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Abstract In this paper, the 2-D random closed sets (RACS) are studied by means of the Feret
diameter, also known as the caliper diameter. More specifically, it is shown that a 2-D symmet-
ric convex RACS can be approximated as precisely as we want by some random zonotopes
(polytopes formed by the Minkowski sum of line segments) in terms of the Hausdorff distance.
Such an approximation is fully defined from the Feret diameter of the 2-D convex RACS.
Particularly, the moments of the random vector representing the face lengths of the zonotope
approximation are related to the moments of the Feret diameter random process of the RACS.
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1 Introduction

1.1 Context and objectives

The geometrical characterization of granular media (grains, pores, fibers, etc.) is an
important issue in materials and process sciences. Indeed, several granular media can
be modeled as random sets where the heterogeneity of the particles is studied with
a probabilistic approach [12, 24]. In this context, the random closed sets (RACSs)
have been particularly studied [29, 21, 8, 2] to get geometrical characteristics of such
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granular media. A RACS denotes a random variable defined on a probability space
(Ω,A, P ) valued in (F,F), the family of closed subsets of Rd provided with the σ -
algebra F := σ {{F ∈ F |F ∩ X �= ∅} X ∈ K}, where K denotes the class of compact
subsets on R

d . In a probabilistic point of view, the distribution of a convex RACS is
uniquely determined from the Choquet capacity functional [23, 16]. However, such
a description is not suitable for explicitly determining the geometrical shape of the
RACS. An alternative way is to describe a RACS by the probability distribution of
real-valued geometrical characteristics (area, perimeter, diameters, etc.).

1.2 Original contribution

The aim of this paper is to show how such characteristics can be used to describe the
geometrical shape of a convex random closed set in R

2. It has already been shown
[25] that the moments of the Feret diameter of a convex random closed set in R

2 can
be obtained by the area measures on morphological transforms of it. A Feret diameter
(also known as caliper diameter) is a measure of a set size along a specified direction.
It can be defined as the distance between the two parallel planes restricting the set
perpendicular to that direction.

A set X ∈ R
2 is said to be central symmetric or, more simply, symmetric if it

is equal to the set X̆ := −X. Note that the Feret diameter is not sensitive to such a
central symmetrization [22]. Indeed, for a nonempty compact convex set X ⊂ R

2,
its symmetrized set 1

2 (X ⊕ X̆) (see [21, 17]) has the same Feret diameter as X. Con-
sequently, the Feret diameter of a convex set X is not enough to fully reconstruct X

(but only its symmetrized set). However, the Feret diameter is still useful to describe
the shape of convex sets for two reasons. Firstly, a convex set X and its symmetrized
set 1

2 (X ⊕ X̆) share a lot of common geometrical descriptors (perimeter, eccentricity,
etc.). Secondly, there are many applications in which symmetric convex particles are
considered. In this way, the reported work is focused on the symmetric convex sets
(i.e., X = 1

2 (X ⊕ X̆)). By abusing the notation, the conditions “nonempty and com-
pact” will be often omitted in this paper. In other words, without explicit mentioning
of the contrary, a convex set will refer to a nonempty compact convex set.

In this paper, we show that the Feret diameter of a random symmetric convex set
can be used to define some approximations of it as random zonotopes. The polyg-
onal approximation of a deterministic convex set has already been studied several
times [18, 14, 4, 7]. However, in most cases, the approximation is made by using the
support function, which is not available in most of the geometric stochastic models.
Random polygons have already been studied several times [10, 3, 20]. However, they
are defined in different ways and for other objectives, and they are not characterized
from their Feret diameters. In our point of view, a zonotope (which is a Minkowski
sum of line segments) is described by its faces (direction and length) and can be
characterized by its Feret diameter. We will show that the Feret diameter of a sym-
metric convex set evaluated on a finite number of directions N > 1 can be used to
define some approximations of it as zonotope. Such zonotope approximations will
be generalized to the random symmetric convex sets. Therefore, a random symmetric
convex set will be approximated by a random zonotope, and such approximations will
be characterized from the Feret diameter of the random symmetric convex set. The
considered random zonotope will be uniquely determined by the lengths of its faces,
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and their directions will be assumed to be known. The approximations considered are
consistent as N → ∞ with respect to the Hausdorff distance.

This work is a preliminary study in order to describe the geometrical character-
istics of a population of convex particles in the context of image analysis. Indeed,
such images of population of convex particles can be modeled by stochastic geomet-
ric models. In such a model, the projection of a particle represented by a random
convex set. Consequently, this work can be used to get information on such convex
particles. In addition, when the particles are supposed to be symmetric, they have a
symmetric 2-D projection that can be fully characterized by the Feret diameter. Such
a symmetric hypothesis is suitable in several industrial applications in chemical en-
gineering (gas absorption, distillation, liquid–liquid extraction, petroleum processes,
crystallization, etc.).

An area of application is the gas–liquid reactions. Indeed in a such process, the
gas bubbles can be modeled as an ellipsoid the 2-D projections of which are ellipses
(see [32, 30, 5]). The main area of application is crystals manufacturing. Indeed, many
crystals are 3-D zonohedrons, and their 2-D projections are zonotopes. For example,
the crystals of oxalate ammonium [26, 1], the crystals of calcium oxalate dihydrate
[31], or the (L)-glutamic acid [6]. In such applications, the considered approximations
coincide with the real data.

1.3 Outline of the paper

The paper is organized as follows. The first part is devoted to the case of a determin-
istic symmetric convex set X. Some properties of the Feret diameter are first recalled,
and then for any integer N > 1, an approximation X

(N)
0 of X as a zonotope [11] is

described. It is shown that this approximation is consistent as N → ∞ with respect
to the Hausdorff distance [27]. A more accurate zonotope approximation X̃

(N)
0 of X

that is invariant up to a rotation is also defined with the consistency also satisfied.
This approximation is particularly interesting to describe the geometrical shape of X.

The second part is devoted to a characterization of the random zonotopes. First,
we explore some properties of the random process associated with the Feret diameter.
Then we study the random zonotopes, define some their classes, and discuss their
descriptions by their faces. Finally, we study the characterization of some random
zonotopes from their Feret diameters random process.

In the last part, we study a random symmetric convex set X. We show that it can
still be described as precisely as we want by a random zonotope X

(N)
0 and up to a

rotation by a random zonotope X
(N)∞ with respect to the Hausdorff distance. We give

the properties of these approximates and show that they can be characterized from the
Feret diameter random process of X. In particular, the mean and autocovariance of the
Feret diameter random process of X can be used to get the mean and the variances of
the random vectors composed by the face lengths of their zonotope approximations.

2 Description of a symmetric convex set as a zonotope from its Feret diameter

The aim of this section is to discuss how a convex set X can be described as a zono-
tope. We will show that X can always be approximated as precisely as we want by
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zonotopes and how such zonotopes can be characterized from the Feret diameter of X.
First, we need to recall the definition of the Feret diameter and some its properties.

2.1 Feret diameter and the support function

Definition 1 (Support function). Let X ⊂ R
2 be a convex set. The support function

of X is defined as

fX :
∣∣∣∣ R

2 −→ R

x �−→ sups∈X〈x, s〉 = maxs∈X〈x, s〉,
where 〈·, ·〉 denotes the Euclidean dot product.

The support function allows us to fully characterize a convex set. Indeed, any
positive homogeneous convex real-valued function on R

2 is the support function of a
convex set [27]. In the following, we give some important properties of the support
function. The proofs are omitted since they can be found in the literature [13, 27].

Proposition 1 (Properties of the support function). Let X ⊂ R
2 be a convex set. Its

support function satisfies the following properties:

1. Positive homogeneity: ∀r ≥ 0, fX(rx) = rfX(x).

2. Subadditivity: fX(x + y) ≤ fX(x) + fX(y).

3. fX⊕Y = fX + fY , where ⊕ denotes the Minkowski addition.

4. If s is a vectorial similarity and b ∈ R
2, then fs(X)+b(x) = fX(s(x)) + 〈x, b〉.

5. Reconstruction:
X =

⋂
x∈R2

{
y ∈ R

2
∣∣〈y, x〉 ≤ fX(x)

}
. (1)

6. If, in addition, 0 ∈ X, then fX ≥ 0.

7. dH (X, Y ) = ‖fX−fY ‖∞, where dH denotes the Hausdorff distance, and ‖·‖∞
is the uniform norm on the unit sphere.

Items 1 and 2 relate the convexity of the support function, and expression (1)
allows the reconstruction of a convex set from its support function. Note that the
positive homogeneity of the support function involves that it can be completely de-
termined on the Euclidean unit sphere. We adopt the following representation for the
support function of X:

hX :
∣∣∣∣ R −→ R

θ �−→ hX(θ) = fX(t (− sin(θ), cos(θ))),

which is a continuous and 2π-periodic function.
Note that the Feret diameter of a convex set X, denoted HX, can be expressed by

the support function as

∀θ ∈ R, HX(θ) = hX(θ) + h
X̆
(θ), (2)
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where X̆ is the usual notation for the symmetric set −X. It is easy to see that the
Feret diameter of X coincides with the support function of X ⊕ X̆, where ⊕ denotes
the Minkowski sum. Therefore, the functional HX is sufficient to fully characterize
the symmetrized body 1

2 (X ⊕ X̆). Note that if X is already symmetric, then HX fully
characterizes X. We recall some important properties of the Feret diameter.

Proposition 2 (Properties of the Feret diameter). Let X be a convex set. Then its
Feret diameter HX satisfies the following properties:

1. For tow convex sets X and Y , HX⊕Y = HX + HY .

2. ∀r ∈ R, HrX = |r|HX.

3. If Rη is a rotation and b ∈ R
2, then ∀θ ∈ R, HRη(X)+b(θ) = HX(θ + η).

4. π- periodicity: ∀θ ∈ R, HX(θ + π) = HX(θ).

5. For two symmetric bodies X and Y , HX ≤ HY ⇔ X ⊆ Y

6. For any θ, β ∈ [0, 2π],

HX(θ + β) ≤ HX(θ) + 2

∣∣∣∣ sin

(
β

2

)∣∣∣∣HX

(
θ + β + π

2

)
. (3)

Proof.

1, 2, 3. According to Eq. (2), the first three items come directly from Proposition 1.

4. The π-periodicity follows from h
X̆
(θ) = hX(θ + π), θ ∈ R.

5. Because of the symmetry of X and Y , if HX ≤ HY , then hX ≤ hY . Therefore,
for any x ∈ R

2, fX(x) ≤ fY (x), so {y ∈ R
2|〈y, x〉 ≤ fX(x)} ⊆ {y ∈

R
2|〈y, x〉 ≤ fY (x)}, and thus X ⊂ Y by Proposition 1.5.

Suppose that X ⊂ Y . Then ∀x ∈ R
2, {〈s, x〉|s ∈ X} ⊂ {〈s, x〉|s ∈ Y } ⇒

fX(x) ≤ fY (x) ⇒ hX ≤ hY ⇒ HX ≤ HY .

6. For any (θ, β) ∈ R
2, let α = β+π , x =t (− sin(θ), cos(θ)), z =t (− sin(θ +

α), cos(θ + α)) and y = z + x, so that

fX(y − x) ≤ fX(−x) + fX(y),

hX(θ + α) ≤ hX(θ + π) + fX(y),

and

‖y‖ =
√(

sin(θ) + sin(θ + α)
)2 + (

cos(θ) + cos(θ + α)
)2

=
√

(2 + 2
(
sin(θ) sin(θ + α) + cos(θ) cos(θ + α)

)
= √

2
√

1 + cos(α)
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= √
2

√
2 cos2

(
α

2

)

= 2

∣∣∣∣cos

(
α

2

)∣∣∣∣
= 2

∣∣∣∣sin

(
β

2

)∣∣∣∣.
Using the formulas

sin(θ) + sin(θ + α) = 2 sin

(
θ + α

2

)
cos

(
α

2

)
,

cos(θ) + cos(θ + α) = 2 cos

(
θ + α

2

)
cos

(
α

2

)

and taking η ∈ R such that y =‖ y ‖t (− sin(η), cos(η)), we have

sin(η) = 2 sin(θ + α
2 ) cos(α

2 )

‖ y ‖ ,

cos(η) = 2 cos(θ + α
2 ) cos(α

2 )

‖ y ‖ .

Let s be the sign of cos(α
2 ). Then sin(η) = s sin(θ + α

2 ) and cos(η) =
s cos(θ + α

2 ).

Finally, η ∈ {θ + β+π
2 , θ + β+π

2 + π}, and it can be expressed as

hX(θ + β − π) ≤ hX(θ + π) + 2

∣∣∣∣sin

(
β

2

)∣∣∣∣hX(η).

This result is true for any convex set X, in particular, for Y = 1
2 (X ⊕ X̆).

However, hy = HX, and then by the π-periodicity of the Feret diameter we
have

∀θ β ∈ [0, 2π], HX(θ + β) ≤ HX(θ) + 2

∣∣∣∣sin

(
β

2

)∣∣∣∣HX

(
θ + β + π

2

)
.

The Feret diameter can also be related to the mixed area [27] by using a line
segment as a structural element. Indeed, using the Steiner formula [27] with two
convex sets X and Y , we have

A(X ⊕ Y) = A(X) + 2W(X, Y ) + A(Y),

where W(X, Y ) denotes the mixed area between X and Y . The mixed area functional
W(·, ·) is a symmetric mapping, which is also homogeneous in its two variables (see
[19, 27] for details). It is often used to describe some morphological characteristics of
a convex set X by using different structuring elements. For instance, if X is a bounded
convex set and B is the unit disk, then W(X,B) = 1

2U(X), where U(X) denotes the
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perimeter of X. Let X be a bounded convex set, and Sθ be a unit line segment directed
by θ . Then

W(X, Sθ ) = 1

2
HX(θ). (4)

The proof is omitted since it consists in a simple drawing and can be found in the
literature [25, 19].

Remark 1. This relation is very important because it involves an interpretation of
the mixed area of a convex set with the Minkowski addition of line segments from its
Feret diameter. Indeed, for any θ1, θ2 ∈ [0, π] and α1, α2 ∈ R+,

A(X ⊕ α1Sθ1 ⊕ α2Sθ2) = A(X ⊕ α1Sθ1) + 2W(X ⊕ α1Sθ1, α2Sθ2)

= A(X) + α1HX(θ1) + α2HX⊕α1Sθ1
(θ2)

= A(X) + α1HX(θ1) + α2HX(θ2) + α2Hα1Sθ1
(θ2).

However, α2Hα1Sθ1
(θ2) = W(α1Sθ1, Sθ2) = A(α1Sθ1 ⊕ α2Sθ2). Then,

W(X, α1Sθ1 ⊕ α2Sθ2) = 1

2

(
α1HX(θ1) + α2HX(θ2)

)
.

This result can be easily generalized by induction to any Minkowski sum of line
segments: ∀n ≥ 1,∀i = 1, . . . , n, αi ∈ R+, θi ∈ R, we have

W

(
X,

n⊕
i=1

αiSθi

)
= 1

2

n∑
i=1

αiHX(θi). (5)

Relation (5) has an important kind of linearity. Indeed, it implies formulae for the
computation of the mixed area between a convex set and a symmetric body from
their Feret diameter (see Remark 3).

2.2 Approximation of a symmetric convex set by a 0-regular zonotope
Now we give some properties of the Feret diameter of a convex set and its connection
with the mixed area. Here the zonotope will be defined and particularly the class
of the 0-regular zonotopes, some properties of the zonotopes will be discussed. In
particular, we will show how a symmetric convex set can be approximated by a 0-
regular zonotope as precisely as we want.

Let C denote the class of all symmetric convex sets of R2, where the symmetry
is given in the sense of Minkowski: X = 1

2 (X ⊕ X̆). Let S0 be the unit line segment
[− 1

2 , 1
2 ], and St its rotation by the angle t ∈ [0, π[. Consider now the convex set X

such that

X =
n⊕

i=1

αiSθi
, n ∈ N

∗, ∀i = 1, . . . n, αi ∈ R+, θi ∈ [0, π[. (6)

Note that X is a compact convex symmetric polygon with at most 2n faces, where for
all i = 1, . . . , n, αi is the length of the two faces of X oriented by θi . It is easy to see
that every compact convex symmetric polygon has an even number of faces and can
be represented as (6) up to a translation. Furthermore, note that X has a nonempty
interior if and only if n > 1.
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Definition 2 (Zonotopes). Any compact convex symmetric polygon such as (6) is
called a zonotope. For N ∈ N

∗, C(N) denotes the set of all zonotopes with at most 2N

faces:

C(N) =
{ N⊕

i=1

αiSθi

∣∣α ∈ R
N+ , θ ∈ [0, π[N

}
,

where α =t (α1, . . . αN) and θ =t (θ1, . . . θN).

Several geometric characteristics and properties of zonotopes can be easily ex-
pressed from representation (6).

Proposition 3 (Geometrical characterization of zonotopes). Let N ∈ N
∗, and X =⊕N

i=1 αiSθi
be an element of C(N). Let HX be its Feret diameter function, U(X) its

perimeter, and A(X) its area. Then

∀η ∈ R, HX(η) =
N∑

i=1

αi

∣∣sin(η − θi)
∣∣, (7)

U(X) = 2
N∑

i=1

αi, (8)

A(X) = 1

2

N∑
i=1

N∑
j=1

αiαj

∣∣sin(θi − θj )
∣∣. (9)

Proof.

(6) For any (β, η) ∈ R
2, the support function of the line segment Sβ in the direction

η is

hSβ (η) = max
t∈[− 1

2 , 1
2 ]

{
t
(− cos(β) sin(η) + sin(β) cos(η)

)}
= max

t∈[− 1
2 , 1

2 ]
{
t sin(β − η)

}

= 1

2

∣∣sin(β − η)
∣∣

⇒ HSβ (η) = ∣∣sin(β − η)
∣∣.

Then relation (7) follows from Propositions 2.1 and 2.2.

(7) If X is a polygon of 2N faces of length αi, i = 1, . . . , N , the perimeter can be
obtained by adding up the face lengths.

(8) For the area, the result (9) is proved by induction on N : for N = 1, X = Sθ1

and A(X) = 0, so that (9) is satisfied. Suppose that (9) is true for n ≤ N and
let us show that it is true for N + 1. Since X = (

⊕N
i=1 αiSθi

) ⊕ αN+1SθN+1 , by
the Steiner formula we have

A(X) = A

( N⊕
i=1

αiSθi

)
+ 2W

( N⊕
i=1

αiSθi
, αN+1SθN+1

)
.
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Then, by (4),

2W

( N⊕
i=1

αiSθi
, αN+1SθN+1

)
= αN+1H⊕N

i=1 αiSθi

(θN+1),

and finally, by the heredity assumption and (7),

A(X) = 1

2

N∑
i=1

N∑
j=1

αiαj

∣∣sin(θi − θj )
∣∣ + αN+1H⊕N

i=1 αiSθi

(θN+1)

= 1

2

N∑
i=1

N∑
j=1

αiαj

∣∣sin(θi − θj )
∣∣ + αN+1

N∑
i=1

αi

∣∣sin(θN+1 − θi)
∣∣

= 1

2

N+1∑
i=1

N+1∑
j=1

αiαj

∣∣sin(θi − θj )
∣∣,

which proves (9).

In the following, we use a regular subdivision θ . We will show that if the subdi-
vision step is sufficiently small, then any symmetric convex set can be approximated
by a zonotope as precisely as we want.

Definition 3 (0-regular zonotopes). For N ∈ N
∗, let C(N)

0 denote the class of all
zonotopes with at most 2N faces oriented by the regular subdivision of [0, π[ by N

elements:

C(N)
0 =

{ N⊕
i=1

αiSθi

∣∣α ∈ R
N+

}
with θi = (i − 1)π

N
, i = 1, . . . , N.

Such zonotopes are called 0-regular zonotopes.

Note that C(N)
0 ⊂ C(N) and C(N1)

0 ⊂ C(N2)
0 if and only if N1 is a splitter of N2.

In addition, C(N)
0 can be identified to R

N+ by the mapping α → X = (
⊕N

i=1 αiSθi
),

which is an isomorphism between the semigroups (RN+ ,+) and (C(N)
0 ,⊕). That is,

this mapping is a bijection, and

∀(
α, α′) ∈ R

N+ × R
N+ ,

( N⊕
i=1

(
αi + α′

i

)
Sθi

)
=

( N⊕
i=1

αiSθi

)
⊕

( N⊕
i=1

α′
iSθi

)
.

Theorem 1 (Approximation in C(N)
0 ). Let X ∈ C.

1. For all N > 1, let F (N) denote the squared matrix (| sin(θi − θj )|)1≤i,j≤N and

H
(N)
X =t (HX(θ1), . . . , HX(θN)). Then

X
(N)
0 =

N⊕
i=1

(
F (N)−1

H
(N)
X

)
i
Sθi

(10)
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belongs to C(N)
0 and satisfies

∀N > 1, dH

(
X,X

(N)
0

) ≤ (6 + 2
√

2) sin

(
π

2N

)
diam(X), (11)

where diam(X) = sups∈R(HX(s)) denotes the maximal diameter of X and dH

the Hausdorff distance.

Consequently, the sequence of 0-regular zonotopes (X
(N)
0 )N>1 approximates

X in the following sense:

dH

(
X,X

(N)
0

) −→ 0 as N −→ ∞. (12)

We call X
(N)
0 the C(N)

0 -approximation of X.

2. In addition, for any N > 1, the set X(N)
0 is the unique element of C(N)

0 satisfying

H
X

(N)
0

(θi) = HX(θi), i = 1, . . . , N. (13)

3. Furthermore, X
(N)
0 contains X and can be expressed as

X
(N)
0 =

N⋂
i=1

{
x ∈ R

2,
∣∣〈x,t

(− sin(θi), cos(θi)
)〉∣∣ ≤ 1

2
HX(θi)

}
. (14)

Proof.

2. For integer N > 1, it is easy to see that the matrix F (N) is invertible since F (N)

is a circulant matrix [15] and its eigenvalues are exactly the coefficients of the
discrete Fourier transform [28] of the signal | sin(·)| (these coefficients are all

strictly positive). Let α = F (N)−1
H

(N)
X be such that

X
(N)
0 =

N⊕
i=1

αiSθi
.

Let us show that X
(N)
0 is the unique element of C(N)

0 satisfying H
X

(N)
0

(θi) =
HX(θi), i = 1, . . . , N . Suppose that there exists X′ ∈ C(N)

0 satisfying
HX′(θi) = HX(θi), i = 1, . . . , N . Then X′ can be written as X′ =⊕N

i=1 α′
iSθi

, and then H
(N)
X = F (N)α′. The invertibility of F (N) implies

α = α′, which means that X
(N)
0 = X′.

1. Let us find an upper bound for the Hausdorff distance.

For all η ∈ R, there exists i ∈ {1, . . . , N} such that η = θi + δ with |δ| ≤ π
2N

.

Using inequality (3) with θ = θi and β = δ for X
(N)
0 , we have

H
X

(N)
0

(η) ≤ H
X

(N)
0

(θi) + 2

∣∣∣∣sin

(
δ

2

)∣∣∣∣HX
(N)
0

(
θi + δ + π

2

)
.



Description of a random symmetric convex set by a random zonotope 335

Using inequality (3) with θ = η and β = −δ for X, we have

HX(θi) ≤ HX(η) + 2

∣∣∣∣sin

(−δ

2

)∣∣∣∣HX

(
θi + δ + π

2

)

⇒ − HX(η) ≤ −HX(θi) + 2

∣∣∣∣sin

(
δ

2

)∣∣∣∣HX

(
θi + δ + π

2

)
.

Considering the equality H
X

(N)
0

(θi) = HX(θi), from the two previous inequal-

ities it follows that

H
X

(N)
0

(η)− HX(η)≤ 2

∣∣∣∣sin

(
δ

2

)∣∣∣∣
(

HX

(
θi + δ + π

2

)
+ H

X
(N)
0

(
θi + δ + π

2

))
.

In the same manner, using (3) with θ = θi and β = δ for X and with θ = η

and β = −δ for X
(N)
0 , we have

HX(η)− H
X

(N)
0

(η)≤ 2

∣∣∣∣sin

(
δ

2

)∣∣∣∣
(

HX

(
θi + δ + π

2

)
+ H

X
(N)
0

(
θi + δ + π

2

))
.

Therefore, by denoting diam(X) = supθ {HX(θ)} and diam(X
(N)
0 ) =

supθ {HX
(N)
0

(θ)} it follows that

∣∣HX(η) − H
X

(N)
0

(η)
∣∣ ≤ 2 sin

(
π

2N

)(
diam(X) + diam

(
X

(N)
0

))
. (15)

Furthermore,

H
X

(N)
0

(η) =
N∑

j=1

αj

∣∣sin(θi + δ − θj )
∣∣

=
N∑

j=1

αj

∣∣sin(θi − θj ) cos(δ) − cos(θi − θj ) sin(δ)
∣∣

≤ ∣∣cos(δ)
∣∣ N∑

j=1

αj

∣∣sin(θi − θj )
∣∣+ ∣∣sin(δ)

∣∣ N∑
j=1

∣∣∣∣sin

(
θi − θj + π

2

)∣∣∣∣
≤ ∣∣cos(δ)

∣∣H
X

(N)
0

(θi) + ∣∣sin(δ)
∣∣H

X
(N)
0

(
π

2

)

≤ ∣∣cos(δ)
∣∣HX(θi) + ∣∣sin(δ)

∣∣ diam
(
X

(N)
0

)
≤ ∣∣cos(δ)

∣∣ diam(X) + ∣∣sin(δ)
∣∣ diam

(
X

(N)
0

)
≤ diam(X) + sin

(
π

2N

)
diam

(
X

(N)
0

)
⇒ diam

(
X

(N)
0

)(
1 − sin

(
π

2N

))
≤ diam(X),

N ≥ 2 ⇒ diam
(
X

(N)
0

) ≤
√

2√
2 − 1

diam(X).

Then from (15) we have
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∣∣HX(η) − H
X

(N)
0

(η)
∣∣ ≤ 2 sin

(
π

2N

)(
1 +

√
2√

2 − 1

)
diam(X)

⇒ sup
η

∣∣(HX(η) − H
X

(N)
0

(η)
)∣∣ = dH

(
X,X

(N)
0

)
≤ (6 + 2

√
2) sin

(
π

2N

)
diam(X).

Consequently, dH (X,X
(N)
0 ) −→ 0 as N −→ ∞.

3. Note that YN = ⋂N
i=1{x ∈ R

2, |〈x,t (− sin(θi), cos(θi))〉| ≤ 1
2HX(θi)}. Then

YN ∈ C(N)
0 . Indeed, each set of the intersection is the space between two lines

oriented by one of the θi ; thus, YN is a polygon with faces directed by the θi , and
therefore it belongs to C(N)

0 . Because of the symmetry of X, it is easy to see that
X = ⋂

s∈[0,π]{x ∈ R
2, |〈x,t (− sin(s), cos(s))〉| ≤ 1

2HX(s)}; therefore, X ⊂
YN , and consequently HX ≤ HYN

. Furthermore, because of the expression of
YN for any i = 1, . . . , N , HX(θi) ≥ HYN

(θi) with the equality on θi , and

according to the foregoing, YN = X
(N)
0 .

This theorem shows that a symmetric body can be always approximated by a 0-
regular zonotope as close as we want. Note that the choice of the sequence X

(N)
0

is not the best one. Indeed, by taking diam(X)

diam(X
(N)
0 )

X
(N)
0 there is a finer approximation

with respect to the Hausdorff distance. However, the sequence X
(N)
0 presents some

important advantages: it always contains X, the approximation of a Minkowski sum
is the Minkowski sum of the approximations, and its face length vector is expressed
only from a linear combination of the Feret diameter of X. Furthermore, if there
exists M > 1 such that X ∈ C(M)

0 , then X
(M)
0 = X, and X is an adhesion value of the

sequence X
(N)
0 .

Remark 2 (Equivalence between perimeter and maximal diameter). Notice that
diam(X) can be replaced by 1

2U(X) in relation (11). In fact, for any convex set X, we
have the relation

2 diam(X) ≤ U(X) ≤ 4 diam(X). (16)

Indeed, according to the definition of diam(X), there exists a line segment S ⊆ X

that has the length greater than diam(X), and then U(X) ≥ U(S) ≥ 2 diam(X).
The second inequality comes by considering that there is a square of side diam(X)

containing X.

Remark 3 (Expression of the mixed area from the Feret diameter). An interpretation
of the mixed area between a convex set and a symmetric convex set can be given from
Theorem 3. Indeed, let N > 1, Y be a convex set (not necessarily symmetric), X be
a symmetric convex set, and X

(N)
0 = ⊕N

i=1 αiSθi
be its C(M)

0 -approximation. Then,
according to the continuity of the area and the Minkowski addition, there is

W
(
Y,X

(N)
0

) → W(Y,X) as N → ∞.



Description of a random symmetric convex set by a random zonotope 337

Fig. 1. The C(N)
0 -approximations of an ellipse X and its rotation X′ with respect to the angle π

4

Furthermore, according to Theorem 3, W(Y,X
(N)
0 ) can be expressed as

W
(
Y,X

(N)
0

) =
N∑

i=1

HY (θi)

N∑
j=1

F
(N)
ij

−1
HX(θj ).

Then, the mixed area W(Y,X) can be computed as

W(Y,X) = lim
N→∞

N∑
i=1

N∑
j=1

F
(N)
ij

−1
HY (θi)HX(θj ).

Notice that a continuous version of this expression can be written in terms of convo-
lution. However, this is not our objective.

Of course, the C(N)
0 -approximation is sensitive to rotations (see Fig. 1). Obviously,

it can be problematic to describe the geometry of sets. Let us consider the following
example of an ellipse.

Example 1. Let X be an ellipse with semiaxis a = 1 and b = 3, and suppose
that the major semiaxis b is horizontally oriented. Firstly, consider the case N = 2,
and let us denote X′ := Rπ

4
(X), Fig. 1 shows that the C(N)

0 -approximation of X is

better than that of X′ (in terms of the Hausdorff distance). Indeed, dH (X,X
(2)
0 ) �

dH (X′, X′(2)
0 ). Furthermore, the C(2)

0 -approximation of the rotation is not the rota-

tion of the C(2)
0 -approximation. Therefore, it can be problematic to use the C(2)

0 -
approximation to describe the shape of X. Note that for the ellipse X of Fig. 1,
the orientations 0 and π

4 are respectively the better and the worst cases for the C(2)
0 -

approximation.
Let us consider now the more general case of the approximation of the rotations

of X for different values of N . For each N = 1, . . . , 20, the C(N)
0 -approximations

of all of the rotations Rη(X) of X have been computed. Among these approxima-
tions, the better ηb and the worst ηw angles (in terms of the Hausdorff distance) have
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Fig. 2. The Hausdorff distance between an ellipse of semiaxis (1, 3) and its C(N)
0 -

approximation for several values of N . The case of the better direction in red and worst in
blue. The gray region represents the possible values for this distance

been retain. The corresponding Hausdorff distances are represented in Fig. 2. Conse-
quently, whatever the orientation of the ellipse, the Hausdorff distance is inside the
gray region. We can be notice that, for small values of N , the difference between the
worst and the better case is more important.

For the reasons mentioned, it can be interesting to have an isometric invari-
ant approximation. Fortunately, for a symmetric convex set X, the better C(N)

0 -
approximation (in terms of the Hausdorff’s distance) of the family of rotations of
X can be used to define such an isometric invariant approximation.

2.3 Approximation of a symmetric convex set by a regular zonotope

We have shown previously how a symmetric convex set X can be approximated in
the class of 0-regular zonotopes. Such an approximation is sensitive to the rotations.
However, in order to study convex sets, there is sometimes a need to have isometric
invariant tools. Therefore, we will define here an approximation that is invariant up to
a rotation. To meet this goal, there is a need to perform the approximation on a class
larger than C(N)

0 , namely the class of regular zonotopes.

Definition 4 (t-regular and regular zonotopes). Let t ∈ R, N > 1 be an integer, and
let C(N)

t denote the class of the rotated elements of C(N)
0 with respect to the angle t :

C(N)
t = {

Rt(X)
∣∣X ∈ C(N)

0

}
.

Any element of C(N)
t is called a t-regular zonotope with 2N faces.
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Furthermore, C(N)∞ = ⋃
t∈R C(N)

t denotes the set of regular zonotopes with 2N

faces.

All the properties of C(N)
0 cited before are also true for C(N)

t , t ∈ R. Therefore,

we will define an approximation in C(N)∞ .

Theorem 2 (Approximation in C(N)∞ ). Let X ∈ C, and let us denote by XN
0 (t) the

C(N)
0 -approximation of R−t (X).

1. There exists τ ∈ [0, π[ satisfying

dH

(
Rτ

(
XN

0 (τ )
)
, X

) = dH

(
XN

0 (τ ), R−τ (X)
) = min

t∈R dH

(
XN

0 (t), R−t (X)
)
.

(17)
We call XN

0 (τ ) (also denoted X̃N
0 ) the C(N)

0 -rotational approximation of X.

2. The C(N)
0 -rotational approximation of X is invariant under rotations of X.

The set Rτ (X
N
0 (τ )) is called a CN∞-approximation of X in C(N)∞ and is denoted by

X
(N)∞ .

Proof.

1. First of all, because of the symmetry of the 0-regular zonotopes,

∀t ∈ R, C(N)
t = C(N)

t+π

⇒ min
t∈R dH

(
XN

0 (t), R−t (X)
) = min

t∈[0,π] dH

(
XN

0 (t), R−t (X)
)
.

For any t ∈ R, let us denote by α(t) the face length vector of XN
0 (t). Then, for

any h ∈ R, ∥∥α(t) − α(t + h)
∥∥

1
= ∥∥F (N)−1(

H
(N)
R−t (X) − H

(N)
R−t−h(X)

)∥∥
1

⇒ ∥∥α(t) − α(t + h)
∥∥

1
≤ ∥∥F (N)−1∥∥

1

∥∥H
(N)
R−t (X) − H

(N)
R−t−h(X)

∥∥
1
.

However, ∀η ∈ R, HR−t−h(X)(η) = HR−t (X)(η +h). Because of the continuity

of the Feret diameter, ‖H(N)
R−t (X) − H

(N)
R−t−h(X)‖1 → 0 as h → 0, and thus

‖α(t) − α(t + h)‖1 → 0 as → 0.

Therefore, from expression (7) about the Feret diameter of a zonotope, for all
η ∈ R,

∣∣HXN
0 (t+h)(η) − HXN

0 (t)(η)
∣∣ =

∣∣∣∣
( N∑

i=1

(
αi(t) − αi(t + h)

)∣∣sin(η − θi)
∣∣)∣∣∣∣

≤ N max
i=1,...,N

{(
αi(t) − αi(t + h)

)}
.

Therefore, |HXN
0 (t+h)(η) − HXN

0 (t)(η)| → 0 as h → 0, and, finally,

dH (XN
0 (t), XN

0 (t + h)) → 0 as h → 0. Consequently, the map t �→ XN
0 (t) is

continuous with respect to the Hausdorff distance.
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Note that for all x ∈ R, HRt (X
N
0 (t))(x) = HXN

0 (t)(x − t) and HX(x) =
HR−t (X)(x − t). Then

HRt (X
N
0 (t))(x) − HX(x) = HXN

0 (t)(x − t) − HR−t (X)(x − t)

⇒ dH

(
Rt

(
XN

0 (t)
)
, X

) = dH

(
XN

0 (t), R−t (X)
)

⇒ min
t∈R dH

(
Rt

(
XN

0 (t)
)
, X

) = min
t∈R dH

(
XN

0 (t), R−t (X)
)
.

Furthermore, for any x, h ∈ R,∣∣HRt(X
N
0 (t))(x) − HRt+h(XN

0 (t+h))(x)
∣∣

= ∣∣HXN
0 (t)(x − t)

− · · · − HXN
0 (t+h)(x − t) + HXN

0 (t+h)(x − t) − HXN
0 (t+h)(x − t − h)

∣∣
≤ ∣∣HXN

0 (t)(x − t) − HXN
0 (t+h)(x − t)

∣∣
+ · · · + ∣∣HXN

0 (t+h)(x − t) − HXN
0 (t+h)(x − t − h)

∣∣.
Then from the continuity of the Feret diameter and of the map t �→
XN(t) there follows the continuity of t �→ Rt(X

N
0 (t)). As a conse-

quence, the map t �→ dH (XN
0 (t), X) is also continuous, and the minimum

mint∈[0,π] dH (Rt (X
N
0 (t)),X) is achieved. Then there is a ∈ [0, π] such that

dH (Rτ (X
N
0 (τ )),X) = mint∈R dH (XN

0 (t), R−t (X)).

2. Let us prove the invariance by rotations. Let η ∈ [0, π] and Y = Rη(X). Then

YN
0 (t) is the C(N)

0 -approximation of R−(t−η)(X), and YN
0 (t) = XN

0 (t − η).
Furthermore,

min
t∈R dH

(
YN

0 (t), R−t (Y )
) = min

t∈R dH

(
XN

0 (t − η), R−(t−η)(X)
)

= min
t∈R dH

(
XN

0 (t), R−(t)(X)
)

= dH

(
XN

0 (τ ), R−τ (X)
)
.

Then XN
0 (τ ) is a C(N)

0 -rotational approximation of Y , and the C(N)∞ -
approximation associated is Rη(Rτ (X

N
0 (τ ))) (indeed, YN

0 (τ + η) =
XN

0 (τ )).

The theorem gives important information. The C(N)∞ -approximation of a symmet-
ric convex set X is the best regular zonotope with at most 2N faces containing X.
It is always a better approximation than the C(N)

0 -approximation. This approximation

can be used for not so large N . For example, for N = 2, the C(2)
0 -approximation

of an ellipse depends on the orientation of the ellipse, but its C(2)∞ -approximation is
the best way to put the ellipse inside a rectangle (see Fig. 3). An illustration of the
approximations of that ellipse for higher values of N is represented Fig. 4.

The accuracy of the C(N)
0 -approximation is presented in Fig. 2, and we remark that

the best orientation corresponds to the C(N)∞ -approximation. Then, for the considered
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Fig. 3. An ellipse and its approximations: X2 ∈ C(2)
0 in blue and Rτ (X̃2) ∈ C(2)∞ in red

Fig. 4. The C(N)
0 -approximations (left) and C(N)∞ -approximations (right) of an ellipse of semi-

axis (3, 1) for different values of N(= 3, 4, 10)

ellipse, the accuracy of the C(N)∞ -approximation in function of the number of faces N

is represented in Fig. 2. However, the accuracy of the C(N)∞ -approximation depends
on both shape and size of the symmetric convex set X.

Remark 4 (Accuracy of the C(N)∞ -approximation). The size dependence of the accu-
racy is easy to understand: the accuracy decreases proportionally to the size factor.
Indeed, for Y := kX, k ∈ R+, we have dH (Y

(N)∞ , Y ) = kdH (X
(N)∞ , X) (because

of the homogeneity of the Feret diameter). In order to study the impact of the shape
(independently of its size) on the approximation accuracy, we need to use a homo-
thetic invariant descriptor. In order to do this, we normalize the Feret diameter of
a symmetric convex set X by its perimeter. According to Cauchy’s formula [27],
the perimeter is equal to the Feret diameter total mass

∫ π

0 HX(θ)dθ . Then, accord-
ing to the homogeneity of the Feret diameter, an involved distance can be defined
as d̃H (X, Y ) := dH ( X

U(X)
, Y

U(Y )
) for all X, Y ∈ C. Such a distance can be used to

study the approximation accuracy. Notice that it is equivalent to work with sets of
unit perimeters and using the usual Hausdorff distance. Such a consideration will be
done in the following example.

Let us consider an ellipse X with unit perimeter and axis ratio k ∈ [1,+∞[,
the case k = 1 referring to the disk. The accuracy of the C(N)∞ -approximation as a
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Fig. 5. The Hausdorff distance between an ellipse of unit perimeter and its C(N)∞ -
approximations for several values of N in function of its axis ratio k

function of N and k is shown. More specifically, on the Fig. 5, we can see that the
behavior of the curves is very different for different values of N . Indeed, the worst
shape for N = 2 is the disk. However, as we can see that this is not the case for other
values of N . We can notice that when the ratio k increases, the importance of N for
the approximation decreases. This suggests that when an object X is elongated, we
can choose a small value of N .

We have studied two different approximations of a symmetric convex set X. The
first one is an approximation of X as a 0-regular zonotope, and the second as a regular
zonotope. These approximations have been characterized from the Feret diameter
of X. The next objective is to study these approximations when X becomes a random
symmetric body, and then how they can be characterized from the Feret diameter
of X. In order to do this, we need to study some properties of the random zonotopes,
which lead us to the following section.

3 The random zonotopes

The aim of this section is to investigate how a random zonotope can be described by a
random vector representing its faces and how such a random vector can be character-
ized from the Feret diameter of the random zonotope. Firstly, we will investigate the
properties of the random process corresponding to the Feret diameter of a random set.
Secondly, we will explore the description of a random zonotope by its faces. Finally,
we will give a characterization of some random zonotopes from their Feret diameter
random process.
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3.1 Feret diameter process and isotropic random set

Let X be a random convex set, that is, a random closed set that is almost surely a
convex set. In this subsection, we state some properties of the random process [9]
corresponding to the Feret diameter of X.

Definition 5 (Feret diameter random process). Let X be a random convex set of R2.
For P -almost all ω ∈ Ω, X(ω) is a convex set. Then, for any t ∈ R, the positive ran-
dom variable HX(t) : ω �→ HX(ω)(t) is almost surely defined. The random process
{HX(t), t ∈ R} is called the Feret diameter random process of X.

The trajectories of HX are the Feret diameter of the realizations of X. The prop-
erties in Proposition 2 are also true for these trajectories, in particular, the continuity
and π-periodicity. We can also notice that the Feret diameter random process charac-
terizes the symmetric convex sets.

Definition 6 (Isotropized set of a random symmetric body). Let X′ be a symmetric
random convex set, and let η be a random uniform variable on [0, π] independent
of X′. Then the set

X := Rη

(
X′)

is isotropic (a random compact is said to be isotropic if and only if its distribution is
isometric invariant [8]) and is called an isotropized set of X′.

Let X′ be a random symmetric body, and X be an isotropized set of it. Then X and
X′ have the same shape distribution and the same zonotope rotational approximations
(see Theorem 2).

In the following, we will show that the Feret diameter random process HX′ of
X′ can be expressed from that of X. We will use this property to show that a ran-
dom symmetric convex set can be described up to a rotation by an isotropic random
zonotope.

Let us recall that the Feret diameter random process HX′ of X′ is sufficient to
characterize X′. Then, for any θ ∈ R, the Feret diameter HX′ of X′ can be expressed
as

HX(θ) = HX′(θ − η).

Let B be a Borel subset of R. Because of the uniformity of η and its independence
from X′, it follows that

P
(
HX(θ) ∈ B

) = P
(
HX′(θ − η) ∈ B

)
= 1

2π

∫ 2π

0
P
(
HX′(θ − t) ∈ B

)
dt.

Furthermore, by using the π-periodicity of the Feret diameter the distribution of
HX(θ) can be expressed as

P
(
HX(θ) ∈ B

) = 1

π

∫ π

0
P
(
HX′(θ − t) ∈ B

)
dt. (18)

Consequently, the moments of the Feret diameter process of the set X′ and the
isotropized set X are related. Of course, we need to ensure their existence, but we
will treat this later.
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Proposition 4 (Moments of the Feret diameter process of the isotropized set). Let X′
be a random convex set, and X the isotropized set of X′. Suppose that the first- and
second-order moments of the Feret diameter random process HX′ of X′ exist.Then
those of X exist and can be expressed as follows:

∀θ ∈ [0, 2π], E
[
HX(θ)

] = 1

π

∫ π

0
E

[
HX′(θ)

]
dθ,

∀(s, t) ∈ [0, 2π]2, E
[
HX(s)HX(t)

] = 1

π

∫ π

0
E

[
HX′(θ)HX′(θ + s − t)

]
dθ.

Proof. Let X′ be a random convex set, and X = Rη(X
′) an isotropized set of it.

Suppose that the first- and second-order moments of HX′ exist. Recall that HX(θ) =
HX′(θ − η) for all θ ∈ R and that η is independent of X′, and thus the result follows
by integrating with respect to the uniform distribution of η.

Proposition 5 (Feret diameter process of an isotropic random convex set). Let X′ be
a random convex set.

1. If X′ is isotropic, then the random variables HX′(θ), θ ∈ [0, π], are identically
distributed (i.e., the random process HX′ is stationary).

2. Furthermore, if X′ is symmetric, then the converse is true.

Proof.

1. Let η be a uniform random variable on [0, π] independent of X′ and let note
X = Rη(X

′). If X′ is isotropic, then X and X′ have the same distribution, so
that HX and HX′ also have the same distribution. Consequently, according to
(18), for any θ ∈ [0, π] and any Borel set B,

P
(
HX′(θ) ∈ B

) = P
(
HX(θ) ∈ B

) = 1

π

∫ π

0
P
(
HX′(θ − t) ∈ B

)
dt.

Because of the π-periodicity of the Feret diameter, the integral is independent
of θ , and thus the random variables HX′(θ), θ ∈ [0, π], are identically dis-
tributed.

2. Suppose that X′ is symmetric and HX′(θ), θ ∈ [0, π], are identically dis-
tributed. Then the random process HX′ is stationary, that is, for any x ∈ R, the
random process (HX′(θ))θ∈R and the translated process (H̃X′(θ) = HX′(θ +
x))θ∈R have the same distribution. However, H̃X′ is exactly the random process
corresponding to the Feret diameter of Rx(X

′). It has been already established
that the Feret diameter characterizes the symmetric bodies. Therefore, for any
x ∈ R, Rx(X

′) and X′ have the same distribution, so that X′ is isotropic.

We have shown some properties of the Feret diameter random process. Let us
discuss now the random zonotopes, that is, the random sets almost surely valued in
C(N).
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3.2 Description of the random zonotopes from their faces

Here we will define some classes of random zonotopes, in particular, the class of
the random zonotopes almost surely valued in C(N)

0 and the class of those almost

surely valued in C(N)∞ . We will study several properties of the random zonotopes. In
particular, we will show how a random zonotope can be described by a random vector
corresponding to its faces.

Definition 7 (Random zonotopes). For an integer N > 1, a random closed set X

that has realizations almost surely in C(N) is called a random zonotope with at most
2N faces or, in a more concise way, a random zonotope when there is no possible
confusion.

Such a random set can be described almost surely as

∀ω ∈ Ω a.s., X(ω) =
N⊕

i=1

αi(ω)Sβi(ω).

The distribution of the random vector (α, β) characterizes X. The random vector α is
called a face length vector of X.

According to Proposition 3, for any face length vector α of X, some geometrical
characteristics (Feret diameter, perimeter, area) of X can be expressed as:

∀ω ∈ Ω a.s., ∀t ∈ R, HX(t) =
N∑

i=1

αi

∣∣sin(t − βi)
∣∣; (19)

∀ω ∈ Ω a.s., U(X) = 2
N∑

i=1

αi; (20)

∀ω ∈ Ω a.s., A(X) = 1

2

N∑
i=1

N∑
j=1

αiαj

∣∣sin(βi − βj )
∣∣. (21)

Proposition 6 (Existence conditions for the autocovariance of the Feret diameter pro-
cess). Let X be a random zonotope with 2N faces, and α its face length vector. Then
the following properties are equivalent:

E
[
U(X)2] < ∞; (22)

α ∈ L2(
R

N+
)
. (23)

Furthermore, if one of these conditions is satisfied, then E[A(X)] < ∞, and
E[HX(s)HX(t)] < ∞ for all (s, t) ∈ [0, π]2.

Proof. According to (20), U(X)2 = (2
∑N

i=1 αi)
2, and the first equivalence is trivial

(because of the positivity of α).
Proposition 3 also shows that, for all (s, t) ∈ [0, π]2,

HX(s)HX

(
t ′
) =

N∑
i=1

N∑
j=1

αiαj

∣∣sin(s − η − βi) sin(t − η − βi)
∣∣
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≤
N∑

i=1

N∑
j=1

αiαj

≤ 1

4
U(X)2.

Then the expectation E[HX(s)HX(t)] exists, and the existence of E[A(X)] follows
from the isoperimetric inequality.

Definition 8 (0-regular random zonotopes). For an integer N > 1, a random closed
set X that has its realizations almost surely in C(N)

0 is called a 0-regular random zono-
tope with at most 2N faces or, in a more concise way, a 0-regular random zonotope
when there is no possible confusion.

A 0-regular random zonotope X can be almost surely expressed as

∀ω ∈ Ω a.s., X(ω) =
N⊕

i=1

αi(ω)Sθi
,

where θi, i = 1, . . . , N , denotes the regular subdivision on [0, π].
The distribution of the face length vector α characterizes the distribution of X.

In addition, this relation is bijective; in other word, the distribution of α is uniquely
defined and is called the face length distribution.

Of course, the 0-regular random zonotopes can be used to approximate the ran-
dom symmetric convex sets as N → ∞ (see Section 4.1). However, it is not the best
way to model a random symmetric convex set. Indeed, notice that a 0-regular random
zonotope cannot be isotropic. For instance, we need to use a large N in order to de-
scribe a random set built as an isotropic random square; see Example 3. This is the
reason for using a larger class of random zonotopes.

Definition 9 (Regular random zonotopes). For an integer N > 1, any random com-
pact set taking its values almost surely in C(N)∞ is called a regular random zonotope
and can be expressed as

X = Rx

( N⊕
i=1

αiSθi

)
,

where x is a random variable on [0, π], and α is a random vector taking values in R
N+ .

The random vector α is called a random face length vector of X.

Proposition 7 (Isotropic regular random zonotope). Let X = Rx(
⊕N

i=1 αiSθi
) be an

isotropic regular random zonotope. Then X has the same distribution of the following
random set:

X
a.s.= Rη

( N⊕
i=1

αiSθi

)
, (24)

where η is a uniform random variable on [0, π] independent of α.



Description of a random symmetric convex set by a random zonotope 347

Proof. Let X = Rx(
⊕N

i=1 αiSθi
) be an isotropic regular random zonotope, and η′ be

a uniform random variable independent of α. Because of the isotropy of X, the ran-
dom set Rη′(X) has the same distribution as X. Let η = x + η′[π]. Then the random
set Rη′(X) can be expressed as Rη(

⊕N
i=1 αiSθi

). Consequently, Rη(
⊕N

i=1 αiSθi
) has

the same distribution as X.
Let us show that η is a uniform variable independent of α.
Let B be a Borel set of RN , and let E = {η ∈ [0, t]}∩ {α ∈ B} for any t ∈ [0, π].

Then

E = {α ∈ B} ∩
( ⋃

z∈[0,π]
{x = z} ∩ {

η′ + z[π] ≤ t
})

=
⋃

z∈[0,π]
{α ∈ B}{x = z} ∩ {

η′ + z[π] ≤ t
}
.

Note that this union is disjointed. Then because of the independence of η′,

P(E) =
∫ π

0
P
({α ∈ B}{x = z})P({

η′ + z[π] ≤ t
})

dz.

The quantity P({η′ + z[π] ≤ t}) is independent of the value of z and can be easily
computed as P({η′ + z[π] ≤ t}) = t

π
. Consequently:

P(E) = t

π

∫ π

0
P
({α ∈ B}{x = z})P({

η′ + z[π] ≤ t
})

dz,

P(E) = t

π
P
({α ∈ B}).

Then η is a uniform random variable on [0, π] independent of α.

This proposition shows that an isotropic regular random zonotope can always
be described as in (24). Such a zonotope is consequently defined by its random face
length vector α. However, different distributions of α can lead to the same distribution
of X, as mentioned in the following proposition.

Proposition 8 (Family of the random face length vectors). Let α be a random face
length vector of the isotropic regular random zonotope X. The following family of
random face length vectors, denoted FN(X), provides the same distribution of the
random set X:

FN(X) = {
α′ a.s= Jnα

∣∣∀ω ∈ Ω a.s., n(ω) ∈ {0, . . . , N − 1}}, (25)

where J is the circulant matrix J = Circ(0, 1, 0, . . . , 0).

Proof. First of all, it is easy to see that FN(X) is not empty by construction of X.
Let α, α′ be two representative random vectors of X. Then there exist two uniform
random variables η and η′ satisfying η ⊥⊥ α and η′ ⊥⊥ α′ such that:

∀ω ∈ Ω a.s.,
N⊕

i=1

αi(ω)Sθi+η(ω) =
M⊕
i=1

α′
i (ω)Sθi+η′(ω)
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⇒ ∀ω ∈ Ω a.s., R−η′(ω)

( N⊕
i=1

αi(ω)Sθi+η(ω)

)
= R−η′(ω)

( N⊕
i=1

α′
i (ω)Sθi+η′(ω)

)

⇒ ∀ω ∈ Ω a.s.,
N⊕

i=1

α′
i (ω)Sθi

=
N⊕

i=1

αi(ω)Sθi+η(ω)−η′(ω).

Then, because of the uniqueness of the face length vector in C(N)
0 , for any ω ∈ Ω a.s.,

there is j (ω) ∈ {1, . . . , N} such that

θ1 = (
θj (ω) + η(ω) − η′(ω)

)[π] and α′
1(ω) = αj (ω)

⇒ θj (ω) = (
η′(ω) − η(ω)

)[π] and α′
1(ω) = αj (ω)

⇒ α′
i (ω) = αi+j−1[M](ω)

⇒ α′(ω) = J j(ω)−1α(ω).

By taking ∀ω ∈ Ω a.s., n(ω) = j (ω) − 1[N ] it follows that α′ = Jnα and, conse-
quently, FN(X) ⊂ {α′ = Jnα|∀ω ∈ Ω a.s., n(ω) ∈ {0, . . . , N − 1}}.

The other inclusion can be proved by taking η′ such that ∀ω ∈ Ω a.s., η′(ω) =
βn(ω)+1 + η[π]. For such η′, it follows that ∀ω ∈ Ω a.s., X(ω) =⊕N

i=1 α′
i (ω)Sθi+η′(ω).

Definition 10 (Central random face length vector). Let α ∈ FN(X), and let n be a
uniform random variable on {0, . . . ,M − 1} independent of α. Then the random face
length vector α′ = Jnα is called a central random face length vector of X.

Notice that a central random face length vector has all components identically
distributed. Furthermore, its distribution has many interesting properties.

Proposition 9 (Uniqueness of the central face length distribution). There is a
unique distribution for any central random face length vectors. In other words, let
α̃′, α′ be two central random face length vectors of X. Then they have same dis-
tribution. Such a distribution will be named the central face length distribution
of X.

Proof. Let α̃′ and α′ be two central representations of X. Then there exist a random
face length vector α̃ and an independent uniform variable ñ on {0, . . . , N − 1} such
that α̃′ = J ñα̃. In addition, α̃ ∈ FN(X), so there exists n such that α̃ = Jnα′.
Consequently, α̃′ = J ñ+nα′. Let n′ = ñ + n[N ]. It is easy to see that J ñ+n = Jn′

,
and thus

α̃′ = Jn′
α′.

Let us prove that n′ is a uniform variable on {0, . . . ,M − 1} independent of α′.
For any k ∈ {0, . . . , N − 1},

P
({

n′ = k
}) = P

(N−1⋃
i=0

{
ñ = k − i[N ]} ∩ {n = i}

)
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=
N−1∑
i=0

P
({

ñ = k − i[N ]})P({n = i})

= 1

N
.

Then n′ is a uniform variable on {0, . . . , N − 1}. Furthermore, for any Borel set B

and any k ∈ {0, . . . , N − 1},

P
({

n′ = k
} ∩ {

α′ ∈ B
}) = P

(N−1⋃
i=0

{
ñ = k − i[N ]} ∩ {n = i} ∩ {

α′ ∈ B
})

=
N−1∑
i=0

P
({

ñ = k − i[N ]} ∩ {n = i} ∩ {
α′ ∈ B

})

=
N−1∑
i=0

P
({

ñ = k − i[N ]})P({n = i} ∩ {
α′ ∈ B

})

= 1

N

N−1∑
i=0

P
({n = i} ∩ {

α′ ∈ B
})

= 1

N
P
({

α′ ∈ B
})

= P
({

n′ = k
})
P
({

α′ ∈ B
})

.

Now let us prove that α′ and α̃′ have the same distribution. Let B = B0 ×· · ·×BN−1
be a product of Borel sets of R. Firstly, note that P(J kα′ ∈ B) = P(α′ ∈ B) for all
k ∈ {0, . . . , N − 1}. Indeed, by definition, α′ can be written as α′ = Jnα with α a
representative of X and n an independent uniform random variable on {0, . . . , N −1}.
Therefore,

P
({

α′ ∈ B
}) = P

(N−1⋃
i=0

{
J iα ∈ B

} ∩ {n = i}
)

= 1

N

N−1∑
i=0

P
({

J iα ∈ B
})

= 1

N

N−1∑
i=0

P
({α ∈ Bi × · · ·B0 · · · BN−1−i}

)
.

In the same manner,

P
({

J kα′ ∈ B
}) = 1

N

N−1∑
i=0

P
({

J i+kα ∈ B
})

= 1

N

N−1∑
i=0

P
({α ∈ Bi+k × · · ·B0 · · ·BN−1−i−k}

)
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= 1

N

N−1∑
i=0

P
({α ∈ Bi × · · · B0 · · · BN−1−i}

)
= P

({
α′ ∈ B

})
.

Furthermore,

P
({

α̃′ ∈ B
}) = P

(N−1⋃
k=0

{
J kα′ ∈ B

} ∩ {
n′ = k

})

= 1

N

N−1∑
k=0

P
({

J kα′ ∈ B
})

= P
({

α′ ∈ B
})

.

Finally, α̃′ and α′ have the same distribution.

Proposition 10 (Properties of the central face length distribution). Let α be a central
random face length vector of X. Then the first- and second-order moments of its
distribution have the following properties:

1. First-order moment:

∀i = 1, . . . , N, E[αi] = U(X)

2N
; (26)

2. Second-order moment:

The matrix C[α] = (E[αiαj ])1≤i,j≤N is a circulant matrix defined by the
first column V [α] =t (E[α1α1], . . . ,E[α1αN ]): C[α] = Circ(V [α]). Fur-
thermore, this matrix is symmetric and depends only on (�N

2 � + 1) val-
ues, where �N

2 � denotes the floor of N
2 . Note that m = �N

2 � and v =t

(E[α1α1], . . . ,E[α1αm+1]); therefore, if N is an even integer, then V =t

(v0, . . . , vm−1, vm, vm−1, . . . , v1), and if N is an odd integer, then V =t

(v0, . . . , vm, vm, . . . , v1).

Proof.

1. The first item is trivial. Indeed, the marginals of α are identically distributed.
Therefore, E[αi] = E[αj ] for all i, j , and U(X) = 2

∑N
i=1 αi ⇒ E[αi] =

U(X)
2N

, i = 1, . . . , N .

2. It has been shown that if, for any k ∈ {0, . . . , N − 1}, the random variables
α and J kα have same distribution, then they have the same covariance matrix.
Therefore, for all 1 ≤ i, j ≤ N ,

∀k ∈ {0, . . . , N − 1}, E[αiαj ] = E[αi+k[N ]+1αj+k[N ]+1],
so E[αiαj ] is a circulant matrix that depends only on i − j [N ] and, because
of its symmetry, and on j − i[N ]. Let 1 ≤ i ≤ j ≤ N . Then there are two
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possible cases. First, suppose that N = 2m is an even integer. Then, for all
0 ≤ k ≤ m − 1,

E[α1α1+m+k] = E[α1+mα1+k] = E[α1+m+N−kα1+N ] = E[α1α1+m−k].
Note that

V =t
(
E[α1α1], . . . ,E[α1αN ]) and v =t

(
E[α1α1], . . . ,E[α1αm+1]

)
.

Therefore, there is

V =t (v0, . . . , vm−1, vm, vm−1, . . . , v1).

If N is an odd integer, then N = 2m + 1, and for any 0 ≤ k ≤ m,

E[α1α1+m+k] = E[α1+m+1α1+k] = E[α2+m+N−kα1+N ] = E[α1α2+m−k],
then by noting that

V [α] =t
(
E[α1α1], . . . ,E[α1αN ]) and v =t

(
E[α1α1], . . . ,E[α1αm+1]

)
there is V =t (v0, . . . vm, vm, . . . v1). Finally, C[α] is a symmetric circulant
matrix.

Example 2. In order to illustrate the properties of the face length vector distributions,
let us discuss the case N = 2. Then, X = Rη(α1S0 ⊕α2Sπ

2
) with η a uniform random

variable on [0, π] independent of α.
Therefore, X is an isotropic random rectangle described by its sides (α1, α2).

However, this is not the unique way to describe it. Indeed, even for a deterministic
rectangle of sides (a, b), we can also say that its sides are (b, a). This simple fact
involves a lot of different distributions for the face length vectors of an isotropic
random rectangle.

Let us take consider a simple example: suppose that Y is equiprobably the rect-
angle of sides (1, 2) or the rectangle of sides (3, 4). Then, there is at least one of the
following four possible descriptions for the realization of sides of Y :

• (1, 2) or (3, 4);

• (2, 1) or (3, 4);

• (2, 1) or (4, 3);

• (1, 2) or (4, 3).

Therefore, there are four corresponding face length distributions 1
2�(1,2) + 1

2�(3,4),
1
2�(2,1) + 1

2�(3,4),. . . , where �(a,b) denotes the Dirac measure in (a, b). However,
there are not the only possibilities. Indeed, many other can be built from the previous
distributions, such as the distribution 1

4�(1,2) + 1
4�(2,1) + 1

2�(3,4). Notice that the
central distribution of Y is 1

4�(1,2) + 1
4�(2,1) + 1

4�(3,4) + 1
4�(4,3).
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Let us return now to the general case of the isotropic random rectangle X with
a face length vector α. According to the foregoing, it is easy to see that any another
face length vector α′ of X can be built as

α′ =
(

1 − δ δ

δ 1 − δ

)
α, (27)

where δ is any Bernoulli variable (i.e., valued in {0, 1}) eventually correlated to α.
Indeed, notice that ( 1−δ δ

δ 1−δ
) = J δ , and therefore by taking η′ = η + δ π

2 [π] and

X = Rη(α1S0 ⊕ α2Sπ
2
) = Rη′

(
α′

1S0 ⊕ α′
2Sπ

2

)
,

we can easily prove that η′ is a uniform random variable on [0, π] independent of α′
(see the proof of Prop. 9), and therefore α′ is a face length vector of X.

Let us consider now the central face length distribution, so let δ be a Bernoulli
variable of parameter 1

2 (i.e., a uniform variable on {0, 1}) independent of α, and let
α′ = J δα be a central face length vector. Then, according to (27),

α′
1 = (1 − δ)α1 + δα2,

α′
2 = δα1 + (1 − δ)α2.

Consequently, the first- and second-order moments of the face length distribution
can be computed as

E
[
α′

1

] = E
[
α′

2

] = 1

2
E[α1 + α2],

E
[
α′

1
2] = E

[
α′

2
2] = 1

2
E

[
α2

1 + α2
2],

E
[
α′

1α
′
2

] = E[α1α2].

Notice that property 10 is well verified,. Indeed, E[α′
1] = E[α′

2] = 1
4E[U(X)], and

the matrix C[α] is a circulant matrix depending on two parameters.

3.3 Characterizing an isotropic regular random zonotope from its Feret diameter
random process

We have shown that the distribution of an isotropic random zonotope X can be de-
scribed by its central face length distribution and studied the properties of such dis-
tributions. Here we will show how its characteristics can be connected to the geomet-
rical characteristics of the random zonotope. In particular, we will give formulae that
allow us to connect the first- and second-order moments of the Feret diameter of X to
those of the central face length distribution.

Let X be an isotropic random zonotope represented by its face length vector α.
Let us recall that X can be almost surely expressed as

X = Rη

( N⊕
i=1

αiSθi

)
,
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where η is a uniform random variable independent of α ≥ 0. Suppose that the condi-
tion E(U(X)2) < ∞ is satisfied. Then, according to Proposition 6, α ∈ L2(RN+), and
the mean and autocovariance of HX exist.

According to Proposition 3, for any representative α of X, some geometrical char-
acteristics of X can be expressed as

∀t ∈ R, HX(t) =
N∑

i=1

αi

∣∣sin(t − η − θi)
∣∣,

U(X) = 2
N∑

i=1

αi,

A(X) = 1

2

N∑
i=1

N∑
j=1

αiαj

∣∣sin(θi − θj )
∣∣.

Therefore, by considering α ∈ L2(RN+) and the independence of α and η, their expec-
tation can be computed by integration with respect to the uniform distribution of η:

∀t ∈ R, E
[
HX(t)

] = 2

π

N∑
i=1

E[αi], (28)

E
[
U(X)

] = 2
N∑

i=1

E[αi], (29)

A(X) = 1

2

N∑
i=1

N∑
j=1

E[αiαj ]
∣∣sin(θi − θj )

∣∣, (30)

∀t, t ′ ∈ R, E
[
HX(t)HX

(
t + t ′

)] =
N∑

i=1

N∑
j=1

E[αiαj ]kS

(
t ′ + θi − θj

)
, (31)

where ∀t ∈ R, kS(t) = 1

π

∫ π

0

∣∣sin(t + z) sin(z)
∣∣ dz. (32)

Note that kS is a π-periodic function and can be expressed on [0, π] as

kS(t) = 1

2π

(
2 sin3(t) + cos(t)

(
π − 2t + sin(2t)

))
. (33)

Using Eq. (31) and the stationarity of HX, we have

∀t, t ′ ∈ R, E
[
HX(t)HX

(
t + t ′

)] = E
[
HX(t)HX

(
t − t ′

)]
, (34)

∀t, t ′ ∈ R,

N∑
i=1

N∑
j=1

E[αiαj ]kS

(
t ′ + θi − θj

) =
N∑

j=1

N∑
i=1

E[αiαj ]kS

(
t ′ + θj − θi

)
,

(35)

and by introducing the functional

∀t ∈ R,∀1 ≤ i, j ≤ N, Kij (t) = kS(t + θi − θj ) (36)
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it follows that

∀t, t ′ ∈ R, E
[
HX(t)HX

(
t + t ′

)] =
N∑

i=1

N∑
j=1

E[αiαj ]Kij

(
t ′
)
. (37)

Proposition 11. For any real t , K(t) is a circulant matrix. Furthermore, by denoting
((k1(t), . . . , kN(t))) the first line of K(t), we have K(t) = Circ((k1(t), . . . , kN(t)))

and Kij (t) = kj (θi + t) for 1 ≤ i, j ≤ N .

Proof. Let us show that K(t) is a circulant matrix. For any real t , t + θi − θj depends
only on i − j ; therefore, K(t) is a Toeplitz matrix. Furthermore, for 1 ≤ i ≤ N − 1
and 1 ≤ j ≤ N, K(i+1)j (t) = kS(t + θi − (θj − π

N
)), but (θj − π

N
) = θσ(j) where

σ(j) = (j − 2[N ]) + 1, and thus K(i+1)j (t) = Kiσ(j). Therefore, the line index
i +1 of K(t) is a cyclic permutation of the line index i of K(t), so K(t) is a circulant
matrix. Furthermore, kj (θi + t) = kS(t + θi − θj ) = Kij (t).

Suppose now that α is a central representative of X. We will show that the first-
and second-order moments of the central distribution can be easily expressed from
the Feret diameter process.

Theorem 3 (Moments of the central face length distribution). Let X be an isotropic
random zonotope represented by a central face length vector α. Then

∀x ∈ R ∀i = 1, . . . , N, E[αi] = π

2N
E

[
HX(x)

]
, (38)

V [α] = 1

N
K(0)−1V

[
H

(N)
X

]
, (39)

where V [x] denotes the vector t (E[x1x1], . . . ,E[x1xN ]).
Proof. Suppose that α is a central representative of X. Then, according to Propo-
sition 10 and Eq. (28), the first-order moment of the central distribution can be ex-
pressed as

∀x ∈ R ∀i = 1, . . . , N, E[αi] = π

2N
E

[
HX(x)

]
. (40)

By Propositions 11 and 10, it follows that E[αiαj ] = V [α]j−i[N ]+1 and Kij (t) =
kj−i[N ]+1. Then, for all t ∈ R,

E
[
HX(0)HX(t)

] =
N∑

i=1

N∑
j=1

E[αiαj ]Kij (t)

=
N∑

i=1

N∑
j=1

V [α]j−i[N ]+1kj−i[N ]+1(t)

=
N∑

i=1

i∑
j=1

V [α]j−i[N ]+1kj−i[N ]+1(t) +
N∑

i=1

N∑
j=i

V [α]j−i[N ]+1kj−i[N ]+1(t)

−
N∑

i=1

V [α]1k1(t)
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=
N∑

i=1

i−1∑
s=0

V [α]s+1ks+1(t) +
N∑

i=1

N−i∑
s=0

V [α]s+1kN−s[N ]+1(t) − NV [α]1s1(t)

=
N∑

i=1

i−1∑
s=0

V [α]s+1ks+1(t) +
N∑

i=1

i∑
z=N

V [α]N−z+1kz[N ]+1(t) − NV [α]1k1(t)

=
N∑

i=1

i−1∑
s=0

V [α]s+1ks+1(t) +
N∑

i=1

i∑
z=N

V [α]z[N ]+1kz[N ]+1(t) − NV [α]1k1(t)

=
N∑

i=1

i−1∑
s=0

V [α]s+1ks+1(t) +
N∑

i=1

N∑
s=i

V [α]s[N ]+1ks[N ]+1(t) − NV [α]1k1(t)

=
N∑

i=1

i−1∑
s=0

V [α]s+1ks+1(t) +
N∑

i=1

N∑
s=i

V [α]s[N ]+1ks[N ]+1(t) − NV [α]1k1(t)

=
N∑

i=1

N∑
s=0

V [α]s[N ]+1ks[N ]+1(t) − NV [α]1k1(t)

=
N∑

i=1

N−1∑
s=0