Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. To appear
  3. Drift parameter estimation for tempered ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Drift parameter estimation for tempered fractional Ornstein–Uhlenbeck processes based on discrete observations
Olha Prykhodko   Kostiantyn Ralchenko ORCID icon link to view author Kostiantyn Ralchenko details  

Authors

 
Placeholder
https://doi.org/10.15559/25-VMSTA289
Pub. online: 18 November 2025      Type: Research Article      Open accessOpen Access

Received
25 June 2025
Revised
6 November 2025
Accepted
8 November 2025
Published
18 November 2025

Abstract

The problem of estimating the drift parameter is considered for an Ornstein–Uhlenbeck-type process driven by a tempered fractional Brownian motion (tfBm) or tempered fractional Brownian motion of the second kind (tfBmII). Unlike most existing studies, which assume continuous-time observations, a more realistic setting of discrete-time data is in focus. The strong consistency of a discretized least squares estimator is established under an asymptotic regime where the observation interval tends to zero while the total time horizon increases. A key step in the analysis involves deriving almost sure upper bounds for the increments of both tfBm and tfBmII.

References

[1] 
Azmoodeh, E., Mishura, Y., Sabzikar, F.: How does tempering affect the local and global properties of fractional Brownian motion? J. Theor. Probab. 35(1), 484–527 (2022). MR4379473. https://doi.org/10.1007/s10959-020-01068-z
[2] 
Azmoodeh, E., Sottinen, T., Viitasaari, L., Yazigi, A.: Necessary and sufficient conditions for Hölder continuity of Gaussian processes. Stat. Probab. Lett. 94, 230–235 (2014). MR3257384. https://doi.org/10.1016/j.spl.2014.07.030
[3] 
Belfadli, R., Es-Sebaiy, K., Ouknine, Y.: Parameter estimation for fractional Ornstein–Uhlenbeck processes: non-ergodic case. Front. Sci. Eng. 1(1), 1–16 (2011).
[4] 
Berzin, C., Latour, A., León, J.R.: Inference on the Hurst Parameter and the Variance of Diffusions Driven by Fractional Brownian Motion. Lecture Notes in Statistics, vol. 216. Springer, Cham (2014). MR3289986. https://doi.org/10.1007/978-3-319-07875-5
[5] 
Bojdecki, T., Gorostiza, L.G., Talarczyk, A.: Sub-fractional Brownian motion and its relation to occupation times. Stat. Probab. Lett. 69(4), 405–419 (2004). MR2091760. https://doi.org/10.1016/j.spl.2004.06.035
[6] 
Boniece, B.C., Didier, G., Sabzikar, F.: Tempered fractional Brownian motion: wavelet estimation, modeling and testing. Appl. Comput. Harmon. Anal. 51, 461–509 (2021). MR4196450. https://doi.org/10.1016/j.acha.2019.11.004
[7] 
Brouste, A., Iacus, S.M.: Parameter estimation for the discretely observed fractional Ornstein-Uhlenbeck process and the Yuima R package. Comput. Stat. 28(4), 1529–1547 (2013). MR3120827. https://doi.org/10.1007/s00180-012-0365-6
[8] 
Cheridito, P., Kawaguchi, H., Maejima, M.: Fractional Ornstein-Uhlenbeck processes. Electron. J. Probab. 8, 3–14 (2003). MR1961165. https://doi.org/10.1214/EJP.v8-125
[9] 
Davies, R.B., Harte, D.S.: Tests for Hurst effect. Biometrika 74(1), 95–101 (1987). MR0885922. https://doi.org/10.1093/biomet/74.1.95
[10] 
Dieker, T.: Simulation of fractional Brownian motion. Master’s thesis, Department of Mathematical Sciences, University of Twente (2004).
[11] 
Dietrich, C.R., Newsam, G.N.: Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. SIAM J. Sci. Comput. 18(4), 1088–1107 (1997). MR1453559. https://doi.org/10.1137/S1064827592240555
[12] 
Dozzi, M., Kozachenko, Y., Mishura, Y., Ralchenko, K.: Asymptotic growth of trajectories of multifractional Brownian motion, with statistical applications to drift parameter estimation. Stat. Inference Stoch. Process. 21(1), 21–52 (2018). MR3769831. https://doi.org/10.1007/s11203-016-9147-z
[13] 
El Machkouri, M., Es-Sebaiy, K., Ouknine, Y.: Least squares estimator for non-ergodic Ornstein–Uhlenbeck processes driven by Gaussian processes. J. Korean Stat. Soc. 45(3), 329–341 (2016). MR3527650. https://doi.org/10.1016/j.jkss.2015.12.001
[14] 
El-Nouty, C., Zili, M.: On the sub-mixed fractional Brownian motion. Appl. Math. J. Chin. Univ. Ser. B 30(1), 27–43 (2015). MR3319622. https://doi.org/10.1007/s11766-015-3198-6
[15] 
Houdré, C., Villa, J.: An example of infinite dimensional quasi-helix. In: Stochastic Models, Mexico City, 2002. Contemp. Math., vol. 336, pp. 195–201. Amer. Math. Soc., Providence, RI (2003). MR2037165. https://doi.org/10.1090/conm/336/06034
[16] 
Kozachenko, Y., Melnikov, A., Mishura, Y.: On drift parameter estimation in models with fractional Brownian motion. Statistics 49(1), 35–62 (2015). MR3304366. https://doi.org/10.1080/02331888.2014.907294
[17] 
Kubilius, K., Melichov, D.: On comparison of the estimators of the Hurst index of the solutions of stochastic differential equations driven by the fractional Brownian motion. Informatica (Vilnius) 22(1), 97–114 (2011). MR2885661. https://doi.org/10.15388/Informatica.2011.316
[18] 
Kubilius, K., Mishura, Y., Ralchenko, K.: Parameter Estimation in Fractional Diffusion Models. Bocconi & Springer Series, vol. 8. Bocconi University Press, Milan; Springer, Cham (2017).
[19] 
Kubilius, K., Mishura, Y., Ralchenko, K., Seleznjev, O.: Consistency of the drift parameter estimator for the discretized fractional Ornstein–Uhlenbeck process with Hurst index $H\in (0,\frac{1}{2})$. Electron. J. Stat. 9(2), 1799–1825 (2015). MR3391120. https://doi.org/10.1214/15-EJS1062
[20] 
Lim, S., Eab, C.H.: Tempered fractional Brownian motion revisited via fractional Ornstein–Uhlenbeck processes. arXiv preprint arXiv:1907.08974 (2019).
[21] 
Macioszek, K., Sabzikar, F., Burnecki, K.: Testing of tempered fractional brownian motions. arXiv preprint arXiv:2504.11906 (2025).
[22] 
Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968). MR0242239. https://doi.org/10.1137/1010093
[23] 
Meerschaert, M.M., Sabzikar, F.: Tempered fractional Brownian motion. Stat. Probab. Lett. 83(10), 2269–2275 (2013). MR3093813. https://doi.org/10.1016/j.spl.2013.06.016
[24] 
Meerschaert, M.M., Sabzikar, F.: Stochastic integration for tempered fractional Brownian motion. Stoch. Process. Appl. 124(7), 2363–2387 (2014). MR3192500. https://doi.org/10.1016/j.spa.2014.03.002
[25] 
Mishura, Y.S.: Stochastic Calculus for Fractional Brownian Motion and Related Processes. Lecture Notes in Mathematics, vol. 1929. Springer (2008). MR2378138. https://doi.org/10.1007/978-3-540-75873-0
[26] 
Mishura, Y., Ralchenko, K.: Drift parameter estimation in the models involving fractional Brownian motion. In: Modern Problems of Stochastic Analysis and Statistics. Springer Proc. Math. Stat., vol. 208, pp. 237–268. Springer (2017). MR3747669. https://doi.org/10.1007/978-3-319-65313-6_10
[27] 
Mishura, Y., Ralchenko, K.: Asymptotic growth of sample paths of tempered fractional Brownian motions, with statistical applications to Vasicek-type models. Fractal Fract. 8(2), 79 (2024). https://doi.org/10.3390/fractalfract8020079
[28] 
Mishura, Y., Ralchenko, K., Dehtiar, O.: Asymptotic properties of parameter estimators in Vasicek model driven by tempered fractional Brownian motion. Austrian J. Stat. 54, 61–81 (2025). https://doi.org/10.17713/ajs.v54i1.1966
[29] 
Mishura, Y., Ralchenko, K., Shklyar, S.: Gaussian Volterra processes: asymptotic growth and statistical estimation. Theory Probab. Math. Stat. 108, 149–167 (2023). MR4588243. https://doi.org/10.1090/tpms/1190
[30] 
Mishura, Y., Zili, M.: Stochastic Analysis of Mixed Fractional Gaussian Processes. ISTE Press, London; Elsevier Ltd, Oxford (2018).
[31] 
Peltier, R.-F., Lévy Véhel, J.: Multifractional Brownian motion: definition and preliminary results. INRIA research report, vol. 2645 (1995).
[32] 
Sabzikar, F., Surgailis, D.: Tempered fractional Brownian and stable motions of second kind. Stat. Probab. Lett. 132, 17–27 (2018). MR3718084. https://doi.org/10.1016/j.spl.2017.08.015
[33] 
Wood, A.T.A., Chan, G.: Simulation of stationary Gaussian processes in ${[0,1]^{d}}$. J. Comput. Graph. Stat. 3(4), 409–432 (1994). MR1323050. https://doi.org/10.2307/1390903
[34] 
Zili, M.: On the mixed fractional Brownian motion. J. Appl. Math. Stoch. Anal., 32435–9 (2006). MR2253522. https://doi.org/10.1155/JAMSA/2006/32435
[35] 
Zili, M.: Generalized fractional Brownian motion. Mod. Stoch. Theory Appl. 4(1), 15–24 (2017). MR3633929. https://doi.org/10.15559/16-VMSTA71

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2025 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Tempered fractional process asymptotic growth Langevin equation least squares estimator dicretization strong consistency

MSC2010
60G15 60G22 62F10 62F12

Funding
The second author is supported by the Research Council of Finland, decision number 367468.

Metrics
since March 2018
37

Article info
views

0

Full article
views

2

PDF
downloads

0

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

Journal

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy