Asymptotic normality of the LSE for chirp signal parameters        
        
    
        Volume 11, Issue 2 (2024), pp. 195–216
            
    
                    Pub. online: 23 January 2024
                    
        Type: Research Article
            
                
            
Open Access
        
            
    
                Received
17 October 2023
                                    17 October 2023
                Revised
13 January 2024
                                    13 January 2024
                Accepted
13 January 2024
                                    13 January 2024
                Published
23 January 2024
                    23 January 2024
Abstract
A time continuous statistical model of chirp signal observed against the background of stationary Gaussian noise is considered in the paper. Asymptotic normality of the LSE for parameters of such a sinusoidal regression model is obtained.
            References
 Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Courier Corporation (1965). MR0415956
 Brillinger, D.R.: Regression for randomly sampled spatial series: the trigonometric case. J. Appl. Probab. Special Vol. 23A, 275–289 (1986). MR0803178. https://doi.org/10.1017/s0021900200117139
 Cook, C.E., Bernfeld, M.: Radar Signals: an Introduction to Theory and Applications. Academic Press (1967). https://doi.org/10.1016/B978-0-12-186750-8.X5001-7
 Cramer, H., Leadbetter, M.R.: Stationary and Related Stochastic Processes. Wiley (1967). MR2108670. https://doi.org/10.2307/2344096
 Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edition, 1221 pp. Academic Press (2007). MR0669666
 Grover, R., Kundu, D., Mitra, A.: Asymptotic properties of least squares estimators and sequential least squares estimators of a chirp-like signal model parameters. Circuits Syst. Signal Process. 40(11), 5421–5465 (2021). MR1388718. https://doi.org/10.1007/s00034-021-01724-7
 Ivanov, A., Hladun, V.: Consistency of the LSE for chirp signal parameters in the models with strongly and weakly dependent noise. Austrian J. Stat. 52(SI), 107–126 (2023). https://doi.org/10.17713/ajs.v52iSI.1762
 Ivanov, A.V.: Consistency of the least squares estimator of the amplitudes and angular frequencies of a sum of harmonic oscillations in model with long-range dependence. Theory Probab. Math. Stat. 80, 61–69 (2010). MR2541952. https://doi.org/10.1090/S0094-9000-2010-00794-0
 Ivanov, A.V., Dykyi, O.V.: Consistency of LSE for the many-dimensional symmetric textured surface parameters. Mod. Stoch. Theory Appl. 10(3) (2023). MR4608188. https://doi.org/10.15559/23-VMSTA225
 Ivanov, A.V., Lymar, O.V.: The asymptotic normality for the least squares estimator of parameters in a two dimensional sinusoidal model of observations. Theory Probab. Math. Stat. 100, 107–131 (2020). MR3992995. https://doi.org/10.1090/tpms/1100
 Ivanov, A.V., Malyar, O.V.: Consistency of the least squares estimators of parameters of the texture surface sinusoidal model. Theory Probab. Math. Stat. 97, 73–84 (2018). MR3746000. https://doi.org/10.1090/tpms/1049
 Ivanov, A.V., Savych, I.M.: On the least squares estimators asymptotic normality of the multivariate symmetric textured surface parameters. Theory Probab. Math. Stat. 105, 151–169 (2021). MR4421369. https://doi.org/10.1090/tpms/1161
 Ivanov, A.V., Leonenko, N.N., Ruiz-Medina, M.D., Savich, I.N.: Limit theorems for weighted non-linear transformations of Gaussian processes with singular spectra. Ann. Probab. 41(2), 1088–1114 (2013). MR3077537. https://doi.org/10.1214/12-AOP775
 Ivanov, A.V., Leonenko, N.N., Ruiz-Medina, M.D., Zhurakovsky, B.M.: Estimation of harmonic component in regression with cyclically dependent errors. Statistics 49(1), 156–186 (2015). MR3304373. https://doi.org/10.1080/02331888.2013.864656
 Kundu, D., Mitra, A.: Asymptotic properties of the least squares estimates of 2-D exponential signals. Multidimens. Syst. Signal Process. 7(2), 135–150 (1996). MR1388718. https://doi.org/10.1007/BF01827810
 Kundu, D., Nandi, S.: Determination of discrete spectrum in a random fiend. Stat. Neerl. 57(2), 258–283 (2003). MR2028915. https://doi.org/10.1111/1467-9574.00230
 Kundu, D., Nandi, S.: Parameter estimation of chirp signals in presence of stationary noise. Stat. Sin. 18, 187–202 (2008). MR2384984
 Kundu, D., Nandi, S.: On chirp and some related signal analysis: a brief review and some new results. Sankhya A 83(2), 844–890 (2021). MR4284584. https://doi.org/10.1007/s13171-021-00242-7
 Lahiri, A., Kundu, D., Mitra, A.: Estimating the parameters of multiple chirp signals. J. Multivar. Anal. 139, 189–206 (2015). MR3349486. https://doi.org/10.1016/j.jmva.2015.01.019
 Leonenko, N., Olenko, A.: Tauberian and Abelian theorems for long-range dependent random fields. Methodol. Comput. Appl. Probab. 15, 715–742 (2013). MR3117624. https://doi.org/10.1007/s11009-012-9276-9
 Nandi, S., Kundu, D.: Asymptotic properties of least squares estimators of the parameters of the chirp signals. Ann. Inst. Stat. Math. 56, 529–544 (2004). MR2095017. https://doi.org/10.1007/BF02530540
 Nandi, S., Kundu, D.: Statistical Signal Processing: Frequency Estimation, 2nd edition. Springer (2020). MR4211771. https://doi.org/10.1007/978-981-15-6280-8
 Nandi, S., Kundu, D., Srivastava, R.K.: Noise space decomposition method for two-dimensional sinusoidal model. Comput. Stat. Data Anal. 58, 147–161 (2013). MR2997932. https://doi.org/10.1016/j.csda.2011.03.002
 Quinn, B.G., Hannan, E.J.: The Estimation and Tracking of Frequency. Cambridge University Press (2012). MR1813156. https://doi.org/10.1017/CBO9780511609602
 Rao, C.R., Zhao, L.C., Zhou, B.: Maximum likelihood estimation of 2-D superimposed exponential. IEEE Trans. Signal Process. 42, 795–802 (1994). https://doi.org/10.1109/78.298285
 Zhang, H., Mandrekar, V.: Estimation of hidden frequencies for 2D stationary processes. J. Time Ser. Anal. 22(5), 613–629 (2001). MR1859568. https://doi.org/10.1111/1467-9892.00244