Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 7, Issue 3 (2020)
  4. On infinite divisibility of a class of t ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

On infinite divisibility of a class of two-dimensional vectors in the second Wiener chaos
Volume 7, Issue 3 (2020), pp. 267–289
Andreas Basse-O’Connor   Jan Pedersen   Victor Rohde  

Authors

 
Placeholder
https://doi.org/10.15559/20-VMSTA160
Pub. online: 28 August 2020      Type: Research Article      Open accessOpen Access

Received
19 May 2020
Revised
3 August 2020
Accepted
16 August 2020
Published
28 August 2020

Abstract

Infinite divisibility of a class of two-dimensional vectors with components in the second Wiener chaos is studied. Necessary and sufficient conditions for infinite divisibility are presented as well as more easily verifiable sufficient conditions. The case where both components consist of a sum of two Gaussian squares is treated in more depth, and it is conjectured that such vectors are infinitely divisible.

References

[1] 
Bapat, R.B.: Infinite divisibility of multivariate gamma distributions and M-matrices. Sankhyā, Ser. A 51(1), 73–78 (1989). MR1065560
[2] 
Dobrushin, R.L., Major, P.: Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrscheinlichkeitstheor. Verw. Geb. 50(1), 27–52 (1979). MR0550122. https://doi.org/10.1007/BF00535673
[3] 
Eisenbaum, N.: On the infinite divisibility of squared Gaussian processes. Probab. Theory Relat. Fields 125(3), 381–392 (2003). MR1964459. https://doi.org/10.1007/s00440-002-0245-z
[4] 
Eisenbaum, N.: Characterization of positively correlated squared Gaussian processes. Ann. Probab. 42(2), 559–575 (2014). MR3178467. https://doi.org/10.1214/12-AOP807
[5] 
Eisenbaum, N., Kaspi, H.: A characterization of the infinitely divisible squared Gaussian processes. Ann. Probab. 34(2), 728–742 (2006). MR2223956. https://doi.org/10.1214/009117905000000684
[6] 
Evans, S.N.: Association and infinite divisibility for the Wishart distribution and its diagonal marginals. J. Multivar. Anal. 36(2), 199–203 (1991). MR1096666. https://doi.org/10.1016/0047-259X(91)90057-9
[7] 
Griffiths, R.C.: Infinitely divisible multivariate gamma distributions. Sankhyā, Ser. A 32, 393–404 (1970). MR0295406
[8] 
Griffiths, R.C.: Characterization of infinitely divisible multivariate gamma distributions. J. Multivar. Anal. 15(1), 13–20 (1984). MR0755813. https://doi.org/10.1016/0047-259X(84)90064-2
[9] 
Janson, S.: Gaussian Hilbert spaces. Cambridge Tracts in Mathematics, vol. 129. Cambridge University Press, Cambridge (1997). MR1474726. https://doi.org/10.1017/CBO9780511526169
[10] 
Leon, S.J.: Linear algebra with applications. Macmillan, Inc., New York, Collier-Macmillan Publishers, London (1980)
[11] 
Lévy, P.: The arithmetic character of the Wishart distribution. Proc. Camb. Philos. Soc. 44, 295–297 (1948). MR0026261. https://doi.org/10.1017/S0305004100024270
[12] 
Marcus, M.B., Rosen, J.: Markov processes, Gaussian processes, and local times. Cambridge Studies in Advanced Mathematics, vol. 100. Cambridge University Press, Cambridge (2006). MR2250510. https://doi.org/10.1017/CBO9780511617997
[13] 
Moran, P.A., Vere-Jones, D.: The infinite divisibility of of multi-gamma distributions. Sankhyā, Ser. A 31, 191–194 (1969). MR0226704
[14] 
Paranjape, S.R.: Simpler proofs for the infinite divisibility of multivariate gamma distributions. Sankhyā, Ser. A 40(4), 393–398 (1978). MR0589292
[15] 
Rudin, W.: Principles of mathematical analysis, 3rd edn. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York, Auckland, Düsseldorf (1976). MR0385023
[16] 
Shanbhag, D.N.: On the structure of the Wishart distribution. J. Multivar. Anal. 6(3), 347–355 (1976). MR0420785. https://doi.org/10.1016/0047-259X(76)90044-0
[17] 
Taqqu, M.S.: Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrscheinlichkeitstheor. Verw. Geb. 50(1), 53–83 (1979). MR0550123. https://doi.org/10.1007/BF00535674

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2020 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Sums of Gaussian squares infinite divisibility second Wiener chaos

MSC2010
60E07 60G15 62H05 62H10

Funding
This research was supported by the Danish Council for Independent Research (Grant DFF-4002-00003).

Metrics
since March 2018
545

Article info
views

445

Full article
views

418

PDF
downloads

140

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy