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The self-normalized Donsker theorem revisited
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Abstract We extend the Poincaré–Borel lemma to a weak approximation of a Brownian
motion via simple functionals of uniform distributions on n-spheres in the Skorokhod space
D([0, 1]). This approach is used to simplify the proof of the self-normalized Donsker theorem
in Csörgő et al. (2003). Some notes on spheres with respect to �p-norms are given.
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1 Introduction

Let Sn−1(d) = {x ∈ R
n : ‖x‖ = d} be the (n − 1)-sphere with radius d , where

‖ · ‖ denotes the Euclidean norm. The uniform measure on the unit sphere Sn−1 :=
Sn−1(1) can be characterized as

μS,n
d= (X1, . . . , Xn)

‖(X1, . . . , Xn)‖ , (1)

where (X1, . . . , Xn) is a standard n-dimensional normal random variable.
The celebrated Poincaré–Borel lemma is the classical result on the approximation

of a Gaussian distribution by projections of the uniform measure on Sn−1(
√

n) as n

tends to infinity: Let n ≥ m and πn,m : R
n → R

m be the natural projection. The
uniform measure on the sphere Sn−1(

√
n) is given by

√
n μS,n. Then, for every fixed

m ∈ N, √
nμS,n ◦ π−1

n,m
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converges in distribution to a standard m-dimensional normal distribution as n tends
to infinity, cf. [11, Proposition 6.1]. Following the historical notes in [6, Section 6]
on the earliest reference to this result by Émile Borel, we acquire the usual practice
to speak about the Poincaré–Borel lemma.

Among other fields, this convergence stimulated the development of the infinite-
dimensional functional analysis (cf. [12]) as well as the concentration of measure
theory (cf. [10, Section 1.1]).

In particular, it inspired to consider connections of the Wiener measure and the
uniform measure on an infinite-dimensional sphere [21]. Such a Donsker-type result
is firstly proved in [4] by nonstandard methods. For the illustration, we make use of
the notations in [7], where this result is used for statistical analysis of measures on
high-dimensional unit spheres. Define the functional

Qn,2 : Sn−1 → C
([0, 1]), (x1, . . . , xn) �→ (

Qn,2(t)
)
t∈[0,1],

such that

Qn,2(k/n) :=
∑k

i=1 xi

‖(x1, . . . , xn)‖ ,

for k ∈ {0, . . . , n} and is linearly interpolated elsewhere. Then [4, Theorem 2.4] gives
that the sequence of processes

μS,n ◦ Q−1
n,2

converges weakly to a Brownian motion W := (Wt)t∈[0,1] in the space of continuous
functions C([0, 1]) as n tends to infinity. The first proof without nonstandard methods
in C([0, 1]) and in the Skorohod space D([0, 1]) is given in [17].

In this note, we present a very simple proof of the càdlàg version of this Poincaré–
Borel lemma for Brownian motion. This is the content of Section 2.

Some remarks on such Donsker-type convergence results on spheres with respect
to �p-norms are collected in Section 3.

In fact, our simple approach can be used to simplify the proof of the main result
in [3] as well. This is presented in Section 4.

2 Poincaré–Borel lemma for Brownian motion

Suppose X1, X2, . . . is a sequence of i.i.d. standard normal random variables. Then
(X1, . . . , Xn) has a standard n-dimensional normal distribution. We define the pro-
cesses with càdlàg paths

Zn =
(

Zn
t :=

∑	nt

i=1 Xi

‖(X1, . . . , Xn)‖
)

t∈[0,1]
.

Thus, Zn is equivalent to μS,n ◦ Q
−1
n,2 for the functional

Qn,2 : Sn−1 → D
([0, 1]), (x1, . . . , xn) �→

(
Qn,2(t) =

∑	nt

i=1 xi

‖(x1, . . . , xn)‖
)

t∈[0,1]
,

and therefore it is a relatively simple computation from the uniform distribution on
the n-sphere. Then the following extension of the Poincaré–Borel lemma is true:
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Theorem 1. The sequence (Zn)n∈N converges weakly in the Skorokhod space
D([0, 1]) to a standard Brownian motion W as n tends to infinity.

Proof. As the distribution of the random vector in (1) is exactly the uniform measure
μS,n, the proof of the convergence of finite-dimensional distributions is in line with
the classical Poincaré–Borel lemma: by the law of large numbers, 1

n

∑n
i=1 X2

i → 1 in
probability. Hence, by the continuous mapping theorem,

√
n/(‖(X1, . . . , Xn)‖) → 1

in probability, and, by Donsker’s theorem and Slutsky’s theorem, we conclude the
convergence of finite-dimensional distributions.

For the tightness we consider the increments of the process Zn and make use of a
standard criterion. For all s ≤ t in [0, 1], we denote

(
Zn

t − Zn
s

)2 =
∑

	ns
<i≤	nt
 X2
i∑

i≤n X2
i

+
∑

	ns
<i �=j≤	nt
 XiXj∑
i≤n X2

i

=: I
t,s
1 + I

t,s
2 . (2)

Due to the symmetry of the standard n-dimensional normally distributed vector
(X1, . . . , Xn), for all pairwise different i, j, k, l, we observe

E

[
XiXjXkXl

(
∑

i≤n X2
i )

2

]
= E

[
X2

i XjXk

(
∑

i≤n X2
i )

2

]
= 0. (3)

Let s ≤ u ≤ t in [0, 1]. Thus via (3), we conclude

E
[
I

t,u
1 I

u,s
2

] = 0, E
[
I

t,u
2 I

u,s
1

] = 0, E
[
I

t,u
2 I

u,s
2

] = 0,

and therefore
E

[(
Zn

t − Zn
u

)2(
Zn

u − Zn
s

)2] = E
[
I

t,u
1 I

u,s
1

]
.

We denote for shorthand m1 := 	nt
 − 	nu
, m2 := 	nu
 − 	ns
 and m3 := n −
(	nt
 − 	ns
). Then we observe

I
t,u
1 I

u,s
1 = χ2

m1
χ2

m2

(χ2
m1

+ χ2
m2

+ χ2
m3

)2 =
1
2 ((χ2

m1
+ χ2

m2
)2 − (χ2

m1
)2 − (χ2

m2
)2)

(χ2
m1

+ χ2
m2

+ χ2
m3

)2 ,

for pairwise independent chi-squared random variables χ2
m with m degrees of free-

dom. We recall that χ2
m

χ2
m+χ2

k

is Beta(m/2, k/2)-distributed with

E

[(
χ2

m

χ2
m + χ2

k

)2]
=

(
m + 2

m + k + 2

)(
m

m + k

)
. (4)

Hence a computation via (4) yields

E
[
I

t,u
1 I

u,s
1

] = m1m2

(m1 + m2 + m3 + 2)(m1 + m2 + m3)

≤
(

m1

m1 + m2 + m3

)(
m2

m1 + m2 + m3

)
,
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and therefore

E
[(

Zn
t − Zn

u

)2(
Zn

u − Zn
s

)2] ≤
(	nt
 − 	nu


n

)(	nu
 − 	ns

n

)

≤
(	nt
 − 	ns


n

)2

.

Thus the well-known criterion [1, Theorem 15.6] (cp. Remark 1 in [15]) implies
the tightness of Zn.

Remark 2. (i) The heuristic connection of the Wiener measure and the uniform mea-
sure on an infinite-dimensional sphere goes back to Norbert Wiener’s study of the
differential space, [21]. The first informal presentation of Theorem 1 and further his-
torical notes can be found in [12]. The first rigorous proof is given in Section 2 of [4].
However, the authors make use of nonstandard analysis and the functional Qn,2. To
the best of our knowledge, the first proof of Theorem 1 is [17]. In contrast, our proof
is based on the pretty decoupling in the tightness argument. Moreover, this approach
is extended in Section 4 to a simpler proof of Theorem 1 in [3].

(ii) According to the historical comments in [20, Section 2.2], the Poincaré–Borel
lemma could be also attributed to Maxwell and Mehler.

3 �n
p-spheres

In this section, we consider uniform measures on �n
p-spheres and prove that the limit

in Theorem 1 is the only case such that a simple Q-type pathwise functional leads to
a nontrivial limit (Theorem 5).

Furthermore, we present random variables living on �n
p-spheres, with a similar

characterization for a fractional Brownian motion (Theorem 6).
Concerning the �n

p norm ‖x‖p = (
∑n

i=1 |xi |p)1/p for p ∈ [1,∞) and defining
the �n

p unit sphere

Sn−1
p := {

x ∈ R
n : ‖x‖p = 1

}
,

the uniform measure μS,n,p on Sn−1
p is characterized similarly to the uniform mea-

sure on the Euclidean unit sphere by independent results in [18, Lemma 1] and [16,
Lemma 3.1]:

Proposition 3. Suppose X,X1, X2, . . . is a sequence of i.i.d. random variables with
density

f (x) = exp(−|x|p/p)

2p1/pΓ (1 + 1/p)
.

Then

μS,n,p
d= (X1, . . . , Xn)

‖(X1, . . . , Xn)‖p

.

Remark 4. (i) We notice that the uniform measure on the �n
p-sphere equals the sur-

face measure only in the cases p ∈ {1, 2,∞}, see e.g. [16, Section 3] or the interesting
study of the total variation distance of these measures for p ≥ 1 in [14].
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(ii) In particular, we have a counterpart of the classical Poincaré–Borel lemma for
finite-dimensional distributions: For every fixed m ∈ N,

n1/pμS,n,p ◦ π−1
n,m

converges in distribution to the random vector (X1, . . . , Xm) as n tends to infinity.
This follows immediately from E[|X|p] = 1 and the law of large numbers, cf. [11,
Proposition 6.1] or the finite-dimensional convergence in Theorem 1.

Similarly to the characterization of the central limit theorem, cp. [9, Theo-
rem 4.23], but in contrast to the convergence of the projection on a finite number of
coordinates in Remark 4, we have a uniqueness result for the processes constructed
according to the Q-type pathwise functionals.

In the following we denote the convergence in distribution by
d→ and the almost

sure convergence by
a.s.→.

Theorem 5. Suppose p ≥ 1 and denote

Qn,p : (x1, . . . , xn) �→
( ∑	nt


i=1 xi

‖(x1, . . . , xn)‖p

)
t∈[0,1]

.

Then, in the Skorokhod space D([0, 1]), as n tends to infinity:

μS,n,p ◦ Q
−1
n,p

⎧⎪⎨
⎪⎩

a.s.→ 0, p < 2,
d→ W, p = 2,

is divergent, p > 2.

Proof. The strong law of large numbers [9, Theorem 4.23] implies that
n1/p/‖(X1, . . . , Xn)‖p → 1 almost surely for all p ≥ 1. Moreover, for p < 2,

it gives as well that 1
n1/p

∑	nt

i=1 Xi → 0 almost surely for all t ∈ [0, 1]. Thanks to

Proposition 3, we have

μS,n,p ◦ Q
−1
n,p

d= n1/p

‖(X1, . . . , Xn)‖p

(
n−1/p

	n·
∑
i=1

Xi

)
.

Thus we conclude via n−1/p = n−1/2n(p−2)/2p, Donsker’s theorem and Slutsky’s
theorem.

However, the �n
p spheres can be involved in another convergence result. The frac-

tional Brownian motion BH = (BH
t )t≥0 with Hurst parameter H ∈ (0, 1) is a cen-

tered Gaussian process with the covariance E[BH
t BH

s ] = 1
2 (t2H + s2H − |t − s|2H ).

We refer to [13] for further information on this generalization of the Brownian mo-
tion beyond semimartingales. In particular, there is the following random walk ap-
proximation ([19, Theorem 2.1] or [13, Lemma 1.15.9]): Let {Xi}i≥1 be a stationary
Gaussian sequence with E[Xi] = 0 and correlations

n∑
i,j=1

E[XiXj ] ∼ n2H L(n),
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as n tends to infinity for a slowly varying function L. Then 1
n2H L(n)

∑	nt

i=1 Xi con-

verges weakly in the Skorohod space D([0, 1]) towards a fractional Brownian mo-
tion with Hurst parameter H . For simplification let Xi = BH

i − BH
i−1, i ∈ N, be the

correlated increments of the fractional Brownian motion BH . The stationarity and the
ergodic theorem imply, for p > 0 and the constant cH := E[|BH

1 |1/H ], that

(∥∥(X1, . . . , Xn)
∥∥

p
/nH

)p = n−Hp
n∑

i=1

|Xi |p a.s.→

⎧⎪⎨
⎪⎩

0, p > 1/H,

cH p = 1/H,

+∞, p < 1/H,

(5)

(see e.g. [13, Eq. (1.18.3)]). With this at hand, we obtain a similar uniqueness result:

Theorem 6. Let Xi = BH
i −BH

i−1, i ∈ N, be the increments of a fractional Brownian
motion BH . Then, in the Skorokhod space D([0, 1]), as n tends to infinity:

Qn,p(X1, . . . , Xn) =
( ∑	nt


i=1 Xi

‖(X1, . . . , Xn)‖p

)
t∈[0,1]

⎧⎪⎨
⎪⎩

a.s.→ 0, p < 1/H,
d→ BH /cH

H , p = 1/H,

is divergent, p > 1/H.

Proof. Taqqu’s limit theorem implies, for all H ∈ (0, 1),

(
n−H

	nt
∑
i=1

Xi

)
t∈[0,1]

d→ BH

in the Skorokhod space D([0, 1]). Then, thanks to (5), we conclude as in Theorem 5.

Remark 7. Due to the different correlations between the random variables Xi in
Theorem 6, there is no symmetric and trivial sequence of measures μ̂S,n,p on the �n

p-

spheres and some simple Qn,p-type pathwise functionals, which represent the distri-
butions of Qn,p(X1, . . . , Xn). However, it would be interesting, whether some uni-
form or surface measures on geometric objects in combination with simple Qp-type
pathwise functionals allow similar Donsker-type theorems for fractional Brownian
motion or other Gaussian processes?

4 The self-normalized Donsker theorem

Suppose X,X1, X2, . . . is a sequence of i.i.d. nondegenerate random variables and
we denote for all n ∈ N,

Sn :=
n∑

i=1

Xi, V 2
n :=

n∑
i=1

X2
i .

Limit theorems for self-normalized sums Sn/Vn play an important role in statistics,
see e.g. [8], and have been extensively studied during the last decades, cf. the mono-
graph on self-normalizes processes [5].

In [3], the following invariance principle for self-normalized sum processes is
established.
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Theorem 8 (Theorem 1 in [3]). Assume the notations above and denote

Zn
t := S	nt
/Vn.

Then the following assertions, with n tending to infinity, are equivalent:

(a) E[X] = 0 and X is in the domain of attraction of the normal law (i.e. there

exists a sequence (bn)n≥1 with Sn/bn
d→ N (0, 1)).

(b) For all t0 ∈ (0, 1], Zn
t0

d→ N (0, t0).

(c) (Zn
t )t∈[0,1] converges weakly to (Wt)t∈[0,1] on (D([0, 1]), ρ), where ρ denotes

the uniform topology.

(d) On an appropriate joint probability space, the following is valid:

sup
t∈[0,1]

∣∣Zn
t − W(nt)/

√
n
∣∣ = oP (1).

Remark 9. The equivalence of (a) and (b) is the celebrated result [8, Theorem 3].
Since the implications (d) ⇒ (c) ⇒ (b) are trivial, the proof in [3] is completed by
showing (a) ⇒ (d).

Thanks to a tightness argument as in the proof of Theorem 1, we obtain a simpler
alternative for the proof.

Proof of Theorem 8. As stated in the remark, we already know that (d) ⇒ (c) ⇒
(b) ⇔ (a). We denote

(c0) (Zn
t )t∈[0,1] converges weakly to (Wt)t∈[0,1] on the Skorokhod space D([0, 1]).

By the continuity of the paths of the Brownian motion and [1, Section 18], we obtain
the equivalence (c) ⇔ (c0). We denote by d0 the Skorokhod metric on D([0, 1])
which makes it a Polish space. The Skorokhod–Dudley Theorem [9, Theorem 4.30]
and (c0) imply

d0
((

Zn
t

)
t∈[0,1], (Wt )t∈[0,1]

) → 0,

almost surely on an appropriate probability space. Since the uniform topology is finer
than the Skorokhod topology ([1, Section 18]), we conclude assertion (d). Thus it re-
mains to prove (a) ⇒ (c0). Firstly we consider finite-dimensional distributions. Due

to [8, Lemma 3.2], the sequence (bn)n∈N with Sn/bn
d→ N (0, 1) fulfills Vn/bn → 1

in probability and bn = √
nL(n) for some slowly varying at infinity function L.

The continuous mapping theorem implies bn/Vn → 1 in probability. Take arbitrary
N ∈ N, a1, . . . , aN ∈ R and t1, . . . , tN ∈ [0, 1]. Without loss of generality, we as-
sume t1 < · · · < tN and denote t0 := 0 and tN+1 := 1. Then, by the independence
of the random variables S	nti
 − S	nti−1
, i = 1, . . . , N + 1, for every fixed n ∈ N,
Lévy’s continuity theorem and the normality of the random vector (Y1, . . . , YN+1),
we obtain(

S	nt1
 − S	nt0
√
(	nt1
) , . . . ,

S	ntN+1
 − S	ntN 
√
(	ntN+1
 − 	ntN
)

)
d→ (Y1, . . . , YN+1),
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as n tends to infinity. As the sequence (bn)n∈N is regularly varying with exponent
1/2, it is easily seen that

b	nti
−	nti−1

bn

→ √
ti − ti−1.

Via the continuous mapping theorem, we conclude

∑
i

ai

S	nti

bn

=
N+1∑
i=1

(
∑

j≤i aj )(b	nti
−	nti−1
)
bn

(
S	nti
 − S	nti−1

b	nti
−	nti−1


)

d→
N+1∑
i=1

(∑
j≤i

aj

)√
ti − ti−1Yi

d=
N+1∑
i=1

aiWti .

Slutsky’s theorem implies

N+1∑
i=1

aiZ
n
ti

=
(

bn

Vn

)(∑
i

ai

S	nti

bn

)
d→

N+1∑
i=1

aiWti ,

what means the convergence of finite-dimensional distributions.
The tightness follows again by the criterion [1, Theorem 15.6]. By the identical

distribution, for all m ≤ n, we have

E

[(∑
i≤m X2

i∑
i≤n X2

i

)2]
= E

[
mX4

1

(
∑

i≤n X2
i )

2

]
+ E

[
m(m − 1)X2

1X
2
2

(
∑

i≤n X2
i )

2

]
. (6)

Thanks to the value 1 on the left hand side in (6) for m = n, we conclude

0 ≤ E

[
X2

1X
2
2

(
∑

i≤n X2
i )

2

]
≤ 1

n(n − 1)
.

In contrast to (3), for possibly nonsymmetric random variables, the Cauchy–Schwarz
inequality and [8, (3.10)] yields a constant cX < ∞ such that for every r ∈ {2, 3, 4},

max
i,j,k,l≤n

|{i,j,k,l}|=r

E

[ |XiXjXkXl |
(
∑

i≤n X2
i )

2

]
≤ cXn−r . (7)

Applying the estimates in (7) on the terms in (2) gives that

max
i,j∈{1,2}E

[
I

t,u
i I

u,s
j

] ≤ cX

(	nt
 − 	ns

n

)2

. (8)

Hence, we obtain

E
[(

Zn
t −Zn

u

)2(
Zn

u −Zn
s

)2] = E
[(

I
t,u
1 + I

t,u
2

)(
I

u,s
1 + I

u,s
2

)] ≤ 4cX

(	nt
 − 	ns

n

)2

,

and the proof concludes as in Theorem 1.

Remark 10. (i) By the same reasoning, we obtain Theorem 5 for the sequence of
i.i.d. variables X,X1, X2, . . . such that Theorem 8 (a) is fulfilled.

(ii) In [2], a similar counterpart of Theorem 8 for α-stable Lévy processes is estab-
lished. An interesting question would be on a uniqueness result similar to Theorem 5.
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