The self-normalized Donsker theorem revisited

Peter Parczewski
University of Mannheim, Institute of Mathematics A5,6, D-68131 Mannheim, Germany
parczewski@math.uni-mannheim.de (P. Parczewski)

Received: 18 May 2017, Revised: 9 August 2017, Accepted: 9 August 2017, Published online: 18 September 2017

Abstract

We extend the Poincaré-Borel lemma to a weak approximation of a Brownian motion via simple functionals of uniform distributions on n -spheres in the Skorokhod space $D([0,1])$. This approach is used to simplify the proof of the self-normalized Donsker theorem in Csörgő et al. (2003). Some notes on spheres with respect to ℓ_{p}-norms are given.

Keywords Poincaré-Borel lemma, Brownian motion, Donsker theorem, self-normalized sums
2010 MSC 60F05, 60F17

1 Introduction

Let $\mathcal{S}^{n-1}(d)=\left\{x \in \mathbb{R}^{n}:\|x\|=d\right\}$ be the $(n-1)$-sphere with radius d, where $\|\cdot\|$ denotes the Euclidean norm. The uniform measure on the unit sphere $\mathcal{S}^{n-1}:=$ $\mathcal{S}^{n-1}(1)$ can be characterized as

$$
\begin{equation*}
\mu_{S, n} \stackrel{d}{=} \frac{\left(X_{1}, \ldots, X_{n}\right)}{\left\|\left(X_{1}, \ldots, X_{n}\right)\right\|}, \tag{1}
\end{equation*}
$$

where $\left(X_{1}, \ldots, X_{n}\right)$ is a standard n-dimensional normal random variable.
The celebrated Poincaré-Borel lemma is the classical result on the approximation of a Gaussian distribution by projections of the uniform measure on $\mathcal{S}^{n-1}(\sqrt{n})$ as n tends to infinity: Let $n \geq m$ and $\pi_{n, m}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be the natural projection. The uniform measure on the sphere $\mathcal{S}^{n-1}(\sqrt{n})$ is given by $\sqrt{n} \mu_{S, n}$. Then, for every fixed $m \in \mathbb{N}$,

$$
\sqrt{n} \mu_{S, n} \circ \pi_{n, m}^{-1}
$$

© 2017 The Author(s). Published by VTeX. Open access article under the CC BY license.
converges in distribution to a standard m-dimensional normal distribution as n tends to infinity, cf. [11, Proposition 6.1]. Following the historical notes in [6, Section 6] on the earliest reference to this result by Émile Borel, we acquire the usual practice to speak about the Poincaré-Borel lemma.

Among other fields, this convergence stimulated the development of the infinitedimensional functional analysis (cf. [12]) as well as the concentration of measure theory (cf. [10, Section 1.1]).

In particular, it inspired to consider connections of the Wiener measure and the uniform measure on an infinite-dimensional sphere [21]. Such a Donsker-type result is firstly proved in [4] by nonstandard methods. For the illustration, we make use of the notations in [7], where this result is used for statistical analysis of measures on high-dimensional unit spheres. Define the functional

$$
Q_{n, 2}: \mathcal{S}^{n-1} \rightarrow C([0,1]), \quad\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(Q_{n, 2}(t)\right)_{t \in[0,1]}
$$

such that

$$
Q_{n, 2}(k / n):=\frac{\sum_{i=1}^{k} x_{i}}{\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|}
$$

for $k \in\{0, \ldots, n\}$ and is linearly interpolated elsewhere. Then [4, Theorem 2.4] gives that the sequence of processes

$$
\mu_{S, n} \circ Q_{n, 2}^{-1}
$$

converges weakly to a Brownian motion $W:=\left(W_{t}\right)_{t \in[0,1]}$ in the space of continuous functions $C([0,1])$ as n tends to infinity. The first proof without nonstandard methods in $C([0,1])$ and in the Skorohod space $D([0,1])$ is given in [17].

In this note, we present a very simple proof of the càdlàg version of this PoincaréBorel lemma for Brownian motion. This is the content of Section 2.

Some remarks on such Donsker-type convergence results on spheres with respect to ℓ_{p}-norms are collected in Section 3.

In fact, our simple approach can be used to simplify the proof of the main result in [3] as well. This is presented in Section 4.

2 Poincaré-Borel lemma for Brownian motion

Suppose X_{1}, X_{2}, \ldots is a sequence of i.i.d. standard normal random variables. Then (X_{1}, \ldots, X_{n}) has a standard n-dimensional normal distribution. We define the processes with càdlàg paths

$$
Z^{n}=\left(Z_{t}^{n}:=\frac{\sum_{i=1}^{\lfloor n t\rfloor} X_{i}}{\left\|\left(X_{1}, \ldots, X_{n}\right)\right\|}\right)_{t \in[0,1]}
$$

Thus, Z^{n} is equivalent to $\mu_{S, n} \circ \bar{Q}_{n, 2}^{-1}$ for the functional

$$
\bar{Q}_{n, 2}: \mathcal{S}^{n-1} \rightarrow D([0,1]), \quad\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(\bar{Q}_{n, 2}(t)=\frac{\sum_{i=1}^{\lfloor n t\rfloor} x_{i}}{\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|}\right)_{t \in[0,1]}
$$

and therefore it is a relatively simple computation from the uniform distribution on the n-sphere. Then the following extension of the Poincaré-Borel lemma is true:

Theorem 1. The sequence $\left(Z^{n}\right)_{n \in \mathbb{N}}$ converges weakly in the Skorokhod space $D([0,1])$ to a standard Brownian motion W as n tends to infinity.

Proof. As the distribution of the random vector in (1) is exactly the uniform measure $\mu_{S, n}$, the proof of the convergence of finite-dimensional distributions is in line with the classical Poincaré-Borel lemma: by the law of large numbers, $\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \rightarrow 1$ in probability. Hence, by the continuous mapping theorem, $\sqrt{n} /\left(\left\|\left(X_{1}, \ldots, X_{n}\right)\right\|\right) \rightarrow 1$ in probability, and, by Donsker's theorem and Slutsky's theorem, we conclude the convergence of finite-dimensional distributions.

For the tightness we consider the increments of the process Z^{n} and make use of a standard criterion. For all $s \leq t$ in $[0,1]$, we denote

$$
\begin{equation*}
\left(Z_{t}^{n}-Z_{s}^{n}\right)^{2}=\frac{\sum_{\lfloor n s\rfloor<i \leq\lfloor n t\rfloor} X_{i}^{2}}{\sum_{i \leq n} X_{i}^{2}}+\frac{\sum_{\lfloor n s\rfloor<i \neq j \leq\lfloor n t\rfloor} X_{i} X_{j}}{\sum_{i \leq n} X_{i}^{2}}=: I_{1}^{t, s}+I_{2}^{t, s} \tag{2}
\end{equation*}
$$

Due to the symmetry of the standard n-dimensional normally distributed vector (X_{1}, \ldots, X_{n}), for all pairwise different i, j, k, l, we observe

$$
\begin{equation*}
\mathbb{E}\left[\frac{X_{i} X_{j} X_{k} X_{l}}{\left(\sum_{i \leq n} X_{i}^{2}\right)^{2}}\right]=\mathbb{E}\left[\frac{X_{i}^{2} X_{j} X_{k}}{\left(\sum_{i \leq n} X_{i}^{2}\right)^{2}}\right]=0 \tag{3}
\end{equation*}
$$

Let $s \leq u \leq t$ in $[0,1]$. Thus via (3), we conclude

$$
\mathbb{E}\left[I_{1}^{t, u} I_{2}^{u, s}\right]=0, \quad \mathbb{E}\left[I_{2}^{t, u} I_{1}^{u, s}\right]=0, \quad \mathbb{E}\left[I_{2}^{t, u} I_{2}^{u, s}\right]=0
$$

and therefore

$$
\mathbb{E}\left[\left(Z_{t}^{n}-Z_{u}^{n}\right)^{2}\left(Z_{u}^{n}-Z_{s}^{n}\right)^{2}\right]=\mathbb{E}\left[I_{1}^{t, u} I_{1}^{u, s}\right]
$$

We denote for shorthand $m_{1}:=\lfloor n t\rfloor-\lfloor n u\rfloor, m_{2}:=\lfloor n u\rfloor-\lfloor n s\rfloor$ and $m_{3}:=n-$ ($\lfloor n t\rfloor-\lfloor n s\rfloor$). Then we observe

$$
I_{1}^{t, u} I_{1}^{u, s}=\frac{\chi_{m_{1}}^{2} \chi_{m_{2}}^{2}}{\left(\chi_{m_{1}}^{2}+\chi_{m_{2}}^{2}+\chi_{m_{3}}^{2}\right)^{2}}=\frac{\frac{1}{2}\left(\left(\chi_{m_{1}}^{2}+\chi_{m_{2}}^{2}\right)^{2}-\left(\chi_{m_{1}}^{2}\right)^{2}-\left(\chi_{m_{2}}^{2}\right)^{2}\right)}{\left(\chi_{m_{1}}^{2}+\chi_{m_{2}}^{2}+\chi_{m_{3}}^{2}\right)^{2}}
$$

for pairwise independent chi-squared random variables χ_{m}^{2} with m degrees of freedom. We recall that $\frac{\chi_{m}^{2}}{\chi_{m}^{2}+\chi_{k}^{2}}$ is $\operatorname{Beta}(m / 2, k / 2)$-distributed with

$$
\begin{equation*}
\mathbb{E}\left[\left(\frac{\chi_{m}^{2}}{\chi_{m}^{2}+\chi_{k}^{2}}\right)^{2}\right]=\left(\frac{m+2}{m+k+2}\right)\left(\frac{m}{m+k}\right) \tag{4}
\end{equation*}
$$

Hence a computation via (4) yields

$$
\begin{aligned}
\mathbb{E}\left[I_{1}^{t, u} I_{1}^{u, s}\right] & =\frac{m_{1} m_{2}}{\left(m_{1}+m_{2}+m_{3}+2\right)\left(m_{1}+m_{2}+m_{3}\right)} \\
& \leq\left(\frac{m_{1}}{m_{1}+m_{2}+m_{3}}\right)\left(\frac{m_{2}}{m_{1}+m_{2}+m_{3}}\right)
\end{aligned}
$$

and therefore

$$
\begin{aligned}
\mathbb{E}\left[\left(Z_{t}^{n}-Z_{u}^{n}\right)^{2}\left(Z_{u}^{n}-Z_{s}^{n}\right)^{2}\right] & \leq\left(\frac{\lfloor n t\rfloor-\lfloor n u\rfloor}{n}\right)\left(\frac{\lfloor n u\rfloor-\lfloor n s\rfloor}{n}\right) \\
& \leq\left(\frac{\lfloor n t\rfloor-\lfloor n s\rfloor}{n}\right)^{2} .
\end{aligned}
$$

Thus the well-known criterion [1, Theorem 15.6] (cp. Remark 1 in [15]) implies the tightness of Z^{n}.

Remark 2. (i) The heuristic connection of the Wiener measure and the uniform measure on an infinite-dimensional sphere goes back to Norbert Wiener's study of the differential space, [21]. The first informal presentation of Theorem 1 and further historical notes can be found in [12]. The first rigorous proof is given in Section 2 of [4]. However, the authors make use of nonstandard analysis and the functional $Q_{n, 2}$. To the best of our knowledge, the first proof of Theorem 1 is [17]. In contrast, our proof is based on the pretty decoupling in the tightness argument. Moreover, this approach is extended in Section 4 to a simpler proof of Theorem 1 in [3].
(ii) According to the historical comments in [20, Section 2.2], the Poincaré-Borel lemma could be also attributed to Maxwell and Mehler.

$3 \quad \ell_{p}^{n}$-spheres

In this section, we consider uniform measures on ℓ_{p}^{n}-spheres and prove that the limit in Theorem 1 is the only case such that a simple \bar{Q}-type pathwise functional leads to a nontrivial limit (Theorem 5).

Furthermore, we present random variables living on ℓ_{p}^{n}-spheres, with a similar characterization for a fractional Brownian motion (Theorem 6).

Concerning the ℓ_{p}^{n} norm $\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$ for $p \in[1, \infty)$ and defining the ℓ_{p}^{n} unit sphere

$$
\mathcal{S}_{p}^{n-1}:=\left\{x \in \mathbb{R}^{n}:\|x\|_{p}=1\right\},
$$

the uniform measure $\mu_{S, n, p}$ on \mathcal{S}_{p}^{n-1} is characterized similarly to the uniform measure on the Euclidean unit sphere by independent results in [18, Lemma 1] and [16, Lemma 3.1]:
Proposition 3. Suppose X, X_{1}, X_{2}, \ldots is a sequence of i.i.d. random variables with density

$$
f(x)=\frac{\exp \left(-|x|^{p} / p\right)}{2 p^{1 / p} \Gamma(1+1 / p)}
$$

Then

$$
\mu_{S, n, p} \stackrel{d}{=} \frac{\left(X_{1}, \ldots, X_{n}\right)}{\left\|\left(X_{1}, \ldots, X_{n}\right)\right\|_{p}} .
$$

Remark 4. (i) We notice that the uniform measure on the ℓ_{p}^{n}-sphere equals the surface measure only in the cases $p \in\{1,2, \infty\}$, see e.g. [16, Section 3] or the interesting study of the total variation distance of these measures for $p \geq 1$ in [14].
(ii) In particular, we have a counterpart of the classical Poincaré-Borel lemma for finite-dimensional distributions: For every fixed $m \in \mathbb{N}$,

$$
n^{1 / p} \mu_{S, n, p} \circ \pi_{n, m}^{-1}
$$

converges in distribution to the random vector $\left(X_{1}, \ldots, X_{m}\right)$ as n tends to infinity. This follows immediately from $\mathbb{E}\left[|X|^{p}\right]=1$ and the law of large numbers, cf. [11, Proposition 6.1] or the finite-dimensional convergence in Theorem 1.

Similarly to the characterization of the central limit theorem, cp. [9, Theorem 4.23], but in contrast to the convergence of the projection on a finite number of coordinates in Remark 4, we have a uniqueness result for the processes constructed according to the \bar{Q}-type pathwise functionals.

In the following we denote the convergence in distribution by \xrightarrow{d} and the almost sure convergence by $\xrightarrow{\text { a.s. }}$.
Theorem 5. Suppose $p \geq 1$ and denote

$$
\bar{Q}_{n, p}:\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(\frac{\sum_{i=1}^{\lfloor n t\rfloor} x_{i}}{\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{p}}\right)_{t \in[0,1]} .
$$

Then, in the Skorokhod space $D([0,1])$, as n tends to infinity:

$$
\mu_{S, n, p} \circ \bar{Q}_{n, p}^{-1} \begin{cases}\stackrel{\text { a.s. }}{\rightarrow} 0, & p<2, \\ \xrightarrow[\rightarrow]{d} W, & p=2, \\ \text { is divergent, } & p>2 .\end{cases}
$$

Proof. The strong law of large numbers [9, Theorem 4.23] implies that $n^{1 / p} /\left\|\left(X_{1}, \ldots, X_{n}\right)\right\|_{p} \rightarrow 1$ almost surely for all $p \geq 1$. Moreover, for $p<2$, it gives as well that $\frac{1}{n^{1 / p}} \sum_{i=1}^{\lfloor n t\rfloor} X_{i} \rightarrow 0$ almost surely for all $t \in[0,1]$. Thanks to Proposition 3, we have

$$
\mu_{S, n, p} \circ \bar{Q}_{n, p}^{-1} \stackrel{d}{=} \frac{n^{1 / p}}{\left\|\left(X_{1}, \ldots, X_{n}\right)\right\|_{p}}\left(n^{-1 / p} \sum_{i=1}^{\lfloor n \cdot\rfloor} X_{i}\right) .
$$

Thus we conclude via $n^{-1 / p}=n^{-1 / 2} n^{(p-2) / 2 p}$, Donsker's theorem and Slutsky's theorem.

However, the ℓ_{p}^{n} spheres can be involved in another convergence result. The fractional Brownian motion $B^{H}=\left(B_{t}^{H}\right)_{t \geq 0}$ with Hurst parameter $H \in(0,1)$ is a centered Gaussian process with the covariance $\mathbb{E}\left[B_{t}^{H} B_{s}^{H}\right]=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right)$. We refer to [13] for further information on this generalization of the Brownian motion beyond semimartingales. In particular, there is the following random walk approximation ([19, Theorem 2.1] or [13, Lemma 1.15.9]): Let $\left\{X_{i}\right\}_{i \geq 1}$ be a stationary Gaussian sequence with $\mathbb{E}\left[X_{i}\right]=0$ and correlations

