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Abstract This paper deals with linear stochastic partial differential equations with variable
coefficients driven by Lévy white noise. First, an existence theorem for integral transforms of
Lévy white noise is derived and the existence of generalized and mild solutions of second order
elliptic partial differential equations is proved. Further, the generalized electric Schrödinger
operator for different potential functions V is discussed.
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1 Introduction

Since the beginning of studying partial differential equations the Laplacian operator

� :=
d∑

j=1
∂2
j was of great interest in different mathematical theories and applications.

For example, the solution of the Poisson equation

−�u = f
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for some function f can be interpreted as a stationary solution of the heat equation
and is therefore important in thermodynamics. In order to study different heterogene-
ity assumptions in the space, the divergence operator

div(A(x)∇u) :=
d∑

i,j=1

∂i(aij (x)∂ju)

was introduced, where the matrix function A satisfies some ellipticity condition. This
kind of operator is, for example, used in the Maxwell equations in general media (see
[16]).

The fundamental solution of the Laplace equation is well-known, but there is
no explicit form for a fundamental solution of a general divergence form operator,
although there exist upper and lower bounds, see, for example, [9].

The goal of this paper is to obtain generalized solutions of the equation

p(x,D)s = L̇,

where L̇ is a so-called generalized Lévy white noise and p is a partial differential
operator of the form

−div(A(x)∇u) + b(x) · ∇u + V (x)u, u ∈ C∞(Rd), (1)

for a uniformly elliptic R
d -valued matrix function A and functions b : Rd → R

d ,
V : Rd → R. We especially get generalized and mild solutions for the generalized
electric Schrödinger operator driven by a Lévy white noise, i.e. we are looking for a
solution u of the stochastic partial differential equation

−div(A(x)∇u) + V (x)u = L̇, (2)

where A is a uniformly elliptic d × d matrix, the potential V > 0 belongs to the re-
verse Hölder class and L̇ is a Lévy white noise. Since the fundamental solution of the
Schrödinger operator has exponential decay, we will derive weaker assumptions on
the Lévy white noise in comparison to the general case (1) to show the existence of
generalized and mild solutions. This can be seen as an extension of the theory founded
in [2] by D. Berger, but the results are not directly applicable. In order to overcome
this shortcoming we derive existence results for generalized random processes con-
structed by integral transforms of the underlying Lévy white noise. Furthermore, we
study different distributional properties of these solutions and show that we can con-
struct periodically stationary generalized random processes.

We are solving the stochastic partial differential equations in distributional sense,
i.e. a solution s is a distribution valued random variable such that 〈s, p(x,D)∗ϕ〉 =
〈L̇, ϕ〉 for every ϕ in our function space. For a good introduction to distributional so-
lutions of partial differential equations see, for example, [8]. Until now there does not
exist a good understanding of Lévy white noise driven stochastic partial differential
equations under general moment conditions, but there exists literature for the case of
Gaussian white noise and Lévy white noise with stricter moment conditions. In [17]
SPDEs driven by Gaussian white noise where studied. For the case of stochastic par-
tial differential equations with constant coefficients, see also [3] and [2]. Our method
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is inspired by the paper [5] and the results of [12]. We also mention the monograph
[11] by S. Peszat and J. Zabczyk, which gives a good overview about SPDEs driven
by Lévy noise, where another approach motivated by the semigroup theory is used to
consider parabolic and hyperbolic SPDEs driven by Lévy noise in Banach spaces.

In Section 2 we provide the general framework needed to discuss stochastic par-
tial differential equations driven by Lévy white noise, whose solutions are defined
as generalized random process. We introduce Lévy white noise as a generalized ran-
dom process in the sense of I.M. Gelfand and N.Y. Vilenkin (see [6]). Theorem 1
implies that a large class of linear stochastic partial differential equations driven by
a Lévy white noise has a generalized solution, where we used a more general kernel
G : Rm × R

d → R as compared to Theorem 3.4 of D. Berger in [2]. Furthermore,
we study the moment properties of generalized random processes s driven by Lévy
white noise L̇. For a well-defined random process s(ϕ) = 〈L̇,G(ϕ)〉, ϕ ∈ D(Rd)

we show in Theorem 3 that if L̇ has finite β > 0 moment, then s has also finite β-
moment under further conditions on the kernel G. Moreover, we show that if s has
finite β-moment, then also L̇ has finite β-moment. In Section 3 we discuss our first
example, the partial differential operators of the form (1) and give existence results
for generalized solutions. Furthermore, we discuss periodically stationary solutions s

for this example. Afterwards we consider the generalized electric Schrödinger opera-
tor driven by Lévy white noise and show under weaker conditions, as in the example
above, the existence of generalized solutions. We also study the concept of mild so-
lution of (2), i.e. a solution u which is a random field given by the convolution of the
Lévy white noise with the fundamental solution of (2). In Proposition 3 we mention
when such a solution u exists and is stochastically continuous. Most of the notation
used later on is standard or self-explanatory. We mention only that λd denotes the
Lebesgue measure on R

d and D(Rd) the space of test functions on R
d , i.e. the space

of infinitely differentiable real valued functions on R
d with compact support, and D′

its dual space, i.e. the space of distributions.

2 Integral transforms and generalized stochastic processes driven by Lévy
white noise

We provide the general framework needed to discuss stochastic partial differential
equations driven by a Lévy white noise and introduce a Lévy white noise as general-
ized random process in the sense of I.M. Gelfand and N.Y. Vilenkin (see [6]). In [2]
it was shown that a convolution operator, with certain properties regarding his inte-
grability, defines a generalized random process, assuming low moment conditions on
the Lévy white noise. Similar to [2], we will use the characterization of the extended
domain (see [5], Proposition 3.4) and achieve new results for a more general kernel
G : Rm ×R

d → R, which allows us in Section 3 to model different kinds of station-
arity assumptions and also to obtain generalized solutions of Lévy-driven stochastic
partial differential equations.

Let (�,F ,P) be a probability space.

Definition 1 (See [5], Definition 2.1). A generalized random process is a linear
and continuous function s : D(Rd) → L0(�). The linearity means that, for every
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ϕ1, ϕ2 ∈ D(Rd) and μ ∈ R,

s(ϕ1 + μϕ2) = s(ϕ1) + μs(ϕ2) almost surely.

The continuity means that if ϕn → ϕ in D(Rd), then s(ϕn) converges to s(ϕ) in
probability.

Due to the nuclear structure on D(Rd) it follows from [17], Corollary 4.2 that
a generalized random process has a version which is a measurable function from
(�,F) to (D′(Rd), C) with respect to the cylindrical σ -field C generated by the sets

{u ∈ D′(Rd)| (〈u, ϕ1〉, . . . , 〈u, ϕN 〉) ∈ B}
with N ∈ N, ϕ1, . . . , ϕN ∈ D(Rd) and B ∈ B(RN). From now on such a version is
meant always.

The probability law of a generalized random process s is the probability measure
on D′(Rd) given by

Ps(B) := P(s ∈ B) = P({ω ∈ � : s(ω) ∈ B})
for B ∈ C, where C is the cylindrical σ -field on D′(Rd).

The characteristic functional of a generalized random process s is the functional
P̂ : D(Rd) → C defined by

P̂s(ϕ) =
∫

D′(Rd )

exp(i〈u, ϕ〉)dPs(u).

The characteristic functional characterizes the law of s in the sense that two random
processes are equal in law if and only if they have the same characteristic functional.
Now we define the Lévy white noise, which is closely connected to a Lévy process.
In general, a Lévy process is a stochastically continuous process with independent
and stationary increments starting in 0. A Lévy process (Lt )t≥0 is characterized by
its characteristic function

EeizLt = exp(tψ(z))

for every z ∈ R and t ≥ 0. We call ψ the Lévy exponent; it can be characterized by
a ≥ 0, γ ∈ R and a Lévy measure ν, i.e. a measure such that

ν({0}) = 0 and
∫

R\{0}
min{1, x2}ν(dx) < ∞.

For all z ∈ R it holds that

ψ(z) = iγ z − 1

2
az2 +

∫
R

(eixz − 1 − ixz1|x|≤1)ν(dx).

The function ψ is uniquely characterized by the triplet (a, γ, ν) known as the char-
acteristic triplet.
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Definition 2. A Lévy white noise L̇ on R
d is a generalized random process with

characteristic functional of the form

P̂L̇(ϕ) = exp

⎛⎜⎝ ∫
Rd

ψ(ϕ(x))λd(dx)

⎞⎟⎠
for every ϕ ∈ D(Rd), where ψ : R → C is a Lévy exponent.

The existence of the Lévy white noise was shown in [6]. Another possible way to
construct Lévy white noise would be via independently scattered random measures,
i.e. one can consider a random process whose test functions are indicator functions
and are independently scattered when two indicator functions with disjoint supports
define independent random variables (see B.S. Rajput and J. Rosinski [12]). In [5]
J. Fageot and T. Humeau unified these two approaches by extending the Lévy white
noise, defined as generalized random processes, to independently scattered random
measures. This connection led to results in [5], which made it possible to extend
the domain of definition of Lévy white noise to some Borel-measurable functions
f : Rd → R. We say that a function f is in the domain of L̇ if there exists a sequence
of elementary functions fn converging almost everywhere to f such that 〈L̇, fn1A〉
converges in probability for n → ∞ for every Borel set A and set 〈L̇, f 〉 as the limit
in probability of 〈L̇, fn〉 for n → ∞, where 〈L̇, fn〉 is defined by

∑m
j=1 aj 〈L̇,1Aj

〉
for a elementary function fn := ∑m

j=1 aj1Aj
, see also [5], Definition 3.3. For the

maximal domain of the Lévy white noise L̇ we write D(L̇). By setting L(A) :=
〈L̇,1A〉 for bounded Borel sets A, the extension of a Lévy white noise L̇ can be
identified with a Lévy basis L in the sense of Rajput and Rosinski [12], see [5],
Theorem 3.2 and Proposition 3.4. As a Lévy basis can be identified with a Lévy
white noise in a canonical way, i.e. 〈L̇, ϕ〉 := ∫

Rd ϕ(x)dL(x) for ϕ ∈ D(Rd), we
make no difference between a Lévy white noise and a Lévy basis. In particular, a
Borel-measurable function f : R

d → R is in D(L̇) if and only if f is integrable
with respect to the Lévy basis L in the sense of Rajput and Rosinski [12], see [5],
Definition 3.3.

Definition 3 (See [7], Definition 1.1.1.). For a measurable function f ∈ L0(Rd) we
define the distribution function of f as

df (α) = λd({x ∈ R
d : |f (x)| > α}), α > 0.

With the aid of the distribution function we can now obtain a sufficient condition
for the existence of the generalized random process s defined by s(ϕ) = 〈L̇,G(ϕ)〉,
where G : R

m × R
d → R is a suitable kernel. In order to do so, we use the re-

sults from [12] and [5] regarding integrability conditions for Lévy white noises. In
contrast to [2], where the existence of the stationary generalized random process
s(ϕ) = 〈L̇,G ∗ ϕ〉 was obtained, this more general kernel G : R

m × R
d → R

allows us to model different kinds of stationarity assumptions. Furthermore, this will
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be crucial in Section 3 for proving the existence of generalized processes as solutions
to stochastic partial differential equations as in (1).

Theorem 1. Let L̇ be a Lévy white noise on R
m with characteristic triplet (a, γ, ν)

and G : Rm × R
d → R be a measurable function. Define for every x ∈ R

m and
R > 0

GR(x) :=
∫

BR(0)

|G(x, y)|λd(dy) ∈ [0,∞]

and

hR(x) := x

1/x∫
0

dGR
(α)λ1(dα) for x > 0.

Assume that GR ∈ L1(Rm) ∩ L2(Rm) and∫
R

1|r|>1hR(|r|)ν(dr) < ∞ (3)

for every R > 0. Then for
(
G(ϕ)

)
(x) := ∫

Rd

G(x, y)ϕ(y)λd(dy) we have that

s(ϕ) := 〈L̇,G(ϕ)〉, ϕ ∈ D(Rd),

defines a generalized random process.

Proof. The proof is quite similar to that of [2], Theorem 3.4. For the sake of com-
pleteness we give a detailed proof. We need to show that G(ϕ) ∈ D(L̇) and
〈L̇,G(ϕn)〉 → 〈L̇,G(ϕ)〉 as n → ∞ in probability for a sequence (ϕn)n∈N con-
verging to ϕ in D(Rd). As 〈L̇,G(·)〉 is linear, this is equivalent to checking that
〈L̇,G(ϕn − ϕ)〉 → 0 as n → ∞ in probability (see [5], Theorem 3.6). Now given
[12], Theorem 2.7, we have to show∫
Rm

∣∣γ (G(ϕn)
)
(x) +

∫
R

r
(
G(ϕn)

)
(x)

(
1|r(G(ϕn))(x)|≤1 − 1|r|≤1

)
ν(dr)

∣∣λm(dx) → 0,

(4)∫
Rm

∫
R

min
(
1,
∣∣r(G(ϕn)

)
(x)
∣∣2)ν(dr)λm(dx) → 0 and (5)

a2
∫
Rm

∣∣(G(ϕn)
)
(x)
∣∣2λm(dx) → 0 (6)

as n → ∞ if ϕn → 0 for n → ∞ in D(Rd).
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In the following we give a pointwise upper bound for G(ϕ). Therefore let R > 0
be such that supp(ϕn) ⊂ Br(0) for some r < R. Then for every x ∈ R

m

∣∣(G(ϕn)
)
(x)| ≤

∫
Rd

∣∣G(x, y)ϕn(y)|λd(dy)

=
∫

BR(0)

|G(x, y)ϕn(y)|λd(dy) ≤ GR(x)‖ϕn‖∞ (7)

and we obtain for α > 0

dG(ϕn)(α) =λm
({x ∈ R

m : |(G(ϕn))(x)| > α})
≤λm

({
x ∈ R

m : |GR(x)| >
α

‖ϕn‖∞
}) = dGR

(
α

‖ϕn‖∞

)
. (8)

Since GR ∈ L2(Rm) we have∫
Rm

|(G(ϕn)
)
(x)|1|(G(ϕn))(x)|> 1

|r|
λm(dx) ≤

∫
Rm

|G(ϕn

)
(x)|2|r|λm(dx)

≤ ‖ϕn‖2∞‖GR‖2
L2(Rm)

|r|. (9)

Now we show (4). Since GR ∈ L1(Rm), we have∫
Rm

∣∣γ (G(ϕn)
)
(x)
∣∣λm(dx) ≤ |γ | ‖ϕn‖∞‖GR‖L1(Rm) → 0 (10)

for n → ∞. We rewrite the second term in (4) in the way∫
Rm

∫
R

∣∣r(G(ϕn)
)
(x)
∣∣ (1|r(G(ϕn))(x)|≤1 − 1|r|≤1

)
ν(dr)λm(dx)

=
∫
R

|r|1|r|>1

∫
Rm

∣∣(G(ϕn)
)
(x)
∣∣1|r(G(ϕn))(x)|≤1λ

m(dx)ν(dr)

−
∫
R

|r|1|r|≤1

∫
Rm

∣∣(G(ϕn)
)
(x)
∣∣1|r(G(ϕn))(x)|>1λ

m(dx)ν(dr)

and by [7], Exercise 1.1.10, p. 14 and (8) we observe

∫
Rm

∣∣(G(ϕn)
)
(x)
∣∣1|r(G(ϕn))(x)|≤1λ

m(dx) ≤
1
|r|∫

0

dG(ϕn)(α)λ1(dα)

≤
1
|r|∫

0

dGR

(
α

‖ϕn‖∞

)
λ1(dα).
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We see that the right hand side converges to 0 for n → ∞, and for n large enough we
have

1
|r|∫

0

dGR

(
α

‖ϕn‖∞

)
λ1(dα) ≤

1
|r|∫

0

dGR (α) λ1(dα) = 1

|r|hR(|r|).

Lebesgue’s dominated convergence theorem, using (3), implies∫
R

|r|1|r|>1

∫
Rm

∣∣(G(ϕn)
)
(x)
∣∣1|r(G(ϕn))(x)|≤1λ

m(dx)ν(dr) → 0

for n → ∞. We observe from (9) for the remaining term that∫
R

|r|1|r|≤1

∫
Rm

∣∣(G(ϕn)
)
(x)
∣∣1|r(G(ϕn))(x)|>1λ

m(dx)ν(dr)

≤ ‖ϕn‖2∞‖GR‖2
L2(Rm)

∫
R

|r|21|r|≤1ν(dr)

and by Lebesgue’s dominated convergence theorem (since
∫
|r|≤1 r2ν(dr) < ∞)∫

R

|r|1|r|≤1

∫
Rm

∣∣(G(ϕn)
)
(x)
∣∣1|r(G(ϕn))(x)|>1λ

m(dx)ν(dr) → 0

for n → ∞. This gives (4). In order to show (5) we observe

min
(
1,
∣∣r(G(ϕn)

)
(x)
∣∣2) ≤1|rG(ϕn)(x)|>11|r|>1 + |rG(ϕn)(x)|1|rG(ϕn)(x)|>11|r|≤1

+ ∣∣rG(ϕn)(x)
∣∣21|rG(ϕn)(x)|≤11|r|≤1

+ |rG(ϕn)(x)|1|rG(ϕn)(x)|≤11|r|>1.

From the previous calculations we conclude that the second and fourth term (when
integrated with respect to ν(dr)λm(dx)) converge to 0 for n → ∞ and for the first
term we note that∫

Rm

1|rG(ϕn)(x)|>1λ
m(dx) = dG(ϕn)

(
1

|r|
)

≤ dGR

(
1

|r| ‖ϕn‖∞

)

and by Lebesgue’s dominated convergence theorem we conclude that∫
R

1|r|>1dGR

(
1

|r| ‖ϕn‖∞

)
ν(dr) → 0

for n → ∞, as hR(|r|) ≥ dGR
(1/|r|). For the third term we directly see∫

R

∫
Rm

∣∣rG(ϕn)(x)
∣∣21|rG(ϕn)(x)|≤11|r|≤1λ

m(dx)ν(dr)
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≤ ‖G(ϕn)(·)‖2
L2(Rm)

∫
R

1|r|≤1|r|2ν(dr)

≤ ‖ϕn‖2∞‖GR‖2
L2(Rm)

∫
R

1|r|≤1|r|2ν(dr) → 0

for n → ∞. This gives (5), and (6) follows from (9). Hence G(ϕn) → G(ϕ) in D(L̇)

as n → ∞.

In Theorem 1 we assumed that GR ∈ L1(Rm)∩L2(Rm). In the following Proposi-
tion we will show that, if a Lévy white noise has no Gaussian part and, for β ∈ (1, 2),∫
R

|r|β1|r|≤1ν(dr) < ∞, then we can assume GR ∈ L1(Rm) ∩ Lβ(Rm) instead.

Proposition 1. Let G : Rm × R
d → R be a measurable function and for R > 0 let

GR and hR be defined as in Theorem 1. Furthermore, let L̇ be a Lévy white noise on
R

m with characteristic triplet (0, γ, ν) such that (3) holds. If further GR ∈ L1(Rm)∩
Lβ(Rm) for some β ∈ (1, 2) and∫

R

|r|β1|r|≤1ν(dr) < ∞,

then

s(ϕ) := 〈L̇,G(ϕ)〉, ϕ ∈ D(Rd)

defines a generalized random process, where G(ϕ) is defined as in Theorem 1.

Proof. The proof follows along steps in the proof of Theorem 1 and hence we only
mention the needed modifications. As GR ∈ L1(Rm) we only have to consider the
terms which were estimated with ‖GR‖L2(Rm) in the proof of Theorem 1. These are∫

R

|r|1|r|≤1

∫
Rm

|(G(ϕn)
)
(x)|1|(G(ϕn))(x)|> 1

|r|
λm(dx)ν(dr) (11)

and ∫
R

∫
Rm

|r|2|(G(ϕn)
)
(x)|21|r(G(ϕn))(x)|≤11|r|≤1λ

m(dx)ν(dr). (12)

and we have to show that they converge to 0 as ϕn → 0 in D(Rd). We have∫
Rm

|(G(ϕn)
)
(x)|1|(G(ϕn))(x)|> 1

|r|
λm(ds) ≤ ‖(G(ϕn))‖β

Lβ(Rm)
|r|β−1

≤ ‖ϕn‖β∞‖GR‖β

Lβ(Rm)
|r|β−1.
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So it follows that the term (11) converges to 0 as ϕn → 0 in D(Rd). Furthermore,∫
R

∫
Rm

|r|2|(G(ϕn)
)
(x)|21|r(G(ϕn))(x)|≤11|r|≤1λ

m(dx)ν(dr)

=
∫
R

∫
Rm

|r|β |(G(ϕn)
)
(x)|β |r|2−β |(G(ϕn)

)
(x)|2−β1|r(G(ϕn))(x)|≤11|r|≤1λ

m(dx)ν(dr)

≤
∫
R

|r|β1|r|≤1ν(dr)‖ϕn‖β∞‖GR‖β

Lβ(Rm)
.

This shows that the term (12) converges to 0 as ϕn → 0 in D(Rd) and the rest of the
proof follows from similar arguments as mentioned in the proof of Theorem 1.

When GR /∈ L1(Rm) we can still obtain a generalized process s under some extra
conditions. Similar to Theorem 3.5 in [2] we obtain the following result in a more
general case.

Theorem 2. Let G : R
m × R

d → R be a measurable function such that GR ∈
L2(Rm), where GR and G(ϕ), ϕ ∈ D(Rd), are defined as in Theorem 1. If the first
moment of the Lévy white noise L̇ on R

m with characteristic triplet (a, γ, ν) vanishes,
i.e. E|〈L̇, ϕ〉| < ∞ and E〈L̇, ϕ〉 = 0 for every ϕ ∈ D(Rd), then s : D(Rd) → L0(�)

defined by

s(ϕ) := 〈L̇,G(ϕ)〉
is a generalized random process if

∫
R

1|r|>1|r|
∞∫

1
|r|

dGR
(α)λ1(dα)ν(dr) < ∞ (13)

and

∫
R

1|r|>1|r|2
1
|r|∫

0

αdGR
(α)λ1(dα)ν(dr) < ∞ (14)

for all R > 0.

Proof. This proof follows from the same arguments as in the proof of [2], Theorem
3.5, where we use G(ϕn) instead of G ∗ ϕn and ‖ϕn‖∞‖GR‖L2(Rm) < ∞ instead of
‖G∗ϕn‖L2(Rd ) < ∞. For the sake of completeness we give a detailed proof. By [13],
Example 25.12, p. 163 we conclude that we need to show, similar to Theorem 1, that
(5), (6) and ∫

Rm

∣∣∣∣ ∫
R

r
(
G(ϕn)

)
(x)1|r(G(ϕn)(x)|>1

∣∣∣∣λm(dx) → 0, (15)
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are satisfied for all (ϕn)n∈N converging to 0 in D(Rd). Let (ϕn)n∈N be a sequence
converging to 0 in D(Rd) such that supp ϕn ⊂ BR(0) for some R > 0 and all
n ∈ N. Considering that

∫
Rm |f (x)|1|f (x)|>βλm(dx) = ∫∞

β
df (α)λ1(dα) + βdf (β)

for β > 0 and measurable f (cf. [7], Exercise 1.1.10, p.14), we estimate (15) together
with (9) as follows:∫

Rm

∣∣∣∣ ∫
R

r
(
G(ϕn)

)
(x)1|r(G(ϕn)(x)|>1

∣∣∣∣λm(dx)

≤‖GR‖2
L2(Rm)

‖ϕn‖2∞
∫
R

1|r|≤1|r|2ν(dr)

+
∫

|r|>1

⎛⎜⎜⎝|r|
∞∫

1
|r|

dG(ϕn) (α) λ1(dα) + dG(ϕn)

(
1

|r|
)⎞⎟⎟⎠ ν(dr) → 0,

for n → ∞ by Lebesgue’s dominated convergence theorem. Hence by (8)

∫
|r|>1

⎛⎜⎜⎝|r|
∞∫

1
|r|

dG(ϕn) (α) λ1(dα) + dG(ϕn)

(
1

|r|
)⎞⎟⎟⎠ ν(dr)

≤
∫

|r|>1

|r|
∞∫

1
|r|

dGR

(
α

‖ϕn‖∞

)
λ1(dα)ν(dr) +

∫
|r|>1

dGR

(
1

|r|‖ϕn‖∞

)
ν(dr)

≤
∫

|r|>1

|r|
∞∫

1
|r|

dGR (α) λ1(dα)ν(dr) +
∫

|r|>1

dGR

(
1

|r|
)

ν(dr)

for large n, and the latter is finite by (13), (14) and

x∫
0

αdGR
(α)λ1(dα) ≥ dGR

(x)

x∫
0

αλ1(dα) = 1

2
dGR

(x)x2 for every x > 0.

This gives (15). In order to prove (5) we follow the same steps as in the proof of
Theorem 1 and observe that we only have to show∫

Rm

∫
R

|(G(ϕn)
)
(x)|2|r|21|rG(ϕn)(x)|≤11|r|>1ν(dr)λm(dx) → 0

for n → ∞. We see by [7], Exercise 1.1.10, p.14 and similar arguments as above that∫
Rm

∫
R

|(G(ϕn)
)
(x)|2|r|21|rG(ϕn)(x)|≤11|r|>1ν(dr)λm(dx)
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≤2
∫
R

1|r|>1|r|2
1
|r|∫

0

αdG(ϕn)(α)λ1(dα)ν(dr) → 0

for n → ∞. Hence, we conclude that s defines a generalized process.

Example 1. Let d ≥ 1, q ∈ [1, 2) and d
2 < p < d

q
. We consider G : Rd × R

d → R

such that

|G(x, y)|‖x − y‖p ≤ w(y)

for all x, y ∈ R
d , where w ∈ L

q∗
loc(R

d) with q∗ = q
q−1 . From the Hölder inequality,

for R > 0 and x ∈ R
d , we conclude

GR(x) : =
∫

BR(0)

|G(x, y)|λd(dy)

≤
⎛⎜⎝ ∫

BR(0)

‖x − y‖−qpλd(dy)

⎞⎟⎠
1/q ⎛⎜⎝ ∫

BR(0)

|w(y)|q∗
λd(dy)

⎞⎟⎠
1/q∗

≤ C(w, q, p, d, R) min{1, ‖x‖−p}. (16)

We obtain that

‖GR‖L2(Rd ) < ∞.

Furthermore, we observe for a Lévy white noise L̇ with characteristic triplet (a, γ, ν)

that
1
|r|∫

0

αdGR
(α)λ1(dα) ≤ C

1
|r|∫

0

α(1 + α
− d

p )λ1(dα) = C̃(|r|−2 + |r| d
p

−2
)

and

∫
R

1|r|>1|r|2
1
|r|∫

0

dGR
(α)λ1(dα)ν(dx) ≤

∫
R

1|r|>1C̃(1 + |r| d
p )ν(dx),

where C̃ > 0. If the Lévy white noise L̇ has vanishing first moment, then (13) is
satisfied by [13], Example 25.12. So if additionally L̇ satisfies∫

R

1|r|>1|r|
d
p ν(dx) < ∞

then it follows from Theorem 2 that

s : D(Rd) → L0(�), ϕ �→ s(ϕ) := 〈L̇,G(ϕ)〉
is a well-defined generalized random process.
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2.1 Moment properties

Next we show, that if the Lévy white noise L̇ has finite β > 0 moment, then so has
the generalized random process s(ϕ) = 〈L̇,G(ϕ)〉, ϕ ∈ D(Rd).

Theorem 3. Let G : Rm × R
d → R be a measurable function different from 0 and

L̇ be a Lévy white noise on R
m with characteristic triplet (a, γ, ν) and assume that

〈s, ϕ〉 := 〈L̇,G(ϕ)〉, ϕ ∈ D(Rd), is a well-defined generalized random process. Let
β > 0

i) If 0 < β < 2 assume that GR ∈ Lβ(Rm) ∩ L2(Rm) with GR as defined in
Theorem 1. If L̇ has finite β-moment, then so has s. If β ≥ 2 it is sufficient to
assume that GR ∈ Lβ(Rm).

ii) If s has finite β-moment, then L̇ has also finite β-moment.

Proof. From [12], Theorem 2.7 we know that the Lévy measure of the random vari-
able 〈s, ϕ〉 is given by

νs(ϕ)(B) =
∫
Rm

∫
R

1B\{0} (rG(ϕ)(x)) ν(dr)λm(dx).

Then 〈s, ϕ〉 has finite β-moment if and only if
∫

|z|>1
|z|βνs(ϕ)(dz) < ∞.

i) Let L̇ have finite β-moment and assume at first that 0 < β < 2. We calculate from
(7) that∫

|z|>1

|z|βνs(ϕ)(dz)

=
∫
R

|r|β
∫

|G(ϕ)(x)|> 1
|r|

|G(ϕ)(x)|βλm(dx)ν(dr)

≤
∫

|r|≤1

|r|2
∫

|G(ϕ)(x)|> 1
|r|

|G(ϕ)(x)|2λm(dx)ν(dr)

+
∫

|r|>1

|r|β
∫
Rm

|GR(x)|β‖ϕ‖β∞λm(dx)ν(dr)

≤
∫

|r|≤1

|r|2ν(dr)‖GR‖2
L2(Rm)

‖ϕ‖2∞ + ‖GR‖β

Lβ(Rm)

∫
|r|>1

|r|βν(dr)‖ϕ‖β∞

< ∞,

where R > 0 is such that supp ϕ ⊂ BR(0).
If β ≥ 2 we obtain by similar arguments as above that∫

|z|>1

|z|βνs(ϕ)(dz) ≤ ‖ϕ‖β∞‖GR‖β

Lβ(Rm)

∫
R

|r|βν(dr),
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which is indeed finite.
ii) Assume that s has finite β-moment and that G is different from 0. So we know
that there exists a function ϕ ∈ D(Rd) such that∫

Rd

|G(ϕ)(x)|λm(dx) > 0,

hence there exists an r0 > 1 with∫
|G(ϕ)|>1/r0

|G(ϕ)(x)|βλm(dx) > 0.

We conclude

∞ >

∫
|z|>1

|z|βνs(ϕ)(dz) =
∫
R

|r|β
∫

|G(ϕ)(x)|> 1
|r|

|G(ϕ)(x)|βλm(dx)ν(dr)

≥
∫

|r|>r0

|r|β
∫

|G(ϕ)(x)|> 1
|r|

|G(ϕ)(x)|βλm(dx)ν(dr)

≥
∫

|r|>r0

|r|βν(dr)

∫
|G(ϕ)(x)|> 1

|r0|

|G(ϕ)(x)|βλm(dx),

hence
∫

|r|>r0

|r|βν(dr) < ∞, so that L̇ has finite β-moment.

3 Second order elliptic partial differential equations driven by Lévy white noise

3.1 Second order elliptic partial differential equations in divergence form driven by
Levy white noise

In this section we discuss elliptic partial differential operators of second order with
variable coefficients in divergence form, i.e. partial differential operators p(x,D) of
the form

p(x,D)u = −
d∑

i,j=1

∂i(aij (x)∂ju) = −div((A(x)∇u), (17)

where A(x) = (aij (x))di,j=1 ∈ C∞(Rd,Rd×d) is a uniformly elliptic matrix, i.e.
there exists C > 0 such that

C−1‖ξ‖2 ≤ ξT A(x)ξ ≤ C‖ξ‖2 for all ξ ∈ R
d .

Now let L̇ be a Lévy white noise on R
d with characteristic triplet (a, γ, ν) and

p(x,D) be a partial differential operator (PDO) of the form (17). We say that a gen-
eralized stochastic process s : D(Rd) → L0(�) is a generalized solution of the
equation

p(x,D)s = L̇,
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if

〈s, p(x,D)∗ϕ〉 = 〈L̇, ϕ〉 for all ϕ ∈ D(Rd),

where p(x,D)∗ is the adjoint of p(x,D), i.e.

p(x,D)∗u = −
d∑

i,j=1

∂i(aji(x)∂ju).

In the first theorem we derive sufficient conditions for the existence of such a solution
in terms of the characteristic triplet (a, γ, ν), which is just a a simple extension of the
Laplacian case. Afterwards we discuss stationarity of these generalized processes,
e.g., if the coefficients are y-periodic for some y ∈ R

d , then s is y-periodically
stationary. We assume for the entire section that the coefficients of p(x,D) are in
C∞(Rd).

Theorem 4. Let L̇ be a Lévy white noise on Rd with characteristic triplet (a, γ, ν)

with vanishing first moment and p(x,D) be a PDO of the form (17). The stochastic
partial differential equation

p(x,D)s = L̇ (18)

has a generalized solution s : D(Rd) → L0(�), if d ≥ 5 and∫
|r|>1

|r|d/(d−2)ν(dr) < ∞.

Proof. By [9], Chapter 10 there exists a locally integrable left inverse E : Rd×R
d →

R of the operator p(x,D)∗ such that for all ϕ ∈ D(Rd)

E(p(·,D)∗ϕ)(x) :=
∫
Rd

E(x, y)p(y,D)∗ϕ(y)dy = ϕ(x) for all x ∈ R
d .

Moreover, there exists N ∈ N such that

N−1‖x − y‖2−d ≤ E(x, y) ≤ N‖x − y‖2−d for all x �= y.

We set

〈s, ϕ〉 := 〈L̇, E(ϕ)〉
and from Example 1 with w = 1, p = d − 2 and q = 1 (observe that d ≥ 5) it
follows that

s : D(Rd) → L0(�),

〈s, ϕ〉 := 〈L̇, E(ϕ)〉, ϕ ∈ D(Rd),

defines a generalized process. Moreover, s is a solution of the equation (18), as

〈s, p(x,D)∗ϕ〉 = 〈L̇, E(p(x,D)∗ϕ)〉 = 〈L̇, ϕ〉
for every ϕ ∈ D(Rd).



194 D. Berger, F. Mohamed

The solution s : D(Rd) → L0(�) is not unique, which is quite clear. For exam-
ple, let p(x,D) = −� and define

〈s′, ϕ〉 := 〈s, ϕ〉 +
∫
Rd

(x2
1 − x2

2)ϕ(x)λd(dx),

where s is the solution constructed in Theorem 4 for the equation

−�s = L̇. (19)

Then it is easy to see that s′ is also a solution of (19).

Remark 1. We assumed that the coefficients of the partial differential operator
p(x,D) are infinitely differentiable, but this is not necessary. It would be sufficient if
aij ∈ C1(Rd) for all i, j ∈ {1, . . . , d}.
Remark 2. The above method can also be used to find solutions of SDPEs of the
form

−div(A∇u) + b · ∇u + V u = L̇

under some suitable assumptions for the functions A, b and V , as the fundamental
solution E of the elliptic operator here can be bounded from above by a constant
times ‖x − y‖d−2 for all x �= y. For a very general result, see [4]. Observe that in
the most general case the fundamental solution solves the equation only in the weak
sense. We will discuss in the next section what we understand under a weak solution.

As a next step we discuss stationarity properties, which depend heavily on the
matrix (aij (x))di,j=1. For example, if aij : Rd → R is constant, it is easily seen that
E(x, y) = E(x −y) for all x �= y and hence we observe that the constructed solution
s : D(Rd) → L0(�) in Theorem 4 is stationary.

Definition 4. A generalized process s on D(Rd) is called periodic with period l ∈
R

d , if s(· + l) has the same law as s, and stationary if s is periodic for every period
l ∈ Rd . Here, s(· + l) is defined by

〈s(· + l), ϕ〉 := 〈s, ϕ(· − l)〉 for every ϕ ∈ D(Rd).

Remark 3. Let G : R
m × R

d → R be a measurable function which fulfills the
assumptions of Theorem 1 with m = d . Assume that G(x, y + l) = G(x + l, y) for
all x, y ∈ R

d and for some l ∈ R
d . Then it is easily seen that for ϕ ∈ D(Rd)

(Gϕ(· − l)) (x) =
∫
Rd

G(x, y)ϕ(y − l)λd(dy) = (Gϕ) (x + l),

hence the generalized process s defined in Theorem 1 satisfies

〈s(· + l), ϕ〉 = 〈s, ϕ(· − l)〉 = 〈L̇,Gϕ(· − l)〉 = 〈L̇, (Gϕ) (· + l)〉=〈L̇(· − l),Gϕ〉.

Since L̇
d= L̇(· − l) it follows that in this case the process s is periodic with pe-

riod l. Observe that (s(ϕ(·+ ly)))y∈Z is then a stationary process for all ϕ ∈ D(Rd).
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Therefore, these models seem to be useful in statistics to model periodic processes or
random fields. In the case when G(x, y + l) = G(x + l, y) for all l, x, y ∈ R

d , we
see that s will be stationary.

Proposition 2. Let p(x,D) : D(Rd) → C(Rd) be an elliptic partial differential
operator of the form (17), d ≥ 5 and assume that the matrix-valued function A :
R

d → R
d×d is periodic with period y ∈ R

d , i.e. A(x+y) = A(x) for all x ∈ R
d . Let

L̇ be a Lévy white noise that satisfies the assumption of Theorem 4. Then there exists
a solution s : D(Rd) → L0(�) of p(x,D)s = L̇, which is periodically stationary
with period y.

Proof. It is enough to show that

E(ϕ(· + y))(x) = E(ϕ)(x + y),

where E is again the fundamental solution of the operator p(x,D)∗. The assertion
follows then from the stationarity of the Lévy white noise L̇. We see that

p(x,D)∗E(ϕ(· + y))(x) = ϕ(x + y)

and

p(x,D)∗E(ϕ)(x + y) = p(x + y,D)∗E(ϕ)(x + y) = ϕ(x + y),

so E(ϕ)(·+y) : Rd → R and E(ϕ(·+y)) : Rd → R solve the same elliptic equation.
By construction,

lim|x|→∞ |(E(ϕ)(x + y) − E(ϕ(· + y))(x))| = 0 and (20)

p(x,D)∗(E(ϕ)(x + y) − E(ϕ(· + y))(x)) = 0 for all x ∈ R
d .

where (20) follows from (7) and (16). By the maximum principle for uniformly ellip-
tic equations we obtain E(ϕ)(x + y) − E(ϕ(· + y))(x) = 0 for all x ∈ R

d , hence we
obtain that s : D(Rd) → L0(�) is periodically stationary.

From this result we can construct a stationary process on a certain group as long as
the coefficients of the partial differential operator satisfy some periodicity condition.

Corollary 1. Let (G,+) be a subgroup of (Rd ,+) and p(x,D) : D(Rd) → C(Rd)

be an elliptic partial differential operator of the form (17) and assume that the matrix-
valued function A : Rd → R

d×d is periodic with period y ∈ G for all y ∈ G. Let L̇ be
a Lévy white noise satisfying the assumption of Theorem 4 and s be the generalized
solution of p(x,D)s = L̇ constructed in Theorem 4. Then for every ϕ ∈ D(Rd) the
process

(sϕ(y))y∈G := (〈s, ϕ(· + y)〉)y∈G

is a stationary process in G.

Proof. This is a direct consequence of Proposition 2.
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3.2 The generalized and mild solutions of the electric Schrödinger equation driven
by Lévy white noise

We saw in Remark 2 before, that we can find generalized solutions of stochastic
partial differential equations

−div(A(x)∇u) + V (x)u = L̇ (21)

for suitable A and V , assuming that the dimension d ≥ 5, the first moment of the
Lévy white noise vanishes, and the moment condition∫

|r|>1

|r|d/(d−2)ν(dr) < ∞.

In the case when V lies in a Reverse Hölder class these assumptions seem to be not
necessary. We are able to find generalized and mild solutions in dimension 3 under
much weaker conditions. At first we introduce the Reverse Hölder class RHp(Rd),
and if V is in this class, the moment assumption reduces to some kind of a logarithm
moment condition (dependent on V ), which is very similar to the case when V is a
positive constant. We first define what is meant by a mild solution of (21).

We call E : R
d × R

d → R a weak fundamental solution of the generalized
electric Schrödinger operator

−div(A(x)∇u) + V (x)u,

if E(ϕ) := ∫
Rd

E(x, y)ϕ(y)λd(dy) solves

−div(A∇E(ϕ)) + V E(ϕ) = ϕ

in the weak sense for all ϕ ∈ D(Rd). We call u(x) := 〈L̇, E(x, ·)〉 the mild solution
of (21), if u(x) exists for all x ∈ R

d , i.e. if E(x, ·) ∈ D(L̇) for all x ∈ R
d . Then

Theorem 5 i) will give a sufficient condition for that to hold.
In the following we define the maximum function m and Agmon distance γ of

the potential V to apply the estimates of the fundamental solution of the generalized
electric Schrödinger operator shown in [14] and [10].

Definition 5. Let p ≥ 1. A function ω ∈ L
p
loc(R

d) with ω > 0 a.e. belongs to the
Reverse Hölder class RHp(Rd) if there exists a constant C such that for any ball
B ⊂ R

d , ⎛⎝ 1

λd(B)

∫
B

ω(x)pλd(dx)

⎞⎠1/p

≤ C

λd(B)

∫
B

ω(x)λd(dx).

Furthermore, we define for ω ∈ RHp(Rd) the maximum function m(x, ω) by

1

m(x, ω)
:= sup

⎧⎪⎨⎪⎩r > 0 : 1

rd−2

∫
B(x,r)

ω(y)dy ≤ 1

⎫⎪⎬⎪⎭ ∈ (0,∞)



Second order elliptic partial differential equations driven by Lévy white noise 197

and the distance function

γ (x, y, ω) := inf
�

∫ 1

0
m(�(t), ω)|�̇(t)|λ1(dt),

where � : [0, 1] → R
d is absolutely continuous and �(0) = x and �(1) = y.

Moreover, we define for R > 0 the ball

Bω(x,R) := {
y ∈ R

d : γ (x, y, ω) < R
}
.

The set RHp(Rd) is closely related to the space of Muckenhoupt weights As ,
s ≥ 1, where ω measurable and nonnegative is in As if

sup
B ball in Rd

⎛⎝ 1

λd(B)

∫
B

ω(x)λd(dx)

⎞⎠⎛⎝ 1

λd(B)

∫
B

ω(x)−s′/sλd(dx)

⎞⎠s/s′

< ∞,

where s′ ∈ R such that 1
s

+ 1
s′ = 1. For further information see, for example, [15].

Especially it holds that ω ∈ As for some s ≥ 1 if and only if there exists a p > 1
such that ω ∈ RHp(Rd). We see that the set of all positive and measurable functions
bounded from above and strictly away from zero given by{

f : Rd → (0,∞) : ∃C1, C2 > 0 such that C1 ≤ f (y) ≤ C2 for all y ∈ R
d

}
is a subset of RHp(Rd) for all p ≥ 1. We state now an existence theorem for a mild
solution of the equation

(−div(A∇) + V )s = L̇,

where V lies in RHd
2
(Rd) and show that under much weaker moment conditions

there exists a generalized solution. We use that the weak fundamental solution E of
the operator p(x,D) can be bounded as follows

|E(x, y)| ≤ C
e−kγ (x,y,V )

‖x − y‖d−2 for all x, y ∈ R
d, x �= y, (22)

where k, C > 0, see [10], Corollary 6.16, page 40. From now on the constant k > 0
is fixed and such that (22) is satisfied.

Theorem 5. Let A(x) = (ai,j (x))di,j=1 be a real, uniformly bounded and elliptic

matrix and V ∈ RHd
2
(Rd). Let L̇ be a Lévy white noise on Rd with characteristic

triplet (a, γ, ν) such that

∫
|r|>1

|r|
1/|r|∫
0

λd

(
BV (0,−1

k
log(α))

)
λ1(dα)ν(dr) < ∞.
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i) If d = 3 then there exists a mild solution of

−div(A∇u) + V u = L̇,

which is stochastically continuous.
ii) If d ≥ 3 then there exists a generalized solution s : D(Rd) → L0(�) of

(−div(A∇) + V )s = L̇.

iii) Under the assumption that the first moment of the Lévy white noise exists, the
mild solution u from i) gives rise to a generalized solution s of the stochastic partial
differential equation (−div(A∇) + V )s = L̇ via

〈s, ϕ〉 :=
∫
Rd

u(x)ϕ(x)λd(dx).

We will prove Theorem 5 in Section 3.4. Here we will calculate the moment
condition for L̇ for functions which are greater than a positive constant.

Example 2. Let d ≥ 3 and V ∈ RHd
2
(Rd) be such that V > ε, where ε > 0. We

observe that

1∫
0

m(�(t), V )|�̇(t)|λ1(dt) ≥ C
√

ε‖y − x‖

for every path � : [0, 1] → R
d with �(0) = x and �(1) = y from which it follows

for 0 < α ≤ 1 that for fixed k > 0

λd

(
BV (0,−1

k
log(α))

)
≤ C1

(
log

(
C

α

))d

,

where C,C1 > 0. Since

1/r∫
0

(
log

(
1

α

))d

λ1(dα) =
∞∫

log(r)

βde−βλ1(dβ) = �(d + 1, log(r))

= d!
r

d∑
j=0

(log(r))j

j ! ,

where �(d + 1, log(r)) denotes the upper incomplete gamma function, this leads to

∫
|r|>1

|r|
1/|r|∫
0

λd

(
BV (0,−1

k
log(α))

)
λ1(dα)ν(dr)

≤
∫

|r|>1

C2 log(|r|)dν(dr) + C3ν(R \ [−1, 1]),
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where C2, C3 > 0. So if we assume that the Lévy white noise L̇ with characteristic
triplet (a, γ, ν) satisfies ∫

|r|>1

log(|r|)dν(dr) < ∞

then the assumptions of Theorem 5 are satisfied and we obtain generalized and mild
solutions, if d ≥ 3 or d = 3 respectively.

3.3 Existence and continuity of mild solutions
In the following we give sufficient conditions for the existence and continuity of a
random field u(x) := (〈L̇, E(x, ·)〉)x∈Rm , where E : Rm ×R

d → R is a kernel. This
will be used in the proof of Theorem 5, where E is the weak fundamental solution of
the generalized electric Schrödinger operator.

Proposition 3. Let L̇ be a Lévy basis on R
d with characteristic triplet (a, γ, ν) and

let E : Rm × Rd → R be a measurable function. We define for every x ∈ Rm a
function hx : R+ → R

+ by

hx(r) := r

1/r∫
0

dE(x,·)(α)λ1(dα) for r > 0.

i) Assume that E(x, ·) ∈ L1(Rd) ∩ L2(Rd) for every x ∈ R
m and∫

R

1|r|>1hx(|r|)ν(dr) < ∞

for every x ∈ R
m. Then E(x, ·) ∈ D(L̇) for every x ∈ R

m and hence the
random field u = (u(x))x∈Rm given by u(x) := 〈L̇, E(x, ·)〉 for all x ∈ R

m

exists.

ii) Furthermore, if the function TE : Rm → L1(Rd) ∩ L2(Rd) given by TE(x) :=
E(x, ·) is continuous in L1(Rd) and L2(Rd) and for every x ∈ R

m there exists
an ε > 0 such that

sup
x∗∈Bε(x)

∫
R

1|r|>1hx∗(|r|)ν(dr) < ∞,

then the process u = (u(x))x∈Rm is stochastically continuous.

Proof. i) Similar to the proof of Theorem 1 the existence of the random field u is
characterized by [12], Theorem 2.7 and hence with the same calculations the result
follows.

ii) Using [12], Theorem 2.7 by the same reasoning as in Theorem 1 we have to
show that∫

Rd

∣∣γ (E(xn, y) − E(x, y)
)

(23)
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+
∫
R

r
(
E(xn, y) − E(x, y)

) (
1|r(E(xn,y)−E(x,y))|≤1 − 1|r|≤1

)
ν(dr)

∣∣λd(dy) → 0,

∫
Rd

∫
R

min
(
1,
∣∣r(E(xn, y) − E(x, y)

)∣∣2)ν(dr)λd(dy) → 0 and (24)

a2
∫
Rd

∣∣(E(xn, y) − E(x, y)
)∣∣2λd(dy) → 0 (25)

as n → ∞, if xn → x for n → ∞. At first we observe that∫
Rm

∣∣γ (E(xn, y) − E(x, y)
)|λm(dy) ≤ |γ |‖E(xn, ·) − E(x, ·)‖L1(Rd ) → 0

as n → ∞. With similar calculations as in the proof of Theorem 1 we can estimate
the remaining term in (23) by∫

Rd

∫
R

∣∣r(E(xn, y) − E(x, y)
) (
1|r(E(xn,y)−E(x,y))|≤1 − 1|r|≤1

) ∣∣ν(dr)λd(dy)

=
∫
R

|r|1|r|≤1

∫
Rd

|E(xn, y) − E(x, y)|1|E(xn,y)−E(x,y)|> 1
|r|

λd(dy)ν(dr)

+
∫
R

|r|1|r|>1

∫
Rd

|E(xn, y) − E(x, y)|1|E(xn,y)−E(x,y)|≤ 1
|r|

λd(dy)ν(dr).

As∫
Rd

|E(xn, y) − E(x, y)|1|E(xn,y)−E(x,y)|> 1
|r|

λd(dy)≤|r|‖E(xn, ·) − E(x, ·)‖2
L2(Rd )

,

it follows from Lebesgue’s dominated convergence theorem that∫
R

|r|1|r|≤1

∫
Rm

|E(xn, y) − E(x, y)|1|E(xn,y)−E(x,y)|> 1
|r|

λm(dy)ν(dr) → 0

as n → ∞. For the last term in (23) we observe by [7], Prop. 1.1.3 and 1.1.4 that∫
Rd

|E(xn, y) − E(x, y)|1|E(xn,y)−E(x,y)|≤ 1
|r|

λd(dy)

≤
1/|r|∫
0

d|E(xn,·)−E(x,·)|(α)λ1(dα)

≤
1/|r|∫
0

d|E(xn,·)|(α/2)λ1(dα) +
1/|r|∫
0

d|E(x,·)|(α/2)λ1(dα)
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≤2

⎛⎜⎜⎝
1

2|r|∫
0

d|E(xn,·)|(α)λ1(dα) +
1

2|r|∫
0

d|E(x,·)|(α)λ1(dα)

⎞⎟⎟⎠ .

By Lebesgue’s dominated convergence theorem we obtain that∫
R

|r|1|r|>1

∫
Rd

|E(xn, y)−E(x, y)|1|E(xn,y)−E(x,y)|≤ 1
|r|

λd(dy)ν(dr) → 0 as n→∞.

So we showed (23). In order to see (24), observe that∫
Rd

1|r(E(xn,y)−E(x,y))|>1λ
d(dy) ≤ |r|‖E(xn, ·) − E(x, ·)‖L1(Rd ) → 0 as n → ∞

and ∫
Rd

1|r(E(xn,y)−E(x,y))|>1λ
d(dy) ≤ d|E(xn,·)|

(
1

2|r|
)

+ d|E(x,·)|
(

1

2|r|
)

.

Now by similar arguments as in the proof of Theorem 1 we see that (24) holds true.
Furthermore, it is clear that (25) holds, since TE is continuous.

Now we state conditions under which a mild solution of a stochastic partial dif-
ferential equation gives rise to a generalized solution.

Theorem 6. Let L̇ be a Lévy white noise on R
d with characteristic triplet (a, γ, ν)

with existing first moment, and p(x,D) be a partial differential operator of the form

p(x,D)ϕ(x) = −div(A∇ϕ(x)) + b(x) · ∇ϕ(x) + V (x)ϕ(x),

where b ∈ C1(Rd,Rd) and V ∈ L1
loc(R

d), such that there exists a weak fundamental
solution E : Rd × R

d → R of the equation p(x,D)u = δ0 with E(x, ·) ∈ L1(Rd) ∩
L2(Rd) ∩ D(L̇) for all x ∈ R

d and∫
K

‖E(x, ·)‖p

Lp(Rd )
λd(dx) < ∞

for all compact sets K ⊂ R
d for p = 1, 2. Then the mild solution

u(x) = 〈L̇, E(x, ·)〉

of p(x,D)u = L̇ gives rise to a generalized solution s of the stochastic partial
differential equation p(x,D)s = L̇ via

〈s, ϕ〉 :=
∫
Rd

u(x)ϕ(x)λd(dx), ϕ ∈ D(Rd).
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Proof. We want to apply the stochastic Fubini theorem. Therefore we have to show
that∫
Rd

∫
Rd

∫
R

min
(
|rE(x, y)ϕ(x)|, |rE(x, y)ϕ(x)|2

)
ν(dr)λd(dy)λd(dx) < ∞. (26)

We see that for every ϕ ∈ D(Rd)

min
(
|rE(x, y)ϕ(x)|, |rE(x, y)ϕ(x)|2

)
=1|rE(x,y)ϕ(x)|>1|rE(x, y)ϕ(x)| + 1|rE(x,y)ϕ(x)|≤1|rE(x, y)ϕ(x)|2
≤1|r|>11|rE(x,y)ϕ(x)|>1|rE(x, y)ϕ(x)| + 1|r|≤11|rE(x,y)ϕ(x)|>1|rE(x, y)ϕ(x)|2

+ 1|r|≤11|rE(x,y)ϕ(x)|≤1|rE(x, y)ϕ(x)|2 + 1|r|>11|rE(x,y)ϕ(x)|≤1|rE(x, y)ϕ(x)|
=1|r|>1|rE(x, y)ϕ(x)| + 1|r|≤1|rE(x, y)ϕ(x)|2.

Let ϕ ∈ D(Rd) be such that supp ϕ ⊂ BR(0), R > 0. We observe that∫
Rd

∫
Rd

∫
R

1|r|>1|rE(x, y)ϕ(x)|ν(dr)λd(dy)λd(dx)

≤‖ϕ‖∞
∫
R

1|r|>1|r|ν(dr)

∫
BR(0)

‖E(x, ·)‖L1(Rd )λ
d(dx) < ∞

and ∫
Rd

∫
Rd

∫
R

1|r|≤1|rE(x, y)ϕ(x)|2ν(dr)λd(dy)λd(dx)

≤‖ϕ‖2∞
∫
R

1|r|≤1|r|2ν(dr)

∫
BR(0)

‖E(x, ·)‖2
L2(Rd )

λd(dx) < ∞.

This shows (26). Since ϕ ∈ D(Rd) has compact support and λd is finite on the support
of ϕ, from [1], Theorem 3.1 p. 926 we get that

〈s, ϕ〉 : =
∫
Rd

u(x)ϕ(x)λd(dx) =
∫
Rd

∫
Rd

E(x, y)ϕ(x)dL(y)λd(dx)

=
∫
Rd

∫
Rd

E(x, y)ϕ(x)λd(dx)dL(y) a.s.

and further one can choose a version of u such that u · ϕ is integrable with respect
to λd . The linearity of s : D(Rd) → L0(�) is clear and the estimates above show
that it is also continuous, hence s is a generalized random process. In order to see that
p(x,D)s = L̇, we observe that for arbitrary f ∈ D(Rd)

∫
Rd

⎛⎜⎝ ∫
Rd

E(x, y)p(x,D)∗ϕ(x)λd(dx)

⎞⎟⎠ f (y)λd(dy)
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= −
∫
Rd

⎛⎜⎝ ∫
Rd

E(x, y)f (y)λd(dy)

⎞⎟⎠ (div(AT (x)∇ϕ(x))λd(dx)

−
∫
Rd

⎛⎜⎝ ∫
Rd

E(x, y)f (y)λd(dy)

⎞⎟⎠∇ · (b(x)ϕ(x))λd(dx)

+
∫
Rd

⎛⎜⎝ ∫
Rd

E(x, y)f (y)λd(dy)

⎞⎟⎠V (x)ϕ(x)λd(dx)

=
∫
Rd

〈A(x)∇
⎛⎜⎝ ∫

Rd

E(x, y)f (y)λd(dy)

⎞⎟⎠ ,∇ϕ(x)〉λd(dx)

+
∫
Rd

(b(x) · ∇ + V (x))

⎛⎜⎝ ∫
Rd

E(x, y)f (y)λd(dy)

⎞⎟⎠ ϕ(x)λd(dx)

=
∫
Rd

f (x)ϕ(x)λd(dx).

As f ∈ D(Rd) was arbitrary, it follows from the fundamental lemma of calculus of
variations that ∫

Rd

E(x, y)p(x,D)∗ϕ(x)λd(dx) = ϕ(y) a.e.

Now we obtain

〈s, p(x,D)∗ϕ〉 =
∫
Rd

∫
Rd

E(x, y)p(x,D)∗ϕ(x)dL(y)λd(dx) =
∫
Rd

ϕ(y)dL(y)

= 〈L̇, ϕ〉,
so we see that s is a generalized solution.

3.4 Proof of Theorem 5
Proof. i) Similar to [14], Remark 3.21 we can estimate the distance function γ

in (22) and prove for the weak fundamental solution E of the generalized electric
Schrödinger operator p(x,D) that

|E(x, y)| ≤ C1e
−C2(1+m(x,V )‖x−y‖)θ ‖x − y‖2−d , (27)

for some constants C1, C2 > 0 and 0 < θ < 1. Hence, we obtain that∫
Rd

|E(x, y)|λd(dy) ≤ C1

∫
Rd

e−C2(1+m(x,V )‖z‖)θ ‖z‖2−dλd(dz)
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= C1

∞∫
0

re−C2(1+m(x,V )r)θ λ1(dr) < ∞

and also ∫
Rd

|E(x, y)|2λd(dy) ≤ C3

∞∫
0

r3−de−2C2(1+m(x,V )r)θ λ1(dr) < ∞,

where C3 > 0. For α > 0 and x, y ∈ R
d , x �= y it follows from the triangle inequality

that (observe that d = 3 and hence the Lebesgue measure of a ball with radius r is 4π
3 )

λd

(
{y ∈ R

d : Ce−kγ (x,y,V )

‖x − y‖d−2 > α}
)

≤λd

(
{y ∈ R

d \ Be−kγ (x,0,V )/(d−2)C1/(d−2) (x) : e−kγ (0,y,V )

||x − y||d−2 > ekγ (x,0,V )α/C}
)

+ 4π

3
(e−kγ (x,0,V )/(d−2)C1/(d−2))d

≤λd

(
{y ∈ R

d \ Be−kγ (x,0,V )/(d−2)C1/(d−2) (x) : γ (0, y, V ) ≤ −1

k
log(α)

)
+ 4π

3
(e−kγ (x,0,V )/(d−2)C1/(d−2))d

≤λd

(
BV (0,−1

k
log(α))

)
+ 4π

3
(e−kγ (x,0,V )/(d−2)C1/(d−2))d .

It follows from (22) that

∫
R

|r|1|r|>1

1/|r|∫
0

dE(x,·)(α)λ1(dα)ν(dr)

≤C4(x)

⎛⎜⎝1 +
∫

|r|>1

|r|
1/|r|∫
0

λd

(
BV (0,−1

k
log(α))

)
λ1(dα)ν(dr)

⎞⎟⎠ < ∞

by assumption, where 0 < C4(x) < ∞. Proposition 3 i) now gives the existence of a
mild solution.

To show the continuity of the mild solution by the previous estimates and Propo-
sition 3 ii) it is sufficient to prove that TE : Rd → L1(Rd) ∩ L2(Rd), TE(x)(·) =
E(x, ·), is continuous. Let x0 ∈ R

d and (xn)n∈N be a sequence such that xn → x0 as
n → ∞. Let 0 < 2‖x0 − xn‖ < r0 for all n ≥ M , M ∈ N. We calculate that

‖E(x0, ·) − E(xn, ·)‖L1(Rd ) ≤‖E(x0, ·) − E(xn, ·)‖L1(Br0 (x))

+ ‖E(x0, ·) − E(xn, ·)‖L1(Rd\Br0 (x)).
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It was shown in [10], Lemma 3.12, page 14 that

m(x, V ) ≥ C
m(0, V )

(1 + ‖x‖m(0, V ))κ
for all x ∈ R

d (28)

for a constant 0 < κ < 1, hence there exists an ε > 0 such that it follows from (27)
that

|E(xn, y)| ≤ C1e
−C2(1+ε‖xn−y‖)θ ‖xn − y‖2−d

for every n ∈ N0. Therefore, we obtain that

‖E(x0, ·) − E(xn, ·)‖L1(Br0 (x)) ≤ 2
∫

B2r0 (0)

C1e
−C2(1+ε‖y‖)θ ‖y‖2−dλd(dy).

and

|E(x0, y) − E(xn, y)| ≤C1e
−C2(1+ε‖xn−y‖)θ ‖xn − y‖2−d

+ C1e
−C2(1+ε‖x0−y‖)θ ‖x0 − y‖2−d .

As (xn)n≥M is bounded we can find an integrable majorant on R
d \ Br0(x). We know

from [10], chapter 7 that E is continuous and by Lebesgue’s dominated convergence
theorem we obtain

lim
n→∞ ‖E(x0, ·) − E(xn, ·)‖L1(Rd\Br0 (x)) = 0.

We see that

lim
n→∞ ‖E(x0, ·) − E(xn, ·)‖L1(Rd ) ≤ 2

∫
B2r0 (0)

C1e
−C2(1+ε‖y‖)θ ‖y‖2−dλd(dy).

By letting r0 go to 0 we obtain that limn→∞ ‖E(x0, ·) − E(xn, ·)‖L1(Rd ) = 0. The
same proof works for the L2-norm.

ii) Let Ẽ be the left inverse of p(x,D)∗, i.e.∫
Rd

Ẽ(x, y)p(y,D)∗ϕ(y)λd(dy) = ϕ(x)

for ϕ ∈ D(Rd). We verify that ẼR ∈ L1(Rd) ∩ L2(Rd) in order to satisfy the as-
sumptions of Theorem 1. As Ẽ(x, y) = E(y, x) we can show by a similar argument
as in i) that for R > 0

ẼR(x) =
∫

BR(0)

|Ẽ(x, y)|λd(dy) ≤
∫

BR(0)

C1e
−C2(1+m(y,V )‖x−y‖)θ ‖x − y‖2−dλd(dy).

By using (28) we obtain that

ẼR(x) ≤ CR

∫
BR(0)

e−kC1
R‖x−y‖θ ‖x − y‖2−dλd(dy) ≤ C̃Re−kC1

R‖x‖θ ‖x‖2−d ,
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where CR,C1
R, C̃R > 0. Therefore we obtain that ‖ẼR‖L1(Rd ) + ‖ẼR‖L2(Rd ) < ∞.

We observe from (22) and [14], Remark 3.21 by applying the triangle inequality that

ẼR(x) ≤ e−kγ (x,0,V )

∫
BR(0)

ekγ (y,0,V )

‖x − y‖d−2 λd(dy)

≤ C′
Re−kγ (x,0,V )

∫
BR(x)

1

‖y‖d−2 λd(dy)

≤ C′′
R

e−kγ (x,0,V )

‖x‖d−2 ,

where C′
R,C′′

R > 0 are constants dependent on R. This leads by similar arguments as
in i) to

∫
R

|r|1|r|>1

1/|r|∫
0

d
ẼR

(α)λ1(dα)ν(dr)

≤CR

⎛⎜⎝1 +
∫

|r|>1

|r|
1/|r|∫
0

λd

(
BV (0,−1

k
log(α))

)
λ1(dα)ν(dr)

⎞⎟⎠ < ∞,

for a constant CR > 0 dependent on R > 0. The existence of a generalized solution
s : D(Rd) → L0(�) follows from Theorem 1.

iii) Given the mild solution from i) we obtain from (28) for R > 0 that∫
BR(0)

‖E(x, ·)‖L1(Rd )λ
d(dx) < ∞

and ∫
BR(0)

‖E(x, ·)‖L2(Rd )λ
d(dx) < ∞.

Hence, we obtain the assertion by Theorem 6.
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