗Θ] · EνR∗

[
eR∗·Ru

τ (Θ)+κΘ(R∗)·τ ] · e−R∗·u.

Proof. Because κθ (R
∗) > 0 for any θ /∈ L∗∗, statements (i) and (ii) follow by state-

ments (i) and (ii) of Theorem 4.1, respectively.
In particular, if condition EP [eR∗Θ ] < ∞ holds and ξ is defined as above then ξ ∈

R+(D), implying according to Proposition 3.1 that there exist a unique probability
measure νR∗ ∈ MS,�(ρ(Θ)) determined by condition (RRMξ ) and a rcp {νR∗

θ }θ∈D of
νR∗

over νR∗
Θ consistent with Θ satisfying conditions νR∗

θ ∈ MS,�(ρ(θ)) and (RRMθ )
for any θ /∈ L∗∗. Applying now Theorem 4.1 one has

ψ(u) = EνR∗

[
eR∗·Ru

τ (Θ)+κΘ(R∗)·τ

ξ(Θ)

]
· e−R∗·u

≤ EP

[
eR∗Θ] · EνR∗

[
eR∗·Ru

τ (Θ)+κΘ(R∗)·τ ] · e−R∗·u,

completing in this way the proof.

It is worth noting that in the Cramér–Lundberg risk model one can construct ex-
ponential martingales, and using the stopping theorem one is able to prove upper
bounds for the ruin probabilities. However, this technique does not give the opportu-
nity to prove a lower bound. A method to find also lower bounds for the ruin proba-
bilities is the “change of measure technique” for a compound mixed renewal process
S developed above.

Remark 4.3. Perhaps the most researched mixed renewal process is the mixed Pois-
son one. The most common definition encountered in the literature is that of a mixed
Poisson process with mixing probability distribution U on B(Υ ) (cf., e.g., [12], Def-
inition 4.2) (written MPP(U) for short). Since every MPP(Θ) is a MPP(U) with
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U = PΘ (see [18], Theorem 3.1) all the previous results can be transferred to that
case. On the other hand, existing results for the class of MPP(U) (cf., e.g., [12],
Subsection 9.2.1, for ruin probabilities and mixed Poisson processes) cannot, in gen-
eral, be transferred to the case of MPP(Θ), since it is not always possible, given a
MPP(U), to construct a positive real-valued random variable Θ such that PΘ = U .
Furthermore, even if one assumes the existence of Θ , it is not in general possible to
construct an rcp of P over U consistent with Θ , as the probability measure P may be
nonperfect (see [11], Theorem 4).

In the next two examples, an explicit computation for the ruin probabilities of the
reserve process with respect to the probability measures P and Pθ is undertaken by
applying the change of measures technique of Proposition 3.1 and Theorem 4.1.

Example 4.4. Take D := (1, 2), let Θ be a real-valued random variable on Ω , and
assume that P ∈ MS,Ga(Θ,2), such that PX1 = Ga(2, 2) and PΘ = U(1, 2). Since
conditions (a1) and (a2) hold true, it follows by [31], Proposition 3.3, that there exists
a PΘ -null set LP ∈ B((1, 2)) such that Pθ ∈ MS,Ga(θ,2) with (Pθ )X1 = PX1 for any
θ /∈ LP , implying that

EPθ [X1]
EPθ [W1] = 1

2
θ

= θ

2
for any θ /∈ LP .

Put c(θ) := θ + 1 for any θ ∈ D. As a first step the function κθ must be explicitly
determined. For any r ∈ (0, 2) and θ /∈ L∗∗, applying condition (1) and an easy
computation one gets

MX1(r) · (Mθ)W1

(−κθ (r) − c(θ) · r
) = 1

⇐⇒
(

2

2 − r

)2

·
(

θ

θ + κθ (r) + c(θ) · r

)2

= 1

which is equivalent to

κθ (r) = r · (r · θ + r − θ − 2)

2 − r
(5)

or

κθ (r) = r2(θ + 1) − r(θ + 2) − 4θ

2 − r
, (6)

respectively. Since condition (NPCθ ) is valid for any θ /∈ L∗∗ and EP [er·X1] < ∞
for any r ∈ (0, 2), it follows by, e.g., [27], p. 133, that there exists an adjustment
coefficient R(θ) with respect to Pθ for any θ /∈ L∗∗ being the solution to the equation
κθ (r) = 0 on (0, 2). The latter along with Equations (5) and (6) yields R(θ) = θ+2

θ+1 ∈
(0, 2) and

R(θ) = θ + 2 + (17θ2 + 20θ + 4)
1
2

2(θ + 1)
> 2

or

R(θ) = θ + 2 − (17θ2 + 20θ + 4)
1
2

2(θ + 1)
< 0,

respectively; hence R(θ) = θ+2
θ+1 is the solution to (5) in (0, 2).
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But since R(θ) is a strictly decreasing function of θ it follows that R∗ =
supθ∈Lc∗∗ R(θ) = 3

2 ∈ (0, 2), implying that EP [eR∗·X1] = 2
2− 3

2
= 4 < ∞ as well as

that

κθ (R
∗) = 3

2
· (θ − 1) for any θ /∈ L∗∗.

Put γ (x) := R∗ ·x−lnEP [eR∗·X1] for any x ∈ Υ . By Proposition 4.2, for any ξ ∈
R+(D) there exist a unique probability measure QR∗ ∈ MS,�(ρ(Θ)) determined by
condition (RRMξ ) and a rcp {QR∗

θ }θ∈D of QR∗
over QR∗

Θ consistent with Θ satisfying
conditions QR∗

θ ∈ MS,�(ρ(θ)) and (RRMθ ) for any θ /∈ L∗∗, and such that for any

u > 0 the probabilities of ruin ψQR∗
θ (u) and ψQR∗

(u) with respect to QR∗
θ and QR∗

,
respectively, are equal to 1. It then follows by Theorem 4.1 that for any u > 0 and
θ /∈ L∗∗, the ruin probabilities ψ(u) and ψθ(u) satisfy conditions

ψθ(u) = E
QR∗

θ

[
eR∗ru

τ (θ)+κθ (R∗)·τ ] · e−R∗u = E
QR∗

θ

[
e

3
2 ·ru

τ (θ)+ 3
2 ·(θ−1)·τ ] · e− 3

2 ·u

and

ψ(u) = EQR∗

[
eR∗·Ru

τ +κΘ(R∗)·τ

ξ(Θ)

]
· e−R∗·u = EQR∗

[
e

3
2 ·Ru

τ + 3
2 ·(Θ−1)·τ

ξ(Θ)

]
· e− 3

2 ·u.

Example 4.5. Take D := Υ , let Θ be a real-valued random variable on Ω , and as-
sume that P ∈ MS,Ga(Θ,2), such that PX1 = Ga(2, 2) and PΘ = Ga(b, a), where
(b, a) ∈ Υ 2. Since conditions (a1) and (a2) hold true, it follows by [31], Proposi-
tion 3.3, that there exists a PΘ -null set LP ∈ B(D) such that Pθ ∈ MS,Ga(θ,2) with
PX1 = (Pθ )X1 for any θ /∈ LP , implying that

EPθ [X1]
EPθ [W1] = 1

2
θ

= θ

2
for any θ /∈ LP .

Put c(θ) := θ for any θ ∈ D. For any r ∈ (0, 2) and θ /∈ L∗∗, it follows as in
Example 4.4 that there exists an adjustment coefficient R(θ) ∈ (0, 2) with respect to
Pθ being the solution to the equation

κθ (r) = r · θ · (r − 1)

2 − r
= 0 (7)

for any θ /∈ L∗∗. Thus, R∗ = supθ∈Lc∗∗ R(θ)= 1 ∈ (0, 2), implying that EP [eR∗·X1] =
2

2−1 = 2 < ∞.

Put γ (x) := R∗ ·x − lnEP [eR∗·X1] for any x ∈ Υ . By Proposition 4.2 for any ξ ∈
R+(D) there exist a unique probability measure QR∗ ∈ MS,�(ρ(Θ)) determined by
condition (RRMξ ) and a rcp {QR∗

θ }θ∈D of QR∗
over QR∗

Θ consistent with Θ satisfying
conditions QR∗

θ ∈ MS,�(ρ(θ)) and (RRMθ ) for any θ /∈ L∗∗, and such that for any

u > 0 the probabilities of ruin ψQR∗
θ (u) and ψQR∗

(u) with respect to QR∗
θ and QR∗

,
respectively, are equal to 1. It then follows by Theorem 4.1 that for any u > 0 and
θ /∈ L∗∗, the ruin probabilities ψ(u) and ψθ(u) satisfy conditions

ψθ(u) = E
QR∗

θ

[
eR∗ru

τ (θ)+κθ (R∗)·τ ] · e−R∗u = E
QR∗

θ

[
eru

τ (θ)
] · e−u ≤ e−u
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and

ψ(u) = EQR∗

[
eR∗·Ru

τ +κΘ(R∗)·τ

ξ(Θ)

]
· e−R∗·u = EQR∗

[
eRu

τ

ξ(Θ)

]
· e−u ≤ e−u,

where the inequalities follow by Proposition 4.2.
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