Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 5, Issue 4 (2018)
  4. Stable Lévy diffusion and related model ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • More
    Article info Full article

Stable Lévy diffusion and related model fitting
Volume 5, Issue 4 (2018), pp. 521–541
Paramita Chakraborty ORCID icon link to view author Paramita Chakraborty details   Xu Guo   Hong Wang  

Authors

 
Placeholder
https://doi.org/10.15559/18-VMSTA106
Pub. online: 9 July 2018      Type: Research Article      Open accessOpen Access

Received
15 March 2018
Revised
25 May 2018
Accepted
4 June 2018
Published
9 July 2018

Abstract

A fractional advection-dispersion equation (fADE) has been advocated for heavy-tailed flows where the usual Brownian diffusion models fail. A stochastic differential equation (SDE) driven by a stable Lévy process gives a forward equation that matches the space-fractional advection-dispersion equation and thus gives the stochastic framework of particle tracking for heavy-tailed flows. For constant advection and dispersion coefficient functions, the solution to such SDE itself is a stable process and can be derived easily by least square parameter fitting from the observed flow concentration data. However, in a more generalized scenario, a closed form for the solution to a stable SDE may not exist. We propose a numerical method for solving/generating a stable SDE in a general set-up. The method incorporates a discretized finite volume scheme with the characteristic line to solve the fADE or the forward equation for the Markov process that solves the stable SDE. Then we use a numerical scheme to generate the solution to the governing SDE using the fADE solution. Also, often the functional form of the advection or dispersion coefficients are not known for a given plume concentration data to start with. We use a Levenberg–Marquardt (L-M) regularization method to estimate advection and dispersion coefficient function from the observed data (we present the case for a linear advection) and proceed with the SDE solution construction described above.

References

[1] 
Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge University Press (2004). MR2072890. https://doi.org/10.1017/CBO9780511755323
[2] 
Armijo, L.: Minimization of functions having Lipschitz continuous partial derivatives. Pac. J. Math. 16, 1–3 (1966). MR0191071
[3] 
Baeumer, B., Meerschaert, M.M.: Stochastic solutions for fractional Cauchy problems. Fract. Calc. Appl. Anal. 4, 481–500 (2001). MR1874479
[4] 
Bear, J.: Dynamics of Fluids in Porous Media. Dover, Mineola, New York (1972)
[5] 
Benson, D.A., Schumer, R., Meerschaert, M.M., Wheatcraft, S.W.: Fractional dispersion, Lévy motion, and the MADE tracer tests. Transp. Porous Media 42(1–2), 211–240 (2001). MR1948593. https://doi.org/10.1023/A:1006733002131
[6] 
Bhattacharya, R.N., Gupta, V.K.: A theoretical explanation of solute dispersion in saturated porous media at the Darcy scale. Water Resour. Res. 19(4), 938–944 (1983)
[7] 
Bhattacharya, R.N., Gupta, V.K., Sposito, G.: On the stochastic foundation of the theory of water flow through unsaturated soil. Water Resour. Res. 12(3) (1976)
[8] 
Boggs, J.M., Beard, L.M., Long, S.E., McGee, M.P.: Database for the second macro dispersion experiment (MADE-2). EPRI report TR-102072 (1993)
[9] 
Breiten, T., Simoncini, V., Stoll, M.: Low-rank solvers for fractional differential equations. Electron. Trans. Numer. Anal. (ETNA) 45, 107–132 (2016). MR3498143
[10] 
Chakraborty, P.: A stochastic differential equation model with jumps for fractional advection and dispersion. J. Stat. Phys. 136(3), 527–551 (2009). MR2529683. https://doi.org/10.1007/s10955-009-9794-1
[11] 
Chakraborty, P., Meerschaert, M.M., Lim, C.Y.: Parameter estimation for fractional transport: A particle tracking approach. Water Resour. Res. 45(10), 10415 (2009)
[12] 
Chavent, G.: Nonlinear Least Squares for Inverse Problems: Theoretical Foundations and Step-by-Step Guide for Applications. Springer, Netherlands (2009). MR2554448
[13] 
del-Castillo-Negrete, D., Carreras, B.A., Lynch, V.E.: Fractional diffusion in plasma turbulence. Phys. Plasmas 11, 3854 (2004)
[14] 
Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2005). MR2212226. https://doi.org/10.1002/num.20112
[15] 
Fetter, C.W.: Applied Hydrogeology. Prentice Hall, New York (2001)
[16] 
Fu, H., Wang, H., Wang, Z.: POD/DEIM reduced-order modeling of time-fractional partial differential equations with applications in parameter identification. J. Sci. Comput. 74, 220–243 (2018). MR3742877. https://doi.org/10.1007/s10915-017-0433-8
[17] 
Jia, J., Wang, H.: A preconditioned fast finite volume scheme for a fractional differential equation discretized on a locally refined composite mesh. J. Comput. Phys. 299, 842–862 (2015). MR3384754. https://doi.org/10.1016/j.jcp.2015.06.028
[18] 
Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Plank equation. J. Comput. Appl. Math. 166, 209–219 (2004). MR2057973. https://doi.org/10.1016/j.cam.2003.09.028
[19] 
Meerschaert, M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004). MR2091131. https://doi.org/10.1016/j.cam.2004.01.033
[20] 
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York, USA (2006). MR2244940
[21] 
Resnick, S.: A Probability Path. Birkhäuser, Boston (2003). MR1664717
[22] 
Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes, Stochastic Models with Infinite Variance. Chapman & Hall, New York (1994). MR1280932
[23] 
Scarborough, J.B.: Numerical Mathematical Analysis. Johns Hopkins Press (1966). MR0198651
[24] 
Sun, W., Yuan, Y.: Optimization Theory and Methods: Nonlinear Programming. Springer, New York, USA (2006). MR2232297
[25] 
Wang, H., Al-Lawatia, M.: A locally conservative Eulerian-Lagrangian control-volume method for transient advection-diffusion equations. Numer. Methods Partial Differ. Equ. 22, 577–599 (2006). MR2212227. https://doi.org/10.1002/num.20106
[26] 
Wang, H., Du, N.: A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations. J. Comput. Phys. 240, 49–57 (2013). MR3039244. https://doi.org/10.1016/j.jcp.2012.07.045
[27] 
Zhang, Y., Benson, D., Meerschaert, M.M., LaBolle, E.: Space-fractional advection-dispersion equations with variable parameters: Diverse formulas, numerical solutions, and application to the MADE-site data. Water Resour. Res. 43(5), 05439 (2007)

Full article PDF XML
Full article PDF XML

Copyright
© 2018 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Stable Lévy Diffusion fractional diffusion fractional advection-dispersion heavy-tailed particle tracking

Metrics
since March 2018
534

Article info
views

387

Full article
views

352

PDF
downloads

103

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy