Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 3, Issue 3 (2016)
  4. Averaged deviations of Orlicz processes ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Averaged deviations of Orlicz processes and majorizing measures
Volume 3, Issue 3 (2016), pp. 249–268
Rostyslav Yamnenko  

Authors

 
Placeholder
https://doi.org/10.15559/16-VMSTA64
Pub. online: 11 November 2016      Type: Research Article      Open accessOpen Access

Received
7 September 2016
Revised
28 October 2016
Accepted
28 October 2016
Published
11 November 2016

Abstract

This paper is devoted to investigation of supremum of averaged deviations $|X(t)-f(t)-\int _{\mathbb{T}}(X(u)-f(u))\hspace{0.1667em}\mathrm{d}\mu (u)/\mu (\mathbb{T})|$ of a stochastic process from Orlicz space of random variables using the method of majorizing measures. An estimate of distribution of supremum of deviations $|X(t)-f(t)|$ is derived. A special case of the $L_{q}$ space is considered. As an example, the obtained results are applied to stochastic processes from the $L_{2}$ space with known covariance functions.

References

[1] 
Buldygin, V.V., Kozachenko, Y.V.: Metric Characterization of Random Variables and Random Processes. AMS, Providence, RI (2000). MR1743716
[2] 
Dudley, R.M.: Sample functions of the Gaussian process. Ann. Probab. 1, 66–103 (1973). MR0346884
[3] 
Fernique, X.: Régularité de processus gaussiens. Invent. Math. 12, 304–320 (1971). MR0286166
[4] 
Fernique, X.: Régularité des trajectoires des fonctions aléatoires gaussiennes. In: Ecole d’Eté de Probabilités de Saint-Flour. IV, 1974. Lect. Notes Math. vol. 480, pp. 1–96 (1971). MR0413238
[5] 
Kôno, N.: Sample path properties of stochastic processes. J. Math. Kyoto Univ. 20, 295–313 (1980). MR0582169
[6] 
Kozachenko, Y.: Random processes in Orlicz spaces. I. Theory Probab. Math. Stat. 30, 103–117 (1985). MR0800835
[7] 
Kozachenko, Y., Moklyachuk, O.: Large deviation probabilities in terms of majorizing measures. Random Oper. Stoch. Equ. 11(1), 1–20 (2003). MR1969189. doi:10.1163/156939703322003953
[8] 
Kozachenko, Y., Ryazantseva, V.: Conditions for boundedness and continuity in terms of majorizing measures of random processes in certain Orlicz space. Theory Probab. Math. Stat. 44, 77–83 (1992). MR1168430
[9] 
Kozachenko, Y., Sergiienko, M.: The criterion of hypothesis testing on the covariance function of a Gaussian stochastic process. Monte Carlo Methods Appl. 20(1), 137–145 (2014). MR3213591. doi:10.1515/mcma-2013-0023
[10] 
Kozachenko, Y., Vasylyk, O., Yamnenko, R.: Upper estimate of overrunning by $\operatorname{Sub}_{\varphi }(\varOmega )$ random process the level specified by continuous function. Random Oper. Stoch. Equ. 13(2), 111–128 (2005). MR2152102. doi:10.1163/156939705323383832
[11] 
Krasnoselskii, M.A., Rutitskii, Y.B.: Convex Functions and Orlicz Spaces. P. Noordhoff Ltd., Groningen (1961). MR0126722
[12] 
Ledoux, M.: Isoperimetry and Gaussian analysis. In: Lectures on probability theory and statistics, Ecole d’Eté de Probabilités de Saint-Flour, Lect. Notes Math., vol. 1648, pp. 165–294 (1996). MR1600888. doi:10.1007/BFb0095676
[13] 
Ledoux, M., Talagrand, M.: Probability in Banach Spaces. Springer, Berlin, New York (1991). MR1102015. doi:10.1007/978-3-642-20212-4
[14] 
Nanopoulos, C., Nobelis, P.: Régularité et propriétés limites des fonctions aléatoires. Lect. Notes Math. 649, 567–690 (1978). MR0520031
[15] 
Talagrand, M.: Regularity of Gaussian processes. Acta Math. 159, 99–149 (1987). MR0906527. doi:10.1007/BF02392556
[16] 
Talagrand, M.: Majorizing measures: The generic chaining. Ann. Probab. 24, 1049–1103 (1996). MR1411488. doi:10.1214/aop/1065725175
[17] 
Yamnenko, R.: An estimate of the probability that the queue length exceeds the maximum for a queue that is a generalized Ornstein–Uhlenbeck stochastic process. Theory Probab. Math. Stat. 73, 181–194 (2006). MR2213851. doi:10.1090/S0094-9000-07-00691-6
[18] 
Yamnenko, R.: A bound for norms in $L_{p}(T)$ of deviations of φ-sub-Gaussian stochastic processes. Lith. Math. J. 55(2), 291–300 (2015). MR3347597. doi:10.1007/s10986-015-9281-0

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2016 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Orlicz space Orlicz process supremum distribution method of majorizing measures Ornstein–Uhlenbeck process

MSC2010
60G07

Metrics
since March 2018
470

Article info
views

688

Full article
views

579

PDF
downloads

149

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy