Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 7, Issue 3 (2020)
  4. On distributions of exponential function ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Cited by
  • More
    Article info Full article Cited by

On distributions of exponential functionals of the processes with independent increments
Volume 7, Issue 3 (2020), pp. 291–313
Lioudmila Vostrikova  

Authors

 
Placeholder
https://doi.org/10.15559/20-VMSTA159
Pub. online: 8 September 2020      Type: Research Article      Open accessOpen Access

Received
3 February 2020
Revised
31 July 2020
Accepted
31 July 2020
Published
8 September 2020

Abstract

The aim of this paper is to study the laws of exponential functionals of the processes $X={({X_{s}})_{s\ge 0}}$ with independent increments, namely
\[ {I_{t}}={\int _{0}^{t}}\exp (-{X_{s}})ds,\hspace{0.1667em}\hspace{0.1667em}t\ge 0,\]
and also
\[ {I_{\infty }}={\int _{0}^{\infty }}\exp (-{X_{s}})ds.\]
Under suitable conditions, the integro-differential equations for the density of ${I_{t}}$ and ${I_{\infty }}$ are derived. Sufficient conditions are derived for the existence of a smooth density of the laws of these functionals with respect to the Lebesgue measure. In the particular case of Lévy processes these equations can be simplified and, in a number of cases, solved explicitly.

