Large deviations of regression parameter estimator in continuous-time models with sub-Gaussian noise        
        
    
        Volume 5, Issue 2 (2018), pp. 191–206
            
    
                    Pub. online: 7 May 2018
                    
        Type: Research Article
            
                
             Open Access
Open Access
        
            
    
                Received
31 January 2018
                                    31 January 2018
                Revised
19 April 2018
                                    19 April 2018
                Accepted
22 April 2018
                                    22 April 2018
                Published
7 May 2018
                    7 May 2018
Abstract
A continuous-time regression model with a jointly strictly sub-Gaussian random noise is considered in the paper. Upper exponential bounds for probabilities of large deviations of the least squares estimator for the regression parameter are obtained.
            References
 Buldygin, V.V., Kozachenko, Y.V.: Metric Characterization of Random Variables and Random Processes. AMS, Providence (2000) MR1743716
 Feller, W.: An Introduction to Probability Theory and Its Applications vol. 2, 2nd edn. Willey, New York (1957) MR0088081
 Gikhman, I.I., Skorokhod, A.V.: Introduction to the Theory of Random Processes, 1st English edn. Sounders (W.B.) Co Ltd (1969) MR0247660
 Hu, S.H.: A large deviation result for the least squares estimators in nonlinear regression. Stochastic Process and their Applications 47, 345–352 (1993). MR1239845. https://doi.org/10.1016/0304-4149(93)90022-V
 Huang, X., Tang, X., Deng, X., Wang, X.: The large deviation for the least squares estimator of nonlinear regression model based on WOD errors. J. Inequal. Appl. 125 (2016). MR3489878. https://doi.org/10.1186/s13660-016-1064-6
 Ibragimov, I.A., Has’minskii, R.Z.: Statistical Estmation: Asymptptic Theory. Springer, New York (1981) MR0620321
 Ito, K., Nisio, M.: On the convergence of sums of independent Banach space valued random variables. Osaka J. of Math 5(1), 35–48 (1968) MR0235593
 Ivanov, A.V.: Asymptotic Theory of Nonlinear Regression. Kluwer Academic Publishers, Dordecht/Boston/London (1997). MR1472234. https://doi.org/10.1007/978-94-015-8877-5
 Ivanov, A.V.: Large deviations of regression parameter estimate in the models with stationary sub-Gaussian noise. Theor. Probability and Math. Statist. 95, 99–108 (2017). MR3631646. https://doi.org/10.1090/tpms/1024
 Ivanov, A.V., Leonenko, N.N.: Statistical Analysis of Random Fields. Kluwer Academic Publishers, Dordecht/Boston/London (1989). MR1009786. https://doi.org/10.1007/978-94-009-1183-3
 Rao, B.L.S.P.: On the exponential rate convergence of the least squares estimator in the nonlinear regression model with Gaussian errors. Statist. Probab. Lett. 2, 139–142 (1984). MR0747613. https://doi.org/10.1016/0167-7152(84)90004-X
 Rao, B.L.S.P.: The rate of convergence for the least squares estimator in a non-linear regression model with dependent errors. J. Multivariate Analysis 14(3), 315–322 (1984). MR0747260. https://doi.org/10.1016/0047-259X(84)90036-8
 Sieders, A., Dzhaparidze, K.O.: A large deviation result for parameter estimators and its application to nonlinear regression analysis. Ann. Statist. 15(3), 1031–1049 (1987). MR0902244. https://doi.org/10.1214/aos/1176350491
 Yang, W.Z., Hu, S.H.: Large deviation for a least squares estimator in a nonlinear regression model. Stat. Probab. Lett. 91, 135–144 (2014). MR3208127. https://doi.org/10.1016/j.spl.2014.04.022
 
                 
            