Jackknife covariance matrix estimation for observations from mixture        
        
    
        Volume 6, Issue 4 (2019), pp. 495–513
            
    
                    Pub. online: 7 November 2019
                    
        Type: Research Article
            
                
             Open Access
Open Access
        
            
    
                Received
20 May 2019
                                    20 May 2019
                Revised
7 September 2019
                                    7 September 2019
                Accepted
14 October 2019
                                    14 October 2019
                Published
7 November 2019
                    7 November 2019
Abstract
A general jackknife estimator for the asymptotic covariance of moment estimators is considered in the case when the sample is taken from a mixture with varying concentrations of components. Consistency of the estimator is demonstrated. A fast algorithm for its calculation is described. The estimator is applied to construction of confidence sets for regression parameters in the linear regression with errors in variables. An application to sociological data analysis is considered.
            References
 Borovkov, A.A.: Mathematical Statistics. Gordon and Breach Science Publishers, Amsterdam (1998). MR1712750
 Branham, R.: Total Least Squares in Astronomy. In: Total Least Squares and Errors-in-Variables Modeling, pp. 375–384. Springer, Dordrecht (2002). MR1952962. https://doi.org/10.1007/978-94-017-3552-0_33
 Cheng, C.-L., Van Ness, J.: Statistical Regression with Measurement Error, Kendall’s Library of Statistics 6. Arnold, London (1999). MR1719513
 Maiboroda, R., Sugakova, O.: Statistics of mixtures with varying concentrations with application to DNA microarray data analysis. J. Nonparametr. Stat. 24(1), 201–215 (2012). MR2885834. https://doi.org/10.1080/10485252.2011.630076
 Miroshnichenko V, M.R.: Confidence ellipsoids for regression coefficients by observations from a mixture. Mod. Stoch. Theory Appl. 5(2), 225–245 (2018). MR3813093. https://doi.org/10.15559/18-vmsta105
 Masiuk, S., Kukush, A., Shklyar, S., Chepurny, M., Likhtarov, I. (eds.): Radiation Risk Estimation: Based on Measurement Error Models, 2nd edn. de Gruyter series in Mathematics and Life Sciences, vol. 5. de Gruyter (2017). MR3726857
 McLachlan, G.J., Lee, S.X., Rathnayake, S.I.: Finite Mixture Models. Ann. Rev. Stat. Appl. 6, 355–378 (2019). MR3939525. https://doi.org/10.1146/annurev-statistics-031017-100325
 Shao, J.: Mathematical statistics. Springer, New York (2007). MR2002723. https://doi.org/10.1007/b97553
 Shao, J., Tu, D.: The Jackknife and Bootstrap. Springer (2012). MR1351010. https://doi.org/10.1007/978-1-4612-0795-5
 Seber, G., Lee, A.: Linear regression analysis. Wiley (2003). MR1958247. https://doi.org/10.1002/9780471722199
 Therneau Terry, M., Grambsch Patricia, M.: Modeling Survival Data Extending the Cox Model. Springer (2000). MR1774977. https://doi.org/10.1007/978-1-4757-3294-8
 Wolter, K.: Introduction To Variance Estimation. Springer (2007). MR2288542
 
            