$$
\sum_{i, j=1}^{n} \mathbb{E}\left[X_{i} X_{j}\right] \sim n^{2 H} L(n),
$$

as n tends to infinity for a slowly varying function L. Then $\frac{1}{n^{2 H} L(n)} \sum_{i=1}^{\lfloor n t\rfloor} X_{i}$ converges weakly in the Skorohod space $D([0,1])$ towards a fractional Brownian motion with Hurst parameter H. For simplification let $X_{i}=B_{i}^{H}-B_{i-1}^{H}, i \in \mathbb{N}$, be the correlated increments of the fractional Brownian motion B^{H}. The stationarity and the ergodic theorem imply, for $p>0$ and the constant $c_{H}:=\mathbb{E}\left[\left|B_{1}^{H}\right|^{1 / H}\right]$, that

$$
\left(\left\|\left(X_{1}, \ldots, X_{n}\right)\right\|_{p} / n^{H}\right)^{p}=n^{-H p} \sum_{i=1}^{n}\left|X_{i}\right|^{p} \xrightarrow{\text { a.s. }} \begin{cases}0, & p>1 / H \tag{5}\\ c_{H} & p=1 / H \\ +\infty, & p<1 / H\end{cases}
$$

(see e.g. [13, Eq. (1.18.3)]). With this at hand, we obtain a similar uniqueness result: Theorem 6. Let $X_{i}=B_{i}^{H}-B_{i-1}^{H}, i \in \mathbb{N}$, be the increments of a fractional Brownian motion B^{H}. Then, in the Skorokhod space $D([0,1])$, as n tends to infinity:

$$
\bar{Q}_{n, p}\left(X_{1}, \ldots, X_{n}\right)=\left(\frac{\sum_{i=1}^{\lfloor n t\rfloor} X_{i}}{\left\|\left(X_{1}, \ldots, X_{n}\right)\right\|_{p}}\right)_{t \in[0,1]} \begin{cases}\xrightarrow[\rightarrow]{\text { a.s. }} 0, & p<1 / H \\ \xrightarrow[\rightarrow]{d} B^{H} / c_{H}^{H}, & p=1 / H \\ \text { is divergent, } & p>1 / H\end{cases}
$$

Proof. Taqqu's limit theorem implies, for all $H \in(0,1)$,

$$
\left(n^{-H} \sum_{i=1}^{\lfloor n t\rfloor} X_{i}\right)_{t \in[0,1]} \xrightarrow{d} B^{H}
$$

in the Skorokhod space $D([0,1])$. Then, thanks to (5), we conclude as in Theorem 5.

Remark 7. Due to the different correlations between the random variables X_{i} in Theorem 6, there is no symmetric and trivial sequence of measures $\hat{\mu}_{S, n, p}$ on the ℓ_{p}^{n} spheres and some simple $\bar{Q}_{n, p}$-type pathwise functionals, which represent the distributions of $\bar{Q}_{n, p}\left(X_{1}, \ldots, X_{n}\right)$. However, it would be interesting, whether some uniform or surface measures on geometric objects in combination with simple \bar{Q}_{p}-type pathwise functionals allow similar Donsker-type theorems for fractional Brownian motion or other Gaussian processes?

4 The self-normalized Donsker theorem

Suppose X, X_{1}, X_{2}, \ldots is a sequence of i.i.d. nondegenerate random variables and we denote for all $n \in \mathbb{N}$,

$$
S_{n}:=\sum_{i=1}^{n} X_{i}, \quad V_{n}^{2}:=\sum_{i=1}^{n} X_{i}^{2}
$$

Limit theorems for self-normalized sums S_{n} / V_{n} play an important role in statistics, see e.g. [8], and have been extensively studied during the last decades, cf. the monograph on self-normalizes processes [5].

In [3], the following invariance principle for self-normalized sum processes is established.

Theorem 8 (Theorem 1 in [3]). Assume the notations above and denote

$$
Z_{t}^{n}:=S_{\lfloor n t\rfloor} / V_{n}
$$

Then the following assertions, with n tending to infinity, are equivalent:
(a) $E[X]=0$ and X is in the domain of attraction of the normal law (i.e. there exists a sequence $\left(b_{n}\right)_{n \geq 1}$ with $\left.S_{n} / b_{n} \xrightarrow{d} \mathcal{N}(0,1)\right)$.
(b) For all $t_{0} \in(0,1], Z_{t_{0}}^{n} \xrightarrow{d} \mathcal{N}\left(0, t_{0}\right)$.
(c) $\left(Z_{t}^{n}\right)_{t \in[0,1]}$ converges weakly to $\left(W_{t}\right)_{t \in[0,1]}$ on $(D([0,1]), \rho)$, where ρ denotes the uniform topology.
(d) On an appropriate joint probability space, the following is valid:

$$
\sup _{t \in[0,1]}\left|Z_{t}^{n}-W(n t) / \sqrt{n}\right|=o_{P}(1)
$$

Remark 9. The equivalence of (a) and (b) is the celebrated result [8, Theorem 3]. Since the implications $(d) \Rightarrow(c) \Rightarrow(b)$ are trivial, the proof in [3] is completed by showing $(a) \Rightarrow(d)$.

Thanks to a tightness argument as in the proof of Theorem 1, we obtain a simpler alternative for the proof.

Proof of Theorem 8. As stated in the remark, we already know that $(d) \Rightarrow(c) \Rightarrow$ $(b) \Leftrightarrow(a)$. We denote
$\left(c_{0}\right)\left(Z_{t}^{n}\right)_{t \in[0,1]}$ converges weakly to $\left(W_{t}\right)_{t \in[0,1]}$ on the Skorokhod space $D([0,1])$.
By the continuity of the paths of the Brownian motion and [1, Section 18], we obtain the equivalence $(c) \Leftrightarrow\left(c_{0}\right)$. We denote by d_{0} the Skorokhod metric on $D([0,1])$ which makes it a Polish space. The Skorokhod-Dudley Theorem [9, Theorem 4.30] and $\left(c_{0}\right)$ imply

$$
d_{0}\left(\left(Z_{t}^{n}\right)_{t \in[0,1]},\left(W_{t}\right)_{t \in[0,1]}\right) \rightarrow 0
$$

almost surely on an appropriate probability space. Since the uniform topology is finer than the Skorokhod topology ([1, Section 18]), we conclude assertion (d). Thus it remains to prove $(a) \Rightarrow\left(c_{0}\right)$. Firstly we consider finite-dimensional distributions. Due to [8, Lemma 3.2], the sequence $\left(b_{n}\right)_{n \in \mathbb{N}}$ with $S_{n} / b_{n} \xrightarrow{d} \mathcal{N}(0,1)$ fulfills $V_{n} / b_{n} \rightarrow 1$ in probability and $b_{n}=\sqrt{n} L(n)$ for some slowly varying at infinity function L. The continuous mapping theorem implies $b_{n} / V_{n} \rightarrow 1$ in probability. Take arbitrary $N \in \mathbb{N}, a_{1}, \ldots, a_{N} \in \mathbb{R}$ and $t_{1}, \ldots, t_{N} \in[0,1]$. Without loss of generality, we assume $t_{1}<\cdots<t_{N}$ and denote $t_{0}:=0$ and $t_{N+1}:=1$. Then, by the independence of the random variables $S_{\left\lfloor n t_{i}\right\rfloor}-S_{\left\lfloor n t_{i-1}\right\rfloor}, i=1, \ldots, N+1$, for every fixed $n \in \mathbb{N}$, Lévy's continuity theorem and the normality of the random vector $\left(Y_{1}, \ldots, Y_{N+1}\right)$, we obtain

$$
\left(\frac{S_{\left\lfloor n t_{1}\right\rfloor}-S_{\left\lfloor n t_{0}\right\rfloor}}{\sqrt{\left(\left\lfloor n t_{1}\right\rfloor\right)}}, \ldots, \frac{S_{\left\lfloor n t_{N+1}\right\rfloor}-S_{\left\lfloor n t_{N}\right\rfloor}}{\sqrt{\left(\left\lfloor n t_{N+1}\right\rfloor-\left\lfloor n t_{N}\right\rfloor\right)}}\right) \xrightarrow{d}\left(Y_{1}, \ldots, Y_{N+1}\right),
$$

as n tends to infinity. As the sequence $\left(b_{n}\right)_{n \in \mathbb{N}}$ is regularly varying with exponent $1 / 2$, it is easily seen that

$$
\frac{b_{\left\lfloor n t_{i}\right\rfloor-\left\lfloor n t_{i-1}\right\rfloor}}{b_{n}} \rightarrow \sqrt{t_{i}-t_{i-1}} .
$$

Via the continuous mapping theorem, we conclude

$$
\begin{aligned}
\sum_{i} a_{i} \frac{S_{\left\lfloor n t_{i}\right\rfloor}}{b_{n}} & =\sum_{i=1}^{N+1} \frac{\left(\sum_{j \leq i} a_{j}\right)\left(b_{\left\lfloor n t_{i}\right\rfloor-\left\lfloor n t_{i-1}\right\rfloor}\right)}{b_{n}}\left(\frac{S_{\left\lfloor n t_{i}\right\rfloor}-S_{\left\lfloor n t_{i-1}\right\rfloor}}{b_{\left\lfloor n t_{i}\right\rfloor-\left\lfloor n t_{i-1}\right\rfloor}}\right) \\
& \xrightarrow{d} \sum_{i=1}^{N+1}\left(\sum_{j \leq i} a_{j}\right) \sqrt{t_{i}-t_{i-1}} Y_{i} \stackrel{d}{=} \sum_{i=1}^{N+1} a_{i} W_{t_{i}} .
\end{aligned}
$$

Slutsky's theorem implies

$$
\sum_{i=1}^{N+1} a_{i} Z_{t_{i}}^{n}=\left(\frac{b_{n}}{V_{n}}\right)\left(\sum_{i} a_{i} \frac{S_{\left\lfloor n t_{i}\right\rfloor}}{b_{n}}\right) \stackrel{d}{\rightarrow} \sum_{i=1}^{N+1} a_{i} W_{t_{i}},
$$

what means the convergence of finite-dimensional distributions.
The tightness follows again by the criterion [1, Theorem 15.6]. By the identical distribution, for all $m \leq n$, we have

$$
\begin{equation*}
\mathbb{E}\left[\left(\frac{\sum_{i \leq m} X_{i}^{2}}{\sum_{i \leq n} X_{i}^{2}}\right)^{2}\right]=\mathbb{E}\left[\frac{m X_{1}^{4}}{\left(\sum_{i \leq n} X_{i}^{2}\right)^{2}}\right]+\mathbb{E}\left[\frac{m(m-1) X_{1}^{2} X_{2}^{2}}{\left(\sum_{i \leq n} X_{i}^{2}\right)^{2}}\right] \tag{6}
\end{equation*}
$$

Thanks to the value 1 on the left hand side in (6) for $m=n$, we conclude

$$
0 \leq \mathbb{E}\left[\frac{X_{1}^{2} X_{2}^{2}}{\left(\sum_{i \leq n} X_{i}^{2}\right)^{2}}\right] \leq \frac{1}{n(n-1)}
$$

In contrast to (3), for possibly nonsymmetric random variables, the Cauchy-Schwarz inequality and $[8,(3.10)]$ yields a constant $c_{X}<\infty$ such that for every $r \in\{2,3,4\}$,

$$
\begin{equation*}
\max _{\substack{i, j, k, l \leq n \\\{\{i, j, k, l\} \mid=r}} \mathbb{E}\left[\frac{\left|X_{i} X_{j} X_{k} X_{l}\right|}{\left(\sum_{i \leq n} X_{i}^{2}\right)^{2}}\right] \leq c_{X} n^{-r} \tag{7}
\end{equation*}
$$

Applying the estimates in (7) on the terms in (2) gives that

$$
\begin{equation*}
\max _{i, j \in\{1,2\}} \mathbb{E}\left[I_{i}^{t, u} I_{j}^{u, s}\right] \leq c_{X}\left(\frac{\lfloor n t\rfloor-\lfloor n s\rfloor}{n}\right)^{2} \tag{8}
\end{equation*}
$$

Hence, we obtain
$\mathbb{E}\left[\left(Z_{t}^{n}-Z_{u}^{n}\right)^{2}\left(Z_{u}^{n}-Z_{s}^{n}\right)^{2}\right]=\mathbb{E}\left[\left(I_{1}^{t, u}+I_{2}^{t, u}\right)\left(I_{1}^{u, s}+I_{2}^{u, s}\right)\right] \leq 4 c_{X}\left(\frac{\lfloor n t\rfloor-\lfloor n s\rfloor}{n}\right)^{2}$,
and the proof concludes as in Theorem 1.
Remark 10. (i) By the same reasoning, we obtain Theorem 5 for the sequence of i.i.d. variables X, X_{1}, X_{2}, \ldots such that Theorem $8(a)$ is fulfilled.
(ii) In [2], a similar counterpart of Theorem 8 for α-stable Lévy processes is established. An interesting question would be on a uniqueness result similar to Theorem 5.

Acknowledgments

The author thanks the anonymous referees for careful reading and helpful comments.

References

[1] Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968). MR0233396
[2] Csörgő, M., Hu, Z.: Weak convergence of self-normalized partial sums processes. In: Asymptotic Laws and Methods in Stochastics. Fields Inst. Commun., 76, pp. 3-15. Springer (2015). MR3409822. doi:10.1007/978-1-4939-3076-0_1
[3] Csörgő, M., Szyszkowicz, B., Wang, Q.: Donsker's theorem for self-normalized partial sums processes. Ann. Probab. 31 (3), 1228-1240 (2003). MR1988470. doi:10.1214/aop/ 1055425777
[4] Cutland, N., Ng, S.-A.: The wiener sphere and wiener measure. Ann. Probab. 21 (1), 1-13 (1993). MR1207212
[5] de la Peña, V.H., Lai, T.L., Shao, Q.-M.: Self-normalized Processes. Springer, Berlin (2009). MR2488094. doi:10.1007/978-3-540-85636-8
[6] Diaconis, P., Freedman, D.: A dozen de finetti-style results in search of a theory. Ann. Inst. Henri Poincaré Probab. Stat. 23 (2), 397-423 (1987). MR0898502
[7] Dryden, I.L.: Statistical analysis on high-dimensional spheres and shape spaces. Ann. Stat. 33 (4), 1643-1665 (2005). MR2166558. doi:10.1214/009053605000000264
[8] Giné, E., Götze, F., Mason, D.M.: When is the student t-statistic asymptotically standard normal? Ann. Probab. 25, 1514-1531 (1997). MR1457629. doi:10.1214/aop/ 1024404523
[9] Kallenberg, O.: Foundations of Modern Probability. Second Edition. Probability and Its Applications. Springer, New York (2002). MR1876169. doi:10.1007/978-1-4757-4015-8
[10] Ledoux, M., Talagrand, M.: Queueing Networks: Customers, Signals and Product Form SolutionsProbability in Banach Spaces. Springer, Berlin (1991).
[11] Lifshits, M.: Lectures on Gaussian Processes. Springer, New York (2012). MR3024389. doi:10.1007/978-3-642-24939-6
[12] McKean, H.P.: Geometry of differential space. Ann. Probab. 1 (2), 197-206 (1973). MR0353471
[13] Mishura, Y.: Stochastic Calculus for Fractional Brownian Motion and Related Processes. Springer, Berlin (2008). MR2378138. doi:10.1007/978-3-540-75873-0
[14] Naor, A., Romik, D.: Projecting the surface measure of the sphere of ℓ_{p}^{n}. Ann. Inst. Henri Poincaré Probab. Stat. 39 (2), 241-261 (2003). MR1962135. doi:10.1016/S0246-0203(02)00008-0
[15] Parczewski, P.: A fractional donsker theorem. Stoch. Anal. Appl. 32 (2), 328-347 (2014). MR3177074. doi:10.1080/07362994.2013.866521
[16] Rachev, S.T., Rüschendorf, L.: Approximate independence of distributions on spheres and their stability properties. Ann. Probab. 19 (3), 1311-1337 (1991). MR1112418
[17] Račkauskas, A., Suquet, C.: Convergence of self-normalized partial sums processes in $c[0,1]$ and $d[0,1]$. Publications IRMA de Lille 53 - VI (2000).
[18] Schechtman, G., Zinn, J.: On the volume of the intersection of two l_{p}^{n} balls. Proc. Am. Math. Soc. 110 (1), 217-224 (1990). MR1015684. doi:10.2307/2048262
[19] Taqqu, M.S.: Weak convergence to fractional brownian motion and to the rosenblatt process. Z. Wahrscheinlichkeitstheor. Verw. Geb. 31, 287-302 (1975). MR0400329. doi:10.1007/BF00532868
[20] Vershik, A.M.: Does a lebesgue measure in an infinite-dimensional space exist? Tr. Mat. Inst. Steklova 259, 256-281 (2007). MR2433687. doi:10.1134/S0081543807040153
[21] Wiener, N.: Differential space. J. Math. Phys. 2, 132-174 (1923).