References

[1] 
Abramobitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover publication, Inc., New York (1972). MR0208797
[2] 
Asmussen, S.: Ruin probabilities. World Scientific, (2000). MR1794582. https://doi.org/10.1142/9789812779311
[3] 
Barndorff-Nielsen, O., Shiryaev, A.N.: Change of Time and Change of Measure. World Scientific, (2010). MR2779876. https://doi.org/10.1142/7928
[4] 
Behme, A.: Exponential functionals of Lévy Processes with Jumps, ALEA. Lat. Am. J. Probab. Math. Stat. 12(1), 375–397 (2015). MR3368963
[5] 
Behme, A., Lindner, A.: On exponential functionals of Lévy processes. J. Theor. Probab. 28, 681–720 (2015). MR3370671. https://doi.org/10.1007/s10959-013-0507-y
[6] 
Behme, A., Lindner A, A., Reker, J., Rivero, V.: Continuity properties and the support of killed exponential functionals (2019). arXiv:1912.03052
[7] 
Behme, A., Lindner A, A., Reker, J.: On the law of killed exponential functionals (2020). arXiv:2003.02073
[8] 
Bertoin, J.: Lévy processes p. 266. Cambridge University Press, (1996). MR1406564
[9] 
Bertoin, J., Lindler, A., Maller, R.: On continuity Properties of the Law of Integrals of Lévy Processes. In: Séminaire de probabilités XLI, vol. 1934, pp. 137–159 (2008). MR2483729. https://doi.org/10.1007/978-3-540-77913-1_6
[10] 
Bertoin, J., Yor, M.: Exponential functionals of Lévy processes. Probability Surveys 191–212 (2005). https://doi.org/10.1214/154957805100000122
[11] 
Bichteler, K., Gravereaux, J.B., Jacod, J.: Malliavin calculus for processes with jumps, 161p. Gordon and Breach Science Publishers, (1987). MR1008471
[12] 
Boguslawskaya, E., Vostrikova, L.: Revisiting integral functionals of geometric Brownian Motion. Stat. Probab. Lett. 165, 108834 (2020). MR4113845. https://doi.org/10.1016/j.spl.2020.108834
[13] 
Borodin, A., Salminen, P.: Handbook of Brownian motion – Facts and Formulae, 672p. Birkhäuser Verlag, Basel-Boston-Berlin (2002). MR1912205. https://doi.org/10.1007/978-3-0348-8163-0
[14] 
Bodnarchuk, S., Kulik, A.: Conditions for the existence and smoothness of the distribution for an Ornstein-Uhlenbeck process with Lévy noise. Theory Probab. Math. Stat. 79, 23–38 (2008). MR2494533. https://doi.org/10.1090/S0094-9000-09-00778-9
[15] 
Carmona, P., Petit, F., Yor, M.: On the distribution and asymptotic results for exponential functionals of Lévy processes, In: Exponential functionals and principal values related to Brownian motion, pp. 73–130. Biblioteca de la Revista Matematica IberoAmericana. (1997). MR1648657
[16] 
Carr, P., Wu, L.: Time-changed Lévy processes and option pricing. J. Financ. Econ. 71, 113–141 (2004). https://doi.org/10.1016/S0304-405X(03)00171-5
[17] 
Dufresne, D.: The distribution of a perpetuity, with applications to risk theory and pension funding. Scand. Actuar. J. 1–2, 39–79 (1990). MR1129194. https://doi.org/10.1080/03461238.1990.10413872
[18] 
Erickson, K.B., Maller, R.: Generalised Ornstein-Uhlenbeck processes and the convergence of Lévy integrals. In: Séminaire de probabilités, Lect. Notes Math., vol. 1857, pp. 70–94. Springer, Berlin (2004). MR2126967. https://doi.org/10.1007/978-3-540-31449-3_6
[19] 
Gjessing, H.K., Paulsen, J.: Present value distributions with applications to ruin theory and stochastic equations. Stoch. Process. Appl. 71(1), 123–144 (1997). MR1480643. https://doi.org/10.1016/S0304-4149(97)00072-0
[20] 
Jacod, J., Shiryaev, A.: Limit theorems for Stochastic Processes, 606 pp. Springer, (1987). MR0959133. https://doi.org/10.1007/978-3-662-02514-7
[21] 
Jeanblanc, M., Yor, M., Chesnay, M.: Mathematical Methods for Financial Markets, 332p. Springer, (2009). MR2568861. https://doi.org/10.1007/978-1-84628-737-4
[22] 
Kabanov, Yu., Pergamentshchikov, S.: In the insurance business risky investment are dangerous: the case of negative risk sums. Finance Stoch. 20(2), 355–379 (2016). MR3479325. https://doi.org/10.1007/s00780-016-0292-4
[23] 
Kardaras, C., Robertson, S.: Continuous time perpetuities and time reversal of diffusions. Finance Stoch. 21(1), 65–110 (2017). MR3590703. https://doi.org/10.1007/s00780-016-0308-0
[24] 
Kuznetsov, A., Pardo, J.C., Savov, M.: Distributional properties of exponential functionals of Lévy processes. Electron. J. Probab. 8, 1–35 (2012). MR2878787. https://doi.org/10.1214/EJP.v17-1755
[25] 
Kyprianou, A.: Fluctuations of Lévy processes with applications, second addition edn. Springer, Berlin, Heildelberg (2014). MR3155252. https://doi.org/10.1007/978-3-642-37632-0
[26] 
Pardo, J.C., Patie, P., Savov, M.: A Wiener-Hopf type factorization for the exponential functional of Lévy processes. J. Lond. Math. Soc. 3, 86–930 (2012). MR3000836. https://doi.org/10.1112/jlms/jds028
[27] 
Pardo, J.C., Rivero, V., Van Schaik, K.: On the density of exponential functionals of Lévy processes. Bernoulli 1938–1964 (2013). MR3129040. https://doi.org/10.3150/12-BEJ436
[28] 
Patie, P., Savov, M.: Bernstein-Gamma functions and exponential functionals of Lévy processes. Electron. J. Probab. 23, Paper 75, 101 (2018). MR3835481. https://doi.org/10.1214/18-EJP202
[29] 
Paulsen, J.: In: Ruin models with investment income. Probability Surveys, vol. 5, pp. 416–434 (2008). MR2476737. https://doi.org/10.1214/08-PS134
[30] 
Salminen, P., Wallin, O.: Perpetual integral functional of diffusions and their numerical computations. Dept. of Math, Univ. of Oslo, Pure Mathematics 35, (2005). MR2397806. https://doi.org/10.1007/978-3-540-70847-6_26
[31] 
Salminen, P., Vostrikova, L.: On exponential functionals of the processes with independent increments. Theory Probab. Appl. 63(2), 330–357 (2018). MR3796492. https://doi.org/10.4213/tvp5180
[32] 
Salminen, P., Vostrikova, L.: On moments of exponential functionals of additive processes. Stat. Probab. Lett. 146, 139–146 (2019). MR3881609. https://doi.org/10.1016/j.spl.2018.11.011
[33] 
Salminen, P., Yor, M.: Perpetual Integral Functionals as Hitting and Occupation Times. Electron. J. Probab. 10(11), 371–419 (2005). MR2147313. https://doi.org/10.1214/EJP.v10-256
[34] 
Sato, K.: Lévy Processes and Infinitely Divisible Distributions, 2nd edn. Cambridge University Press, (2013). MR3185174
[35] 
Shiryaev, A.N.: Essentials of Stochastic Finance: Facts, Models, Theory, p. 834. World Scientific, (1999). MR1695318. https://doi.org/10.1142/9789812385192
[36] 
Shiryaev, A.N., Cherny, A.S.: Vector Stochastic Integrals and the Fundamental Theorems of Asset Pricing. Proc. Steklov Inst. Math. 237, 6–49 (2002). MR1975582
[37] 
Spielmann, J., Vostrikova, L.: On the ruin problem with the investment when the risky asset is a semimartingale. Theory Probab. Appl. 65(2), 312–337 (2020).
[38] 
Vecer, J.: A new PDE approach for pricing arithmetic average Asian options. J. Comput. Finance 105–113 (2001). https://doi.org/10.21314/JCF.2001.064

Full article Cited by PDF XML
Full article Cited by PDF XML

Copyright
© 2020 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Process with independent increments exponential functional Kolmogorov-type equation smoothness of the density

MSC2010
60G51 91G80

Funding
This research was partially supported by Defimath project of the Research Federation of “Mathématiques des Pays de la Loire” and by PANORisk project “Pays de la Loire” region.

Metrics
since March 2018
464

Article info
views

5413

Full article
views

376

PDF
downloads

110

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy