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Abstract We study random independent and identically distributed iterations of functions
from an iterated function system of homeomorphisms on the circle which is minimal. We show
how such systems can be analyzed in terms of iterated function systems with probabilities
which are non-expansive on average.
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1 Introduction

We study iterations of a finite family of circle homeomorphisms. This topic has been
studied already from a number of different points of view. One may, for example,
take a purely deterministic approach and study the associated action of the group

∗Corresponding author.
1KG has been supported, in part, by CNPq research grant 302880/2015-1 (Brazil). KG and ÖS thank

ICERM (USA) for their hospitality and financial support.

© 2017 The Author(s). Published by VTeX. Open access article under the CC BY license.

www.i-journals.org/vmsta

https://doi.org/10.15559/17-VMSTA86
mailto:gelfert@im.ufrj.br
mailto:stenflo@math.uu.se
http://www.ams.org/msc/msc2010.html?s=37E10
http://www.ams.org/msc/msc2010.html?s=37Hxx
http://www.ams.org/msc/msc2010.html?s=60B10
http://www.ams.org/msc/msc2010.html?s=60J05
http://www.ams.org/msc/msc2010.html?s=60G57
http://creativecommons.org/licenses/by/4.0/
http://www.i-journals.org/vmsta
http://www.vtex.lt/en/


254 K. Gelfert, Ö. Stenflo

of circle homeomorphisms (the special case of the group of orientation preserving
circle diffeomorphisms is treated in [12, 19, 13]). Or one may, as we will, take a
probabilistic approach and investigate Markov chains generated by random indepen-
dent and identically distributed (i.i.d.) iterations of functions from the family (such as
in [16, 8, 21]).

We restrict our attention to families of functions which are forward minimal in
the sense that for any two points on the circle, there are orbits from the first point
arbitrary close to the second one using some concatenations of functions from the
family. The set of distances which are preserved simultaneously by all maps allows
us to distinguish between distinct types of ergodic behavior for such Markov chains.

By finding a topologically conjugate system which is non-expansive on average,
under the additional assumption that the system of inverse maps is forward minimal,
we prove limit theorems including almost sure synchronization of random trajectories
(which is sometimes also referred to as Antonov’s theorem [1]) provided that the
system is not topologically conjugate to a family containing only isometries, and
uniqueness and fiberwise properties of stationary distributions.

In contrast to many previous authors we do not assume that all maps preserve
orientation or, a priori, that the system of inverse maps is forward minimal (such as
in [1, 12, 14, 19, 13, 21]) or contains at least one map which is minimal (as in [21]).
Our setting is also studied in [17] (without any minimality condition), where a dif-
ferent approach is used and ideas of [3] are adapted which in turn are built on ideas
of [15, 8]. See also [22]. One further precursor in a more specific setting is the work by
Furstenberg [10] where the homeomorphisms are the projective actions of elements
of SL2(R).

2 Random iterations

Let K be a compact topological space equipped with its Borel sets. We call a finite set
F = {f1, . . . , fN } of continuous functions fj : K → K , j = 1, . . . , N , an iterated
function system (IFS). If all maps fj are homeomorphisms, as we will in general
assume here, then we also consider the associate IFS F−1 := {f −1

1 , . . . , f −1
N } of the

inverse maps.
We will discuss different points of view on random and deterministic iterations of

functions from an IFS and recall some standard notations and facts.
Given (In)n≥1 a stochastic sequence with values in {1, . . . , N}, for x ∈ K define

Zx
n := (fIn ◦ · · · ◦ fI1)(x), Zx

0 = x.

We may consider without loss of generality the (a priori) unspecified common do-
main of the random variables In as Σ = {1, . . . , N}N, equipped with a probability
measure P defined on its Borel subsets, with In being defined as In(ω) = ωn for
every ω = (ω1ω2 . . .) ∈ Σ and n ≥ 1.

We will later also consider the shift map σ : Σ → Σ defined by σ(ω1ω2 . . .) :=
(ω2ω3 . . .).

For any ω = (ω1ω2 . . .) ∈ Σ , any n ≥ 0 and any x ∈ K we thus define Zx
n(ω) =

Zn(x, ω), where

Zn(x, ω) := (fωn ◦ · · · ◦ fω1)(x), Z0(x, ω) = x. (1)
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The sequence (Zn(x, ω))n≥0 is called the trajectory corresponding to the real-
ization ω of the random process (Zx

n)n≥0 starting at x ∈ K . It is common to also
consider iterates in the reversed order and to define

Ẑn(x, ω) := (fω1 ◦ · · · ◦ fωn)(x), Ẑ0(x, ω) = x. (2)

If F is an IFS of homeomorphisms, then we also consider the associate sequence
(Z−

n (x, ω))n≥0 defined by

Z−
n (x, ω) := (

f −1
ωn

◦ · · · ◦ f −1
ω1

)
(x), Z−

0 (x, ω) = x,

and the sequence (Ẑ−
n (x, ω))n≥1 defined by

Ẑ−
n (x, ω) := (

f −1
ω1

◦ · · · ◦ f −1
ωn

)
(x), Ẑ−

0 (x, ω) = x. (3)

Note that for every ω ∈ Σ and x ∈ K it holds

Ẑ−
n (x, ω) = (fωn ◦ · · · ◦ fω1)

−1(x) and Ẑn(x, ω) = (
f −1

ωn
◦ · · · ◦ f −1

ω1

)−1
(x).

2.1 Iterated function systems with probabilities and Markov chains

Let (In)n≥1 be i.i.d. variables. The probability measure P is then a Bernoulli mea-
sure determined by a probability vector p = (p1, . . . , pN). It then follows that
Zx

n = Zn(x, ·) defined in (1) and Ẑx
n = Ẑn(x, ·) defined in (2) both have the same

distribution for any fixed n ≥ 1, and (Zx
n)n≥0 is a (time-homogeneous) Markov chain

with transfer operator T defined for bounded measurable functions h : K → R by

T h(x) :=
N∑

j=1

pjh
(
fj (x)

)
. (4)

If p is non-degenerate, that is, if pj > 0 for every j = 1, . . . , N , then we call
the pair (F,p) an IFS with probabilities. The Markov chain (Zx

n)n≥0 is obtained
by independent random iterations where in each iteration step the functions fj are
chosen with probability pj .

Markov chains generated by IFSs with probabilities is a particular class of Markov
chains that has received a considerable attention in recent years. The IFS terminology
was coined by Barnsley and Demko [4].2

A Borel probability measure μ on K is an invariant probability measure for the
IFS with probabilities (F,p) if

T∗μ = μ, where T∗μ(·) =
∑
j

pjμ
(
f −1

j (·)).

2A common abuse of notation is to use the term “IFS” for the Markov chain (Zx
n)n≥0 obtained from

an IFS with probabilities. We here stress the deterministic nature of an IFS and the fact that an IFS can be
used to build other objects like e.g. (Ẑn(x, ω))n≥0. A common way to construct fractal sets is for example
to regard them as sets of limit points for the latter sequence (assuming conditions such as, for example,
contractivity ensuring the limit to exist).
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Such a measure μ is also called a stationary distribution for the corresponding Markov
chain, since if X is a μ-distributed random variable, independent of (In)n≥0 then
(ZX

n )n≥0 will be a stationary stochastic sequence.

Remark 1. By continuity of all functions fj , j = 1, . . . , N , it follows that (Zx
n)n≥0

has the weak Feller property, that is, T maps the space of real valued continuous
functions on K to itself. It is well known that Markov chains with the weak Feller
property have at least one stationary distribution, see for example [18]. Hence, any
IFS with probabilities (F,p) has at least one invariant probability measure.

Remark 2. Another formalism (which will not be used here) for analyzing stochastic
sequences related to an IFS with probabilities is the one of a (deterministic) step skew
product map (ω, x) �→ (σ (ω), fω1(x)) with the shift map σ : Σ → Σ in the base
and locally constant fiber maps. The Bernoulli measure is a σ -invariant measure in
the base. Invariant measures (and hence stationary distributions) are closely related
to measures which are invariant for the step skew product (see, for example, [23,
Chapter 5]).

Given a positive integer n, define by T n = T ◦· · ·◦T and T n∗ = T∗◦· · ·◦T∗ (each n

times) the concatenations of T and T∗, respectively. We call a stationary distribution
μ for (Zx

n)n≥0 attractive if for any x ∈ K we have T n∗ δx → μ as n → ∞ in the
weak∗ topology, where δx denotes the Dirac measure concentrated in x ∈ K . In other
words, for any continuous h : K → R and for any x ∈ K we have

lim
n→∞ T nh(x) =

∫
h dμ. (5)

An attractive stationary distribution is uniquely stationary.
Let ρ be some metric on K . We say that an IFS with probabilities (F,p) is con-

tractive on average with respect to ρ if for any x, y ∈ S
1 we have

N∑
j=1

pjρ
(
fj (x), fj (y)

) ≤ cρ(x, y), (6)

for some constant c < 1 and non-expansive on average if (6) holds for some constant
c ≤ 1.

Remark 3. It is well known that a Markov chain (Zx
n)n≥0 generated by an IFS

with probabilities (F,p) which is contractive on average has an attractive (and hence
unique) stationary distribution. More generally the distribution of Zx

n then converges
(in the weak∗ topology) to the stationary distribution with an exponential rate that
can be quantified for example by the Wasserstein metric, see e.g. [20].

Far less is known for non-expansive systems. The theory for Markov chains gen-
erated by non-expansive systems can be regarded as belonging to the realm of Markov
chains where {T nh} is equicontinuous for any continuous h : K → R, or “stochasti-
cally stable” Markov chains (see [18] for a survey).

The Markov chain (Zx
n)n≥0 is topologically recurrent if for any open set O ⊂ K

and any x ∈ K we have

P
(
Zx

n ∈ O for some n
)

> 0.
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In the present paper we are going to study a special class of topologically recurrent
Feller continuous Markov chains generated by IFSs with probabilities of homeomor-
phisms on the circle. The topology of the circle and the hence implied monotonicity
of the maps play a crucial role for our results.

3 IFSs with homeomorphisms on the circle

From now on we will always assume K = S
1 = R/Z to be the unit circle and

consider an IFS F = {fj }Nj=1 of homeomorphisms fj : S1 → S
1. Let d(x, y) :=

min{|y − x|, 1 − |y − x|} be the standard metric on S
1.

3.1 Deterministic iterations and simultaneously preserved distances

An IFS F = {fj }Nj=1 is forward minimal if for any open set O ⊂ K and any x ∈ K

there exist some n ≥ 0 and some ω ∈ Σ such that

Zn(x, ω) ∈ O.

In other words, for a forward minimal IFS it is possible to go from any point x arbi-
trarily close to any point y by applying some concatenations of functions in the IFS.
We say that the IFS F = {fj }Nj=1 of homeomorphisms fj is backward minimal if the

IFS {f −1
j }Nj=1 is forward minimal.

Remark 4. Note that F is forward (backward) minimal if and only if for every
nonempty closed set A ⊂ S

1 satisfying fj (A) ⊂ A (f −1
j (A) ⊂ A) for every j

we have A = S
1.

Note that not every forward minimal IFS is automatically backward minimal if
N > 1 (see [5] for a discussion and counterexamples). By [5, Corollary E], an IFS
is both forward and backward minimal if and only if there exists an ω ∈ Ω such
that (Zn(x, ω))n≥0 is dense, for any x ∈ S

1. (By forward minimality this property
trivially holds for some fixed x ∈ S

1, but the choice of ω might depend on x ∈ S
1.) A

simple sufficient condition for an IFS of circle homeomorphisms to be both forward
and backward minimal is that at least one of the maps has a dense orbit. A class
of IFSs which are forward and backward minimal (so-called expanding-contracting
blenders) but without a map with a dense orbit can be found in [9, Section 8.1].

The following is somehow related to the study of the well-known concept of ro-
tation numbers of orientation-preserving circle homeomorphisms which was intro-
duced by Poincaré and which provides an invariant to (almost completely) charac-
terize topologically conjugacy.3 Rotation numbers are also important when studying
an IFS (which can be considered as a special group action) of orientation-preserving
circle homeomorphisms. The surveys [12, 19] review these facts, see also [13].

Here we deal with a more general class of IFSs in which not necessarily all maps
preserve orientation.

3The rotation number r(f ) of a circle homeomorfism f is rational if, and only if, f has a periodic
orbit. If r(f ) is irrational then f is semi-conjugate to a rotation by angle r(f ) and, in particular, this
semi-conjugacy is a conjugacy if f is minimal.
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Given F and a metric ρ on S
1, let L = L(F, ρ) defined by

L := {
s ∈ [0, 1/2] : ρ(x, y) = s implies that ρ

(
fj (x), fj (y)

) = s

for any j = 1, . . . , N and (x, y) ∈ S
1 × S

1} (7)

be the set of ρ-distances which simultaneously are preserved by all maps in F .

Remark 5. Note that since all maps of the IFS are homeomorphisms it follows that
for every x, y ∈ S

1 with ρ(x, y) ∈ L(F, ρ) we have

ρ(x, y) = ρ
(
fj (x), fj (y)

) = ρ
(
f −1

j (x), f −1
j (y)

)
for all j = 1, . . . , N,

and thus L(F, ρ) = L(F−1, ρ). Moreover, note that by continuity of the maps of the
IFS, the set L is closed.

We have the following dichotomy.

Lemma 1. If L = L(F, ρ) is finite, then

L =
{

0,
1

k
,

2

k
, . . . ,

�k/2�
k

}
,

for some k ≥ 1.
If L = L(F, ρ) is infinite, then L = [0, 1/2]. All IFS maps are then isometries

(with respect to ρ).

Proof. Consider the operation ⊕: L × L → S
1 defined by

s1 ⊕ s2 := min{s1 + s2, 1 − s1 − s2}.
Note that L is closed under this operation, that is, ⊕ : (L × L) → L. Indeed, given
s1, s2 ∈ L, if x, z ∈ S

1 are such that ρ(x, z) = s1 ⊕ s2, then there is a point y ∈ S
1

such that ρ(x, y) = s1 and ρ(y, z) = s2. Thus, we have ρ(fj (x), fj (y)) = s1 and
ρ(fj (y), fj (z)) = s2 for every j = 1, . . . , N . Since all maps fj are homeomor-
phisms, it follows that ρ(x, z) = ρ(fj (x), fj (z)) for all j = 1, . . . , N and hence
s1 ⊕ s2 ∈ L.

It follows that if L is finite (and nontrivial) then the smallest positive element of
L must be a rational number of the form 1/k for some integer k > 1 and hence L

must have the given form.
If L is infinite, then L = [0, 1/2], since L has then arbitrary small positive ele-

ments and must therefore be a dense, and by continuity of all maps in F , also a closed
subset of [0, 1/2]. All IFS maps are then isometries.

Remark 6. If L(F, d) is finite and 1/k is its smallest positive element, then the
IFS F̃ = {f̃j } with maps f̃j (x) = k(fj (x/k) mod 1/k), j = 1, . . . , N , satisfies
L(F̃ , d) = {0}. Thus, we can describe the dynamical properties of an IFS with the set
of preserved distances L(F, d) being finite in terms of the dynamics of an IFS with
no positive preserved distances. Observe that each of the maps fj is semiconjugate
with f̃j by means of the map π : S1 → S

1 defined by π(x) = kx mod 1, that is, we
have π ◦ fj = f̃j ◦ π .
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Intuitively we may in all cases regard the infimum of all positive elements of
L = L(F, d) as the “common prime period” of all maps, where the case when L

is infinite corresponds to a degenerated case. As mentioned above, for orientation-
preserving homeomorphisms this number can be compared with the rotation number
functions in [12, 19, 13].

3.2 Random iterations

First, recall the following well-known fact about forward minimal IFSs with proba-
bilities on S

1 (compare also [19, Lemma 2.3.14]). We say that a measure μ has full
support if the support of μ is S1.

Lemma 2. Let (F,p) be an IFS with probabilities of homeomorphisms on S1 and
μ+ be an invariant probability measure for (F,p). If F is forward minimal then μ+
is nonatomic and has full support.

Proof. By contradiction, suppose that μ+ is atomic. Let x ∈ S
1 be a point of maximal

positive μ+-mass. By invariance of μ+, we obtain

μ+
({x}) =

N∑
j=1

pjμ+
({

f −1
j (x)

})

and hence, since we assume that p is non-degenerate, we have μ+({f −1
j (x)}) =

μ+({x}) for every j . Hence, we obtain that the (nonempty) set

A := {
y ∈ S

1 : μ+
({y}) = μ+

({x})}
satisfies f −1

j (A) ⊂ A for every j . Since μ+ is finite, A is finite (and, in particu-

lar, closed). Hence, since every f −1
j is bijective, we in fact have f −1

j (A) = A and
fj (A) = A for every j . Assuming that F is either backward minimal or forward
minimal, we hence obtain A = S1, which is a contradiction. Hence μ+ is nonatomic.

An analogous argument shows that μ+ has full support. Indeed, let the (closed)
set A = supp μ+ denote the support of μ+. By invariance of μ+, for every j we have
μ+(f −1

j (A)) = μ+(A) = 1 which implies A ⊂ f −1
j (A), i.e. fj (A) ⊂ A for every

j , so if (F,p) is forward minimal, then μ+ has full support.

We say that a probability measure μ on S
1 is s-invariant for s ∈ [0, 1] if (Rs)∗μ =

μ, where Rs(x) = (x + s) mod 1. Analogously, we say that an S
1-valued random

variable X is s-invariant if its distribution is s-invariant, in which case X and Rs(X)

have the same distribution.

Lemma 3. Let (F,p) be an IFS with probabilities of homeomorphisms on S
1 which

is forward minimal. Then any invariant probability measure for (F,p) is s-invariant
for any s ∈ L(F, d).

Proof. Let μ be an invariant probability measure for (F,p). Let s ∈ L(F, d). Con-
sider an arbitrary interval I of length s satisfying μ(I) ≥ μ(I ′) for all other intervals
I ′ of length s. By invariance of μ we have μ(I) = ∑

j pjμ(f −1
j (I )). Hence, since

p is non-degenerate, it follows that μ(I) = μ(f −1
j (I )) for every j .
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Since I is of length s ∈ L(F, d) = L(F−1, d), the interval f −1
j (I ) is also of

length s for any j . More generally, the μ-measure of the image of I under arbitrary
finite concatenations of functions from F−1 is an interval of length s and of measure
μ(I). By forward minimality and continuity of the maps in F it therefore follows that
all intervals of length s have the same μ-measure equal to μ(I).

This property implies that μ is s-invariant. Indeed, consider an arbitrary interval
(c, d) in S

1, where d = Rα(c), for some 0 < α ≤ 1/2. If α is larger than s then

μ((c, d)) = μ
((

c, Rs(c)
)) + μ

((
Rs(c), d

)) = μ
((

d,Rs(d)
)) + μ

((
Rs(c), d

))
= μ

((
Rs(c), Rs(d)

))
.

Otherwise, if α is smaller than or equal to s, then

μ((c, d)) + μ
((

d,Rs(c)
)) = μ

((
c, Rs(c)

)) = μ(I) = μ
((

d,Rs(d)
))

= μ
((

d,Rs(c)
)) + μ

((
Rs(c), Rs(d)

))
,

which also implies μ((c, d)) = μ((Rs(c), Rs(d)).

Given a measurable transformation Φ : S1 → S1 and a probability measure μ,
we denote by Φ∗μ the pushforward of μ defined by Φ∗μ(E) = μ(Φ−1(E)) for each
Borel set E of S1.

Remark 7. Recall that if μ is nonatomic (i.e. continuous) and fully supported Borel
measure on S

1 then its distribution function defines a homeomorphism Φ : S1 → S
1

and Φ−1∗ μ = μLeb.

We state a preliminary result.4

Proposition 1. Let (F,p) be an IFS with probabilities of homeomorphisms on S
1

which is backward minimal. Let μ− be an invariant measure for (F−1,p) and let
Φ− : S1 → S

1 be defined by Φ−(x) := μ−([0, x]). Then

ρ(x, y) := min
{
μ−

([x, y]), μ−
([y, x])}

is a metric on S
1 and (F,p) is non-expansive on average with respect to ρ.

The IFS G = {gj }Nj=1 given by the maps gj := Φ−◦fj ◦Φ−1− , j = 1, . . . , N , with
probabilities p is non-expansive on average with respect to d and we have L(G, d) =
L(F, ρ).

Proof. Let (F,p) be an IFS with probabilities of homeomorphisms on S
1 which is

backward minimal. Let Φ−(x) = μ−([0, x]), where μ− is an invariant probability
measure for (F−1,p), and define

ρ(x, y) := min
{
μ−

([x, y]), μ−
([y, x])}.

Clearly, L(G, d) = L(F, ρ). By Lemma 2 applied to (F−1,p), μ− is nonatomic
and has full support and hence we have ρ(x, y) ≥ 0 and ρ(x, y) = 0 if and only if

4The main idea is well known (see, for example, [16, p. 118] and [13], where the authors also consider
a measurable bijection analogous to the here defined conjugation map Φ−).



Random iterations of homeomorphisms on the circle 261

x = y. Moreover, clearly ρ(x, y) = ρ(y, x) and ρ(x, y) ≤ ρ(x, z)+ρ(z, y). Hence,
ρ defines a metric on S

1. The definition of ρ and the invariance of μ− together imply

N∑
j=1

pjρ
(
fj (x), fj (y)

) =
N∑

j=1

pj min
{
μ−

([
fj (x), fj (y)

])
, μ−

([
fj (y), fj (x)

])}

=
N∑

j=1

pj min
{
μ−

(
fj

([x, y])), μ−
(
fj

([y, x]))}

≤ min

{ N∑
j=1

pjμ−
(
fj

([x, y])), N∑
j=1

pjμ−
(
fj

([y, x]))}

= min
{
μ−

([x, y]), μ−
([y, x

)])} = ρ(x, y),

which proves that (F,p) is non-expansive on average with respect to ρ.

The following result can be regarded as the heart of the paper.5

Theorem 1. Let (F,p) be an IFS with probabilities of homeomorphisms on S
1 which

is forward minimal and non-expansive on average with respect to some metric ρ.
Then ρ(Zx

n, Z
y
n) converges almost surely to an L-valued random variable for any

x, y ∈ S
1, where L = L(F, ρ).

As an immediate corollary of Proposition 1 and Theorem 1 we get the following
result. This type of result is usually referred to as Antonov’s theorem (see [2], where
all maps in the IFS are assumed to preserve orientation, see also [13, 14]). Also in our
generality, the present corollary is not new and follows (although not explicitly stated)
from results by Malicet [17] who studied an even more general setting ( without
assuming minimality).

Corollary 1. Let (F,p) be an IFS with probabilities of homeomorphisms on S
1 which

is forward and backward minimal. Then exactly one of the following cases occurs:

1) (synchronization) For any x, y ∈ S
1 and almost every ω ∈ Σ we have

d(Zn(x, ω), Zn(y, ω)) → 0 as n → ∞.

2) (factorization) There exists a positive integer k ≥ 2 and a homeomorphism
Ψ : S1 → S

1 of order k (that is, Ψ k = id) which commutes with all fj . More-
over, there is a naturally associated IFS F̌ = {f̌j } where each map f̌j is a
topological factor6 (with a common factoring map) of the corresponding map
fj of F such that (F̌ ,p) has the synchronization property claimed in item 1).

3) (invariance) All maps fj are conjugate (with a common conjugation map) to
an isometry (with respect to d). There exists a probability measure which is

5A similar statement (without proof and stated for systems where all homeomorphisms preserve orien-
tation) can be found for example in [13].

6We call a map g : S1 → S
1 a topological factor of f : S1 → S

1 if there exists a continuous surjective
map π : S1 → S1 such that π ◦ f = g ◦ π .
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invariant for all maps fj , j = 1, . . . , N , and hence also uniquely invariant for
(F,p).

Proof. Apply Proposition 1 to (F,p) and consider the homeomorphism Φ− : S1 →
S

1, and the metric ρ such that (F,p) is non-expansive on average with respect to ρ.
Consider the IFS (G,p), conjugate to (F,p) through the conjugating map Φ−, which
is non-expansive on average with respect to d and recall L = L(F, ρ) = L(G, d).
We consider three cases:
Case L = {0}. By Theorem 1, we have ρ(Zx

n, Z
y
n) → 0 a.s. and thus d(Zx

n, Z
y
n) → 0

a.s., proving item 1).
Case L finite and nontrivial. By Lemma 1, L(G, d) = {0, 1/k, . . . , �k/2�/k} for
some k ≥ 2. By Remark 6 applied to (G, d), with f̌j (x) = g̃j (x) := k(gj (x/k)

mod 1/k) we have f̌j ◦ Ψ = Ψ ◦ fj , where Ψ = π ◦ Φ−1− with π(x) = kx mod 1,
and the IFS (F̌ ,p) satisfies L(F̌ , d) = L(G̃, d) = {0}.

Since by Lemma 3 we have Φ−1− (R1/k(x)) = (Φ−1− (x)+1/k) mod 1, it follows
that

Ψ
(
R1/k(x)

) = (
π ◦ Φ−1−

)(
R1/k(x)

)
= π

((
Φ−1− (x) + 1/k

)
mod 1

) = (
π ◦ Φ−1−

)
(x) = Ψ (x),

and thus Ψ is an order k homeomorphism having the claimed properties, proving item
2).
Case L infinite. By Lemma 1, we have L(G, d) = [0, 1/2]. All maps in G are
thus isometries (with respect to d) and hence simultaneously preserve the Lebesgue
measure. The measure μ+ := (Φ−1− )∗μLeb is invariant for all maps of F , and by
Lemma 3 uniquely invariant for (F,p), proving item 3).

Remark 8. IFSs with nontrivial L can be regarded as degenerated systems. For a
typical system satisfying the conditions of Theorem 1 we thus have that ρ(Zx

n, Z
y
n) →

0 as n → ∞ a.s. for any x, y ∈ S
1. Using techniques from [17, Theorem D] it

seems plausible that it should be possible to prove that convergence is exponential
(see also [16]), and that (F,p) is contractive on average with respect to some metric
in this case.

Proof of Theorem 1. Let (F,p) be a forward minimal IFS which is non-expansive
on average with respect to ρ. Let Fn be the sigma field generated by I1, . . . , In. Fix
x, y ∈ S1. Note that Zx

n and Z
y
n are both measurable with respect to Fn and

E
(
ρ
(
Zx

n+1, Z
y
n+1

)|Fn

) = E
(
ρ
(
fIn+1

(
Zx

n

)
, fIn+1

(
Z

y
n

))|Fn

)
=

N∑
j=1

pjρ
(
fj

(
Zx

n

)
, fj

(
Z

y
n

)) ≤ ρ
(
Zx

n, Z
y
n

)
,

so the stochastic sequence (ρ(Zx
n, Z

y
n))n≥0 is a bounded super-martingale with re-

spect to the filtration {Fn}. By the Martingale convergence theorem it follows that
ρ(Zx

n, Z
y
n)

a.s.→ ξ as n → ∞ for some random variable ξ = ξx,y .
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Let L = L(F, ρ). We will now show that ξ is L-valued a.s., that is, we will show
that the distance between any two points a, b ∈ S

1 with ρ(a, b) = ξ(ω) is preserved
by all the maps in F for P a.a. ω ∈ Σ .

We will show that any two points a, b ∈ S
1 with ρ(a, b) = ξ(ω) can simultane-

ously be (almost) reached by {Zn(x, ω), Zn(y, ω)} followed by an application of an
arbitrary map for infinitely many n and that this leads to a contradiction if the dis-
tance between some points with distance ξ(ω) is not preserved by all maps in F for a
typical ω.

Let us first prove the following claim that for any z and any index j , any open set
in S1 will be visited followed by an application of the map fj infinitely many times
by trajectories (Zn(z, ω))n≥0 corresponding to typical realizations ω.

Claim 1.1. For any z ∈ S
1 and any open set O ⊂ S

1 and any j ∈ {1, . . . , N} we
have

P(Ω) = 1, where Ω :=
∞⋂

m=1

∞⋃
n=m

{
ω : Zn(z, ω) ∈ O,ωn+1 = j

}
.

Proof. Let z ∈ S
1. Consider an open set O ⊂ S

1 and an index j ∈ {1, . . . , N}. By
forward minimality, for every q ∈ S

1 there exists some positive integer nq and some
cq > 0, such that

P
(
Z

q
nq

∈ O, Inq+1 = j
) = P

(
Z

q
nq

∈ O
)
P(Inq+1 = j) > cq > 0. (8)

Considering the left hand side expression in (8) as a function of q, by continuity
(recall the weak Feller property) one concludes that there exists an open set Oq con-
taining q and some positive integer nq and some c′

q > 0

P
(
Zz

nq
∈ O, Inq+1 = j

)
> c′

q > 0

for any z ∈ Oq . Thus, by compactness, there exists a positive integer N such that

inf
q∈S1

P
(
Z

q
n ∈ O, In+1 = j for some n < N

) =: s > 0.

Let

Am := {
ω : Zn(z, ω) ∈ O,ωn+1 = j, for some n ∈ {

mN, . . . , (m + 1)N − 1
}}

= {
ω : Zn−mN

(
ZmN(z, ω), σmN(ω)

) ∈ O,ωn+1 = j,

for some n ∈ {
mN, . . . , (m + 1)N − 1

}}
.

For any m ≥ 1 we have

P(Am) ≥ inf
q∈S1

P
({

ω : Zn−mN

(
q, σmN(ω)

) ∈ O,ωn+1 = j,

for some n ∈ {
mN, . . . , (m + 1)N − 1

}})
= inf

q∈S1
P

(
Z

q
n ∈ O, In+1 = j for some n < N

) = s > 0
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and hence P(Ac
m) ≤ 1 − s. More generally, we can similarly show that

P

( k⋂
m=j

Ac
m

)
≤ (1 − s)k−j ,

for any j < k, which implies

P

( ∞⋂
j=1

∞⋃
m=j

Am

)
= 1 − P

( ∞⋃
j=1

∞⋂
m=j

Ac
m

)
= 1.

This implies the assertion.

We can now choose Ω with P(Ω) = 1 such that for any ω ∈ Ω , for any a
priori fixed index j , the trajectory (Zn(x, ω))n≥0 visits infinitely many times any
open interval followed by an application of fj . Indeed, let {ak}k be a dense set in S

1

and for every index pair (k, ) ∈ N
2 let Ω

j

k, be the set provided by the Claim for the
point x, an index j , and the open set Ok, = (ak − 1/, ak + 1/). Let

Ω :=
N⋂

j=1

⋂
k∈N

⋂
∈N

Ω
j
k,

and note that P(Ω) = 1.
By the above, without loss of generality, we can also assume that Ω is such that

for every ω ∈ Ω we have ρ(Zn(x, ω), Zn(y, ω)) → ξ(ω) as n → ∞.
Fix ω ∈ Ω . Let a, b, c be points in S

1, with ρ(a, b) = ρ(a, c) = ξ(ω), where
b is obtained from a by a clockwise rotation and c is obtained from a by a counter-
clockwise rotation. Note that if 0 < ξ(ω) < 1/2 then the points a, b, c will be
distinct, and otherwise b = c. By definition of Ω we know that if Oa is an open set
containing a, Ob is an open set containing b, and Oc is an open set containing c then
there are infinitely many n such that Zn(x, ω) ∈ Oa and either Zn(y, ω) ∈ Ob or
Zn(y, ω) ∈ Oc. We say that a is clockwise nice if for arbitrarily small open sets Oa

and Ob containing a and b, respectively either Zn(x, ω) ∈ Oa and Zn(y, ω) ∈ Ob

simultaneously or Zn(y, ω) ∈ Oa and Zn(x, ω) ∈ Ob simultaneously for infinitely
many n, and counterclockwise nice if for arbitrarily small open sets Oa and Ob con-
taining a and b, respectively either Zn(x, ω) ∈ Oa and Zn(y, ω) ∈ Oc simultane-
ously or Zn(y, ω) ∈ Oa and Zn(x, ω) ∈ Oc simultaneously for infinitely many n.
We call a nice if a is both clockwise nice and counterclockwise nice.

Claim 1.2. Any a ∈ S
1 is nice.

Proof. We first prove that there exist both clockwise nice and counterclockwise nice
points. Indeed, by definition of Ω , any a ∈ S1 is either clockwise nice, counterclock-
wise nice, or nice. By contradiction, suppose that all points a ∈ S

1 are only clockwise
nice (the case that all points are only counterclockwise nice is analogous). Then, in
particular, a given point a and the point c obtained from a counterclockwise rotation
of a would both be only clockwise nice. But c being clockwise nice would imply that
a is counterclockwise nice, contradiction.



Random iterations of homeomorphisms on the circle 265

Thus, there exist points of either type which are arbitrarily close to each other.
Hence, there exists at least one point in S

1 which is nice.
By definition of Ω it follows that nice points are mapped to nice points by all

maps, so by forward minimality it follows that every point in S
1 is nice.

Let us now prove that the distance between any two points a, b ∈ S
1 with

ρ(a, b) = ξ(ω) is preserved by all the maps in F . Arguing by contradiction, sup-
pose that ξ(ω) /∈ L, and consider an interval [a, b] with ρ(a, b) = ξ(ω) such that for
some j ∈ {1, . . . , N} we have

ρ(a, b) �= ρ
(
fj (a), fj (b)

)
.

By continuity of fj , there exist open intervals Oa and Ob containing a and b, respec-
tively and some positive number ε such that for any a′ ∈ Oa and any b′ ∈ Ob we
have ∣∣ρ(

a′, b′) − ρ
(
fj

(
a′), fj

(
b′))∣∣ > ε.

By choice of Ω and the fact that a is nice, there exist arbitrary large integers n such
that either Zn(x, ω) ∈ Oa , and Zn(y, ω) ∈ Ob simultaneously or Zn(y, ω) ∈ Oa ,
and Zn(x, ω) ∈ Ob simultaneously and In+1(ω) = ωn+1 = j . Hence∣∣ρ(

Zn(x, ω), Zn(y, ω)
) − ρ

(
Zn+1(x, ω), Zn+1(y, ω)

)∣∣ > ε,

contradicting the assumption that ω ∈ Ω .
This completes the proof that for any x, y ∈ S

1, ρ(Zx
n, Z

y
n) converges almost

surely to an L-valued random variable.

The following result about uniqueness of invariant probability measures is not
new and was, to the best of our knowledge, first proved in [17]. A simple direct proof
based on equicontinuity was recently presented in [22]. Note that equicontinuity of
{T nh}, where T nh(x) = ∫

h(Zn(x, ω)) dP (ω) for any Lipschitz continuous function
h : S1 → R, follows trivially from Proposition 1. Indeed, if ρ is the metric of Propo-
sition 1, then

∫
ρ(Zn(x, ω), Zn(y, ω)) dP (ω) ≤ ρ(x, y). For completeness we will

show that uniqueness of invariant probability measures is also a very simple conse-
quence of Theorem 1.

Corollary 2. Any IFS (F,p) with probabilities of homeomorphisms on S
1 which is

forward and backward minimal has a unique invariant probability measure μ+.

Proof. Let μ− be an invariant probability measure for (F−1,p) and define the metric
ρ by ρ(x, y) := min{μ−([x, y]), μ−([y, x])}. By Proposition 1, the IFS G = {gj }j
defined by gj := Φ− ◦ fj ◦ Φ−1− , where Φ−(x) = μ−([0, x]), with probabilities p is
non-expansive on average with respect to d and we have L := L(G, d) = L(F, ρ).

By Theorem 1, with Zn as in (1) and Wn := Φ− ◦ Zn ◦ Φ−1− , we have that
d(Wx

n ,W
y
n ) converges almost surely to an L-valued random variable as n → ∞, for

any x, y ∈ S
1.

We are now going to show that there is a unique invariant probability measure
ν+ for the IFS (G,p). This will imply that μ+ := (Φ−1− )∗ν+ is the unique invariant
probability measure for (F,p).
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Let us divide the proof into cases:

Case L = {0}. Consider first the (generic) case L = {0}. Thus, d(Wx
n ,W

y
n ) → 0 as

n → ∞ a.s. for any x, y ∈ S
1. Let ν+ be an invariant probability measure for (F,p),

that is, a stationary distribution for (Wx
n )n≥0 (recall Remark 1). For any x, y ∈ S

1 and
for any continuous h : S1 → R, by Lebesgue’s dominated convergence theorem

T nh(x) − T nh(y) =
∫

Σ

h
(
Wn(x, ω)

)
dP (ω) −

∫
Σ

h
(
Wn(y, ω)

)
dP (ω) → 0

as n → ∞, and thus by invariance of ν+ we have∣∣∣∣T nh(x) −
∫

h dν+
∣∣∣∣ =

∣∣∣∣T nh(x) −
∫

T nh dν+
∣∣∣∣ ≤

∫ ∣∣T nh(x) − T nh(y)
∣∣ dν+(y)

and by Lebesgue’s dominated convergence theorem the latter tends to 0 as n → ∞.
This implies that ν+ must be attractive and thus unique (recall Remark 3).

Case L = {0, 1/k, . . . , �k/2�/k} for some k ≥ 2. By Lemma 3 all invariant prob-
ability measures for (G,p) are 1/k-invariant. By contradiction, suppose that there
are two distinct invariant probability measures ν1+ and ν2+ for (G,p). Hence, if X

and Y are two random variables with distribution ν1+ and ν2+ respectively, indepen-
dent of {In}, then WX

n mod 1/k, and WY
n mod 1/k will also have distinct distri-

butions for any fixed n ≥ 0, by 1/k–invariance of ν1+ and ν2+. The latter is how-
ever impossible since the IFS G̃ = {g̃j } defined by g̃j (x) = k(gj (x/k) mod 1/k),
j = 1, . . . , N , satisfies L(G̃, d) = {0} (recall Remark 6) and therefore the distribu-
tion of WX

n mod 1/k converges to the same limit as the limiting distribution of WY
n

mod 1/k, as n → ∞. The invariant probability measure, ν+, is therefore unique.

Case L = [0, 1/2]. In this case, by Lemma 1 all maps in G are isometries (with
respect to d). By Lemma 3, any invariant probability measure is s-invariant for any
s ∈ [0, 1/2], which implies that ν+ must be the Lebesgue measure.

By applying Breiman’s ergodic theorem for Feller chains with a unique stationary
distribution starting at a point (see, for example, [6] or [18]), we get the following
result. Let δx denote the Dirac measure concentrated in the point x ∈ S

1, and let

μx
n(ω) = 1

n

n−1∑
k=0

δZk(x,ω),

denote the empirical distribution along the trajectory starting at x ∈ S
1 determined

by ω ∈ Σ at time n − 1.

Corollary 3. Let (F,p) be an IFS with probabilities of homeomorphisms on S
1 which

is forward and backward minimal and let μ+ denote its unique invariant probability
measure. Then μx

n(ω) converges to μ+ (in the weak∗ sense) P a.s. for any x ∈ S
1.

Remark 9. Corollary 3 slightly generalizes [21, Proposition 16] where a direct proof
is given and the additional hypotheses that all maps in the IFS preserve orientation
and that one map is minimal are assumed.
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Let
d→ denote convergence in distribution. We are now ready to state our first

result about invariant measures/stationary distributions for the IFS with probabilities
generated by the inverse maps.

Proposition 2. Let (F,p) be an IFS with probabilities of homeomorphisms on S
1

which is forward minimal and non-expansive on average with respect to d . Assume
that some map fj is not an isometry (with respect to d). Then L(F, d) = {0, 1/k, . . . ,

�k/2�/k} for some k ≥ 1 and for any 1/k-invariant nonatomic and fully supported
random variable X on S

1, independent of (In)n≥0 we have

Ẑ−
n (X,ω)

d→ Ẑ−(ω)

as n → ∞ for P a.a. ω ∈ Σ , where Ẑ−(ω) is a random variable with distribution

μ−
ω = 1

k

k−1∑
i=0

δ 1
k
(i+Ẑ−(ω))

for some random variable Ẑ− : Σ → S
1 and μ−

ω = (f −1
ω1

)∗μ−
σ(ω) for P a.a. ω ∈ Σ .

Thus, the measure μ− given by

μ− :=
∫

μ−
ω dP (ω)

is the unique invariant probability measure for (F−1,p).

Proof. Let L = L(F, d). By Lemma 1 together with our hypotheses, we have L =
{0, 1/k, . . . , �k/2�/k} for some k ≥ 1. Hence, if d(x, y) = s ∈ L, then

d
(
fj (x), fj (y)

) = s

for all j = 1, . . . , N and thus

d
(
Zn(x, ω), Zn(y, ω)

) = s

for any ω ∈ Σ and n ≥ 0.
Let us denote by Zn and Ẑ−

n the sequences defined in (1) and (3), respectively. By
Theorem 1 we have that d(Zx

n, Z
y
n) converges almost surely to an L-valued random

variable as n → ∞.
Given ω ∈ Σ , let

Ẑ−(ω) := k sup
{
y : ∣∣Zn

([0, y], ω)∣∣ → 0, as n → ∞}
,

where |·| denotes the length of an interval and where we use the notation

Zn

([0, y], ω) := {
Zn(z, ω) : z ∈ [0, y]}.

Note that y �→ |Zn([0, y], ω)| is an increasing function, for each fixed n and ω.
Further, |Zn([0, y], ω)| converges to an element in {0, 1/k, . . . , 1} as n → ∞, for
any y ∈ S

1 for P a.a. ω ∈ Σ . Indeed, this follows from the fact that d(Zx
n, Z

y
n)
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converges to an element of L and the fact that x �→ Zx
n is a random homeomorphism.

So Ẑ− : Σ → S
1 is a well-defined random variable.

Let m be an arbitrary 1/k-invariant nonatomic probability measure fully sup-
ported on S

1. Note that if I is an interval of length i/k, then m(I) = i/k for any
0 ≤ i ≤ k. If x /∈ {Ẑ−(ω)/k, (Ẑ−(ω) + 1)/k, . . . , (Ẑ−(ω) + (k − 1))/k}, then

m
({

y ∈ S
1 : Ẑ−

n (y, ω) ≤ x
}) = m

({
y ∈ S

1 : Ẑ−
n (y, ω) ∈ [0, x]})

= m
({

y ∈ S
1 : Zn

(
Ẑ−

n (y, ω), ω
) ∈ Zn

([0, x], ω)})
= m

({
y ∈ S

1 : y ∈ Zn

([0, x], ω)})

→

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if x <
Ẑ−(ω)

k
,

i

k
if

Ẑ−(ω) + (i − 1)

k
< x <

Ẑ−(ω) + i

k
, 1 ≤ i ≤ k − 1,

1 if x >
Ẑ−(ω) + (k − 1)

k

as n → ∞ for P a.a. ω ∈ Σ . Thus, if X is an m-distributed random variable on S
1,

independent of (In)n≥0 and Ẑ−(ω) has distribution

μ−
ω = 1

k

k−1∑
i=0

δ(i+Ẑ−(ω))/k for P a.a. ω ∈ Σ

then m(Ẑ−
n (X,ω) ≤ x) → m(Ẑ−(ω) ≤ x) as n → ∞ if x is a continuity point of

the cumulative distribution function of Ẑ−(ω) (for P a.a. ω ∈ Σ). Thus, Ẑ−
n (X,ω)

converges in distribution to Ẑ−(ω) as n → ∞ for P a.a. ω ∈ Σ . By taking limits in
the equality Ẑ−

n (X,ω) = f −1
ω1

(Ẑ−
n−1(X, σ (ω))), it therefore follows that

Ẑ−(ω) = f −1
ω1

(
Ẑ−(σω)

)
,

for P a.a. ω. Thus if μ−
ω denotes the distribution of Ẑ−(ω), then

μ−
ω = (

f −1
ω1

)
∗μ

−
σ(ω).

for P a.a. ω.
By integrating both sides of this equality with respect to P (recall that P is a

Bernoulli measure determined by a probability vector p = (p1, . . . , pN)) we thus
obtain that

μ− :=
∫

μ−
ω dP (ω) =

N∑
j=1

∫
ω:ω1=j

(
f −1

ω1

)
∗μ

−
σ(ω) dP (ω)

=
N∑

j=1

∫
ω:ω1=j

(
f −1

j

)
∗μ

−
σ(ω)

dP (ω)

=
N∑

j=1

∫
ω:ω1=j

(
f −1

j

)
∗μ− dP (ω)
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=
N∑

j=1

pj

(
f −1

j

)
∗μ−

and μ− is therefore invariant for (F−1,p). Since by construction μω is independent
of X, it follows that μ− is indeed uniquely invariant.

Using Propositions 1 and 2 we get the following corollary.

Corollary 4. Let (F,p) be an IFS with probabilities of homeomorphisms on S
1 which

is forward and backward minimal. Assume that not all maps in F are conjugate (with
a common conjugation map) to an isometry (with respect to d). Let μ− be an invariant
probability measure for (F−1,p), and let k be the largest integer such that μ− is
1/k-invariant. Conclusion: if X is a μ−-distributed random variable, independent of
(In)n≥0, then

Ẑ−
n (X,ω)

d→ Ẑ−(ω), (9)

as n → ∞ for P a.a. ω ∈ Σ , where Ẑ−(ω) is a random variable with distribution
μω, uniformly distributed on k distinct points, and satisfying μ−

ω = (f −1
ω1

)∗μ−
σ(ω)

for

P a.a. ω ∈ Σ . It therefore follows that μ− is unique and given by μ− = ∫
μ−

ω dP (ω).

Remark 10. Convergence in (9) also follows from Furstenbergs martingale argument
[11], but here we say more about the limit: The limit is 1/k-invariant and independent
of X (this implies that μ− is uniquely invariant) and the limiting fiber measures μω

are uniform and supported on sets of size k.

Proof. Let μ− be an invariant probability measure for (F−1,p). By Proposition 1,
the IFS G = {gj }j defined by gj := Φ− ◦ fj ◦ Φ−1− , where Φ−(x) = μ−([0, x]),
with probabilities p satisfies the hypotheses of Proposition 2. Note that F is forward
minimal if, and only if, G is. Let L(G, d) be the corresponding set of simultaneously
preserved distances. By Lemma 1, we have L(G, d) = {0, 1/k, . . . , �k/2�/k} for
some k ≥ 1.

Let us denote by (Ŵ−
n )n≥0 the sequence for the IFS G which is analogously de-

fined as in (3) for the IFS F . Since F and G are conjugate by means of Φ−, it is easy
to check that

Ẑ−
n = Φ−1− ◦ Ŵ−

n ◦ Φ−.

Note that if X is a μ−-distributed random variable, independent of (In)n≥0, then
Y := Φ−(X) is distributed according to the Lebesgue measure on S

1. Hence, in
particular, it follows that Y is a 1/k-invariant, nonatomic, and fully supported random
variable on S

1.
By Proposition 2, it therefore follows that

Ŵ−
n

(
Φ−(X), ω

) = Φ−
(
Ẑ−

n (X,ω)
) d→ Ŵ−(ω)

as n → ∞ for P a.a. ω ∈ Σ , where Ŵ−(ω) is a random variable with distribution

ν−
ω = 1

k

k−1∑
i=0

δ 1
k
(i+Ŵ−(ω))



270 K. Gelfert, Ö. Stenflo

for some random variable Ŵ− : Σ → S
1, that is, we have

Ẑ−
n (X,ω)

d→ Φ−1−
(
Ŵ−(ω)

)
as n → ∞ for P a.a. ω ∈ Σ . Thus, if we define Ẑ−(ω) := Φ−1− (Ŵ−(ω)), then
this random variable has distibution μω(·) = νω(Φ−(·)). Moreover, the measure μ−
given by

μ− :=
∫

μ−
ω dP (ω)

is the unique invariant probability measure for (F−1,p).

Remark 11. If (F,p) is both forward and backward minimal, then by applying the
above Corollary to (F−1,p) we obtain an alternative proof of uniqueness for μ+
under these assumptions.
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