Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 11, Issue 4 (2024)
  4. Combinatorial approach to the calculatio ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • More
    Article info Full article

Combinatorial approach to the calculation of projection coefficients for the simplest Gaussian-Volterra process
Volume 11, Issue 4 (2024), pp. 403–419
Iryna Bodnarchuk ORCID icon link to view author Iryna Bodnarchuk details   Yuliya Mishura ORCID icon link to view author Yuliya Mishura details  

Authors

 
Placeholder
https://doi.org/10.15559/24-VMSTA252
Pub. online: 9 April 2024      Type: Research Article      Open accessOpen Access

Received
25 February 2024
Revised
19 March 2024
Accepted
20 March 2024
Published
9 April 2024

Abstract

The Gaussian-Volterra process with a linear kernel is considered, its properties are established and projection coefficients are explicitly calculated, i.e. one of possible prediction problems related to Gaussian processes is solved.

References

[1] 
Bayer, C., Breneis, S.: Markovian approximations of stochastic Volterra equations with the fractional kernel. Quant. Finance 23(1), 53–70 (2023). MR4521278. https://doi.org/10.1080/14697688.2022.2139193
[2] 
Benth, F.E., Harang, F.A.: Infinite dimensional pathwise Volterra processes driven by Gaussian noise–Probabilistic properties and applications. Electron. J. Probab. 26, 1–42 (2021). MR4309972. https://doi.org/10.1214/21-ejp683
[3] 
Cass, T., Lim, N.: Skorohod and rough integration for stochastic differential equations driven by Volterra processes. Ann. Inst. Henri Poincaré B, Probab. Stat. 57, 132–168 (2021). MR4255171. https://doi.org/10.1214/20-aihp1074
[4] 
Coupek, P., Maslowski, B.: Stochastic evolution equations with Volterra noise. Stoch. Process. Appl. 127(3), 877–900 (2017). MR3605714. https://doi.org/10.1016/j.spa.2016.07.003
[5] 
Duncan, T.E., Maslowski, B., Pasik-Duncan, B.: Linear stochastic differential equations driven by Gauss-Volterra processes and related linear-quadratic control problems. Appl. Math. Optim. 80, 369–389 (2019). MR4008669. https://doi.org/10.1007/s00245-017-9468-3
[6] 
El Omari, M.: On the Gaussian Volterra processes with power-type kernels. Stoch. Models 40(1), 152–165 (2024). MR4694530. https://doi.org/10.1080/15326349.2023.2212763
[7] 
Fan, X., Jiang, X.: Stochastic control problem for distribution dependent SDE driven by a Gauss Volterra process. Discrete Contin. Dyn. Syst., Ser. S 16(5), 1041–1061 (2023). MR4571171. https://doi.org/10.3934/dcdss.2023031
[8] 
Gehringer, J., Li, X.M., Sieber, J.: Functional limit theorems for Volterra processes and applications to homogenization. Nonlinearity 35(4), 1521 (2022). MR4399494. https://doi.org/10.1088/1361-6544/ac4818
[9] 
Malyarenko, A., Mishura, Y., Ralchenko, K., Shklyar, S.: Entropy and alternative entropy functionals of fractional Gaussian noise as the functions of Hurst index. Fract. Calc. Appl. Anal. 26(3), 1052–1081 (2023). MR4599227. https://doi.org/10.1007/s13540-023-00155-2
[10] 
Mishura, Y., Shklyar, S.: Gaussian Volterra processes with power-type kernels. part II. Mod. Stoch. Theory Appl. 9(4), 431–452 (2022). MR4510382. https://doi.org/10.15559/22-VMSTA211
[11] 
Mishura, Y., Ottaviano, S., Vargiolu, T.: Gaussian Volterra processes as models of electricity markets. arXiv:2311.09384. https://doi.org/10.48550/arXiv.2311.09384
[12] 
Mishura, Y., Shklyar, S.: Gaussian Volterra processes with power-type kernels. part I. Mod. Stoch. Theory Appl. 9(3), 313–338 (2022). MR4462026. https://doi.org/10.15559/22-VMSTA205
[13] 
Mishura, Y., Ralchenko, K., Schilling, R.L.: Analytical and computational problems related to fractional gaussian noise. Fractal Fract. 6(11), 1–22 (2022). https://doi.org/10.3390/fractalfract6110620
[14] 
Mishura, Y., Ralchenko, K., Shklyar, S.: General conditions of weak convergence of discrete-time multiplicative scheme to asset price with memory. Risks 8(1), 1–29 (2020). https://doi.org/10.3390/risks8010011
[15] 
Mishura, Y., Ralchenko, K., Shklyar, S.: Gaussian volterra processes: Asymptotic growth and statistical estimation. Theory Probab. Math. Stat. 108, 149–167 (2023). MR4588243. https://doi.org/10.1090/tpms/1190
[16] 
Mishura, Y., Shevchenko, G., Shklyar, S.: Gaussian processes with Volterra Kernels. In: Malyarenko, A., Ni, Y., Rančić, M., Silvestrov, S. (eds.) Stochastic Processes, Statistical Methods, and Engineering Mathematics. SPAS 2019. Springer Proceedings in Mathematics & Statistics, vol. 408, pp. 249–276. Springer, Cham (2022). MR4607849. https://doi.org/10.1007/978-3-031-17820-7_13
[17] 
Norros, I., Valkeila, E., Virtamo, J.: An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli 5(4), 571–587 (1999). MR1704556. https://doi.org/10.2307/3318691
[18] 
Perestyuk, M., Vyshenskyi, V.: Combinatorics: First Steps. Nova Science Publishers, Incorporated (2021). https://doi.org/10.52305/FIZC1542
[19] 
Ross, M., Smith, M.T., Álvarez, M.: Learning nonparametric Volterra kernels with Gaussian processes. In: Beygelzimer, A., Dauphin, Y., Liang, P., Wortman Vaughan, J. (eds.) Advances in Neural Information Processing Systems. NeurIPS 2021, vol. 34, pp. 24099–24110. Curran Associates, Inc. (2021).
[20] 
Valdivia, A.: Information loss on Gaussian Volterra process. Electron. Commun. Probab. 22, 1–5 (2017). MR3724558. https://doi.org/10.1214/17-ECP79

Full article PDF XML
Full article PDF XML

Copyright
© 2024 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Gaussian-Volterra process covariance matrix projection problem combinatorial approach

MSC2010
60G15 60G25 05-08

Funding
The second author was supported by The Swedish Foundation for Strategic Research, grant No. UKR22-0017 and by the ToppForsk project No. 274410 of the Research Council of Norway with the title “STORM: Stochastics for Time-Space Risk Models.”

Metrics
since March 2018
699

Article info
views

182

Full article
views

205

PDF
downloads

71

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy