Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 7, Issue 2 (2020)
  4. Irregular barrier reflected BDSDEs with ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Cited by
  • More
    Article info Full article Cited by

Irregular barrier reflected BDSDEs with general jumps under stochastic Lipschitz and linear growth conditions
Volume 7, Issue 2 (2020), pp. 157–190
Mohamed Marzougue ORCID icon link to view author Mohamed Marzougue details   Yaya Sagna  

Authors

 
Placeholder
https://doi.org/10.15559/20-VMSTA155
Pub. online: 10 June 2020      Type: Research Article      Open accessOpen Access

Received
6 March 2020
Revised
5 May 2020
Accepted
29 May 2020
Published
10 June 2020

Abstract

In this paper, a solution is given to reflected backward doubly stochastic differential equations when the barrier is not necessarily right-continuous, and the noise is driven by two independent Brownian motions and an independent Poisson random measure. The existence and uniqueness of the solution is shown, firstly when the coefficients are stochastic Lipschitz, and secondly by weakening the conditions on the stochastic growth coefficient.

References

[1] 
Akdim, K., Haddadi, M., Ouknine, Y.: Strong snell envelopes and rbsdes with regulated trajectories when the barrier is a semimartingale. Stochastics. MR4085755. https://doi.org/10.1080/17442508.2019.1635599
[2] 
Baadi, B., Ouknine, Y.: Reflected BSDEs when the obstacle is not right-continuous in a general filtration. ALEA Lat. Am. J. Probab. Math. Stat. 14, 201–218 (2017). MR3655127. https://doi.org/10.30757/alea.v14-12
[3] 
Baadi, B., Ouknine, Y.: Reflected BSDEs with optional barrier in a general filtration. Afr. Math. 29, 1049–1064 (2018). MR3869547. https://doi.org/10.1007/s13370-018-0600-6
[4] 
Bahlali, K., Elouaflin, A., N’zi, M.: Backward stochastic differential equations with stochastic monotone coefficients. J. Appl. Math. Stoch. Anal. 4, 317–335 (2004). MR2108822. https://doi.org/10.1155/S1048953304310038
[5] 
Bahlali, K., Elouaflin, A., N’zi, M.: RBSDEs with stochastic monotone and polynomial growth condition. Afr. Diaspora J. Math. 6, 55–73 (2008). MR2397264
[6] 
Bahlali, K., Hassani, M., Mansouri, B.: One barrier reflected backward doubly stochastic differential equations with continuous generator. C. R. Acad. Sci. Paris, Ser. I 347, 1201–1206 (2009). MR2567003. https://doi.org/10.1016/j.crma.2009.08.001
[7] 
Berrhazi, B.-E., El Fatini, M., Hilbert, A., Mrhardy, N., Pettersson, R.: Reflected backward doubly stochastic differential equations with discontinuous barrier. Stochastics (2019). https://doi.org/10.1080/17442508.2019.1691207
[8] 
Dellacherie, C., Meyer, P.A.: Probabilités et Potentiel, Théorie des Martingales, Chap V–VIII, Hermann, Paris (1980). MR0566768
[9] 
El Jamali, M., El Otmani, M.: BSDE with RCLL reflecting barrier driven by a Lévy process. Random Oper. Stoch. Equ. 2, 1–15 (2020). MR4069985. https://doi.org/10.1515/rose-2020-2029
[10] 
El Karoui, N., Hamadène, S.: BSDEs and risk-sensitive control, zero-sumand nonzero-sum game problems of stochastic functional diferential equations. Stoch. Process. Appl. 107(1), 145–169 (2003). MR1995925. https://doi.org/10.1016/S0304-4149(03)00059-0
[11] 
El Karoui, N., Quenez, M.C.: Non-linear pricing theory and backward stochastic differential Equations. Financial mathematics 1656, 191–246 (1997). MR1478202. https://doi.org/10.1007/BFb0092001
[12] 
El Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential Equations in finance. Math. Finance 7, 1–71 (1997). MR1434407. https://doi.org/10.1111/1467-9965.00022
[13] 
El Karoui, N., Kapoudjian, C., Pardoux, E., Peng, S., Quenez, M.C.: Reflected solutions of backward SDE’s and related obstacle problems for PDE’S. Ann. Probab. 25, 702–737 (1997). MR1434123. https://doi.org/10.1214/aop/1024404416
[14] 
Grigorova, M., Imkeller, P., Offen, E., Ouknine, Y., Quenez, M.C.: Reflected BSDEs when the obstacle is not right-continuous and optimal stopping. Ann. Appl. Probab. 27(5), 3153–3188 (2017). MR3719955. https://doi.org/10.1214/17-AAP1278
[15] 
Grigorova, M., Imkeller, E., Ouknine, Y., Quenez, M.C.: Optimal stopping with f-expectations: The irregular case. Stoch. Process. Appl. (2019). MR4058273. https://doi.org/10.1016/j.spa.2019.05.001
[16] 
Hu, L.: Reflected backward doubly stochastic differential equations driven by a Lévy process with stochastic Lipschitz condition. Appl. Math. Comput. 219, 1153–1157 (2012). MR2981309. https://doi.org/10.1016/j.amc.2012.07.023
[17] 
Klimsiak, T., Rzymowski, M., Slominski, L.: Reflected BSDEs with regulated trajectories. Stoch. Process. Appl. 129, 1153–1184 (2019). MR3926552. https://doi.org/10.1016/j.spa.2018.04.011
[18] 
Kobylanski, M., Quenez, M.C.: Optimal stopping time problem in a general framework. Electron. J. Probab. 17, 1–28 (2012). MR2968679. https://doi.org/10.1214/EJP.v17-2262
[19] 
Lenglart, E.: Tribus de meyer et théorie des processus. Séminaire de probabilités de Strasbourg XIV 1978/79, Lecture notes in Mathemtics 784, 500–546 (1980). MR0580151
[20] 
Marzougue, M.: A note on optional Snell envelopes and reflected backward SDEs. Statistics and Probability Letters (2020). https://doi.org/10.1016/j.spl.2020.108833
[21] 
Marzougue, M., El Otmani, M.: Double barrier reflected BSDEs with stochastic Lipschitz coefficient. Mod. Stoch. Theory Appl. 4, 353–379 (2017). MR3739014. https://doi.org/10.15559/17-vmsta90
[22] 
Marzougue, M., El Otmani, M.: Non-continuous double barrier reflected BSDEs with jumps under a stochastic Lipschitz coefficient. Commun. Stoch. Anal. 12, 359–381 (2018). MR3957705. https://doi.org/10.31390/cosa.12.4.01
[23] 
Marzougue, M., El Otmani, M.: BSDEs with right upper-semicontinuous reflecting obstacle and stochastic Lipschitz coefficient. Random Oper. Stoch. Equ. 27, 27–41 (2019). MR3916509. https://doi.org/10.1515/rose-2019-2005
[24] 
Marzougue, M., El Otmani, M.: Reflected BSDEs with jumps and two RCLL barriers under stochastic Lipschitz coefficient. Commun. Stat., Theory Methods (2020). https://doi.org/10.1080/03610926.2020.1738491
[25] 
Owo, J.M.: Backward doubly stochastic differential equations with stochastic Lipschitz condition. Stat. Probab. Lett. 96, 75–84 (2015). MR3281750. https://doi.org/10.1016/j.spl.2014.09.012
[26] 
Owo, J.M.: Backward doubly SDEs with continuous and stochastic linear growth coefficients. Random Oper. Stoch. Equ. 26, 175–184 (2018). MR3849703. https://doi.org/10.1515/rose-2018-0014
[27] 
Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14, 55–61 (1990). MR1037747. https://doi.org/10.1016/0167-6911(90)90082-6
[28] 
Pardoux, E., Peng, S.: Backward stochastic differential Equations and quasilinear parabolic partial differential Equations. Stochastic partial differential Equations and their applications 176, 200–217 (1992)
[29] 
Pardoux, E., Peng, S.: Backward doubly stochastic differential equations and semilinear PDEs. Probab. Theory Relat. Fields 98, 209–227 (1994). MR1258986. https://doi.org/10.1007/BF01192514
[30] 
Sow, A.B., Sagna, Y.: BDSDE with poisson jumps under stochastic Lipschitz and linear growth conditions. Stoch. Dyn. 18, 24 (2018). MR3853267. https://doi.org/10.1142/S0219493718500399

Full article Cited by PDF XML
Full article Cited by PDF XML

Copyright
© 2020 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Reflected backward doubly stochastic differential equations irregular barrier Mertens decomposition stochastic Lipschitz condition stochastic linear growth condition

MSC2010
60H20 60H30

Funding
The corresponding author (Mohamed Marzougue) declares that this research was supported by National Center for Scientific and Technical Research (CNRST), Morocco.

Metrics
since March 2018
651

Article info
views

357

Full article
views

364

PDF
downloads

131

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy