Second order elliptic partial differential equations driven by Lévy white noise        
        
    
        Volume 8, Issue 2 (2021), pp. 179–207
            
    
                    Pub. online: 22 June 2021
                    
        Type: Research Article
            
                
             Open Access
Open Access
        
            
    
                Received
11 February 2021
                                    11 February 2021
                Revised
21 May 2021
                                    21 May 2021
                Accepted
21 May 2021
                                    21 May 2021
                Published
22 June 2021
                    22 June 2021
Abstract
This paper deals with linear stochastic partial differential equations with variable coefficients driven by Lévy white noise. First, an existence theorem for integral transforms of Lévy white noise is derived and the existence of generalized and mild solutions of second order elliptic partial differential equations is proved. Further, the generalized electric Schrödinger operator for different potential functions V is discussed.
            References
 Barndorff-Nielsen, O.E., Basse-O’Connor, A.: Quasi Ornstein-Uhlenbeck processes. Bernoulli 17, 916–941 (2011). MR2817611. https://doi.org/10.3150/10-BEJ311
 Berger, D.: Lévy driven Carma generalized processes and stochastic partial differential equations. Stoch. Process. Appl. 130, 5865–5887 (2020). MR4140021. https://doi.org/10.1016/j.spa.2020.04.009
 Dalang, R.C., Humeau, T.: Random field solutions to linear SPDEs driven by symmetric pure jump Lévy space-time white noise. Electron. J. Probab. 24, 1–28 (2019). MR3978210. https://doi.org/10.1214/19-EJP317
 Davey, B., Hill, J., Mayboroda, S.: Fundamental matrices and Green matrices for non-homogeneous elliptic systems. Publ. Mat. 2, 537–614 (2018). MR3815288. https://doi.org/10.5565/PUBLMAT6221807
 Fageot, J., Humeau, T.: The domain of definition of the Lévy white noise. Stoch. Process. Appl. 135, 75–102 (2021). MR4222403. https://doi.org/10.1016/j.spa.2021.01.007
 Gelfand, I.M., Vilenkin, N.Y.: Generalized Functions, Vol. 4: Applications of Harmonic Analysis. Academic Press, New York and London (1964). MR0173945
 Grafakos, L.: Classical Fourier Analysis, Second Edition. Springer, New York (2008). MR2445437
 Hörmander, L.: The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis. Springer, Berlin Heidelberg (2003). MR1996773. https://doi.org/10.1007/978-3-642-61497-2
 Littman, W., Stampacchia, G., Weinberger, H.F.: Regular points for elliptic equations with discontinuous coefficients. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 17, 43–77 (1963). MR0161019
 Mayboroda, S., Poggi, B.: Exponential decay estimates for fundamental solutions of Schrödinger-type operators. Trans. Am. Math. Soc. 372, 4313–4357 (2019). MR4009431. https://doi.org/10.1090/tran/7817
 Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach. Cambridge University Press (2007). MR2356959. https://doi.org/10.1017/CBO9780511721373
 Rajput, B.S., Rosinski, J.: Spectral representations of infinitely divisible processes. Probab. Theory Relat. Fields 82, 451–487 (1989). MR1001524. https://doi.org/10.1007/BF00339998
 Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (2013). MR3185174
 Shen, Z.: On fundamental solutions of generalized Schrödinger operators. J. Funct. Anal. 167, 521–567 (1999). MR1716207. https://doi.org/10.1006/jfan.1999.3455
 Stein, E.: Harmonic Analysis. Princeton University Press (1993). MR1232192
 van Putten, M.: Maxwell’s equations in divergence form for general media with applications to MHD. Commun. Math. Phys. 141, 63–77 (1991). MR1133260
 Walsh, J.B.: An introduction to stochastic partial differential equations. École d’Été de Probabilités de Saint Flour 1984, 265–439 (1986). MR0876085. https://doi.org/10.1007/BFb0074920
 
                 
            