On the infinite divisibility of distributions of some inverse subordinators        
        
    
        Volume 5, Issue 4 (2018), pp. 509–519
            
    
                    Pub. online: 20 July 2018
                    
        Type: Research Article
            
                
             Open Access
Open Access
        
            
    
                Received
18 March 2018
                                    18 March 2018
                Revised
21 June 2018
                                    21 June 2018
                Accepted
29 June 2018
                                    29 June 2018
                Published
20 July 2018
                    20 July 2018
Abstract
We consider the infinite divisibility of distributions of some well-known inverse subordinators. Using a tail probability bound, we establish that distributions of many of the inverse subordinators used in the literature are not infinitely divisible. We further show that the distribution of a renewal process time-changed by an inverse stable subordinator is not infinitely divisible, which in particular implies that the distribution of the fractional Poisson process is not infinitely divisible.
            References
 Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge University Press, Cambridge, U.K. (2009). MR2512800. https://doi.org/10.1017/CBO9780511809781
 Beghin, L., Orsingher, E.: Fractional Poisson processes and related random motions. Electron. J. Probab. 14, 1790–1826 (2009). MR2535014. https://doi.org/10.1214/EJP.v14-675
 Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996). MR1406564
 Biard, R., Saussereau, B.: Fractional Poisson process: long-range dependence and applications in ruin theory. J. Appl. Probab. 51, 727–740 (2014). MR3256223. https://doi.org/10.1239/jap/1409932670
 Chung, K.L.: A Course in Probability Theory, 3rd edn. Academic Press, San Diego, USA (2001). MR1796326
 Halgreen, C.: Self-decomposability of the generalized inverse Gaussian and hyperbolic distributions. Z. Wahrscheinlichkeitstheor. Verw. Geb. 47, 13–17 (1979). MR0521527. https://doi.org/10.1007/BF00533246
 Janczura, J., Orzel, S., Wylomanska, A.: Subordinated α-stable Ornstein-Uhlenbeck process as a tool for financial data description. Phys. A 390, 4379–4387 (2011). https://doi.org/10.1016/j.physa.2011.07.007
 Kumar, A., Vellaisamy, P.: Inverse tempered stable subordinators. Stat. Probab. Lett. 103, 134–141 (2015). MR3350873. https://doi.org/10.1016/j.spl.2015.04.010
 Laskin, N.: Fractional Poisson process. Commun. Nonlinear Sci. Numer. Simul. 8, 201–213 (2003). MR2007003. https://doi.org/10.1016/S1007-5704(03)00037-6
 Meerschaert, M.M., Nane, E., Vellaisamy, P.: The fractional Poisson process and the inverse stable subordinator. Electron. J. Probab. 16, 1600–1620 (2011). MR2835248. https://doi.org/10.1214/EJP.v16-920
 Meerschaert, M.M., Nane, E., Vellaisamy, P.: Transient anamolous subdiffusions on bounded domains. Proc. Am. Math. Soc. 141, 699–710 (2013). MR2996975. https://doi.org/10.1090/S0002-9939-2012-11362-0
 Meerschaert, M.M., Nane, E., Xiao, Y.: Correlated continuous time random walks. Stat. Probab. Lett. 79, 1194–1202 (2009). MR2519002. https://doi.org/10.1016/j.spl.2009.01.007
 Meerschaert, M.M., Scheffler, H.: Limit theorems for continuous time random walks with infinite mean waiting times. J. Appl. Probab. 41(3), 623–638 (2004). MR2074812. https://doi.org/10.1239/jap/1091543414
 Meerschaert, M.M., Scheffler, H.: Triangular array limits for continuous time random walks. Stoch. Process. Appl. 118, 1606–1633 (2008). MR2442372. https://doi.org/10.1016/j.spa.2007.10.005
 Meerschaert, M.M., Straka, P.: Inverse stable subordinators. Math. Model. Nat. Phenom. 8, 1–16 (2013). MR3049524. https://doi.org/10.1051/mmnp/20138201
 Mikosch, T.: Non-Life Insurance Mathematics: An Introduction with the Poisson Process. Springer (2009). MR2503328. https://doi.org/10.1007/978-3-540-88233-6
 Nane, E.: Stochastic solutions of a class of higher order Cauchy problems in ${\mathbb{R}^{d}}$. Stoch. Dyn. 10, 341–366 (2010). MR2671380. https://doi.org/10.1142/S021949371000298X
 Orsingher, E., Beghin, L.: Fractional diffusion equations and processes with randomly varying time. Ann. Probab., 206–249 (2009). MR2489164. https://doi.org/10.1214/08-AOP401
 Repin, O.N., Saichev, A.I.: Fractional Poisson law. Radiophys. Quantum Electron. 43, 738–741 (2000). MR1910034. https://doi.org/10.1023/A:1004890226863
 Rosiński, J.: Tempering stable processes. Stoch. Process. Appl. 117, 677–707 (2007). MR2327834. https://doi.org/10.1016/j.spa.2006.10.003
 Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press (1999). MR1739520
 Steutel, F.W.: Infinite divisibility in theory and practice. Scand. J. Stat. 6, 57–64 (1979). MR0538596
 Steutel, F.W., Van Harn, K.: Infinite Divisibility of Probability Distributions on the Real Line. Marcel Dekker, New York (2004). MR2011862
 Vellaisamy, P., Kumar, A.: First-exit times of an inverse Gaussian process. Stochastics 1, 29–48 (2018). MR3750637. https://doi.org/10.1080/17442508.2017.1311897
 Wong, R.: Asymptotic Approximations of Integrals. Academic Press, Boston (1989). MR1016818
 
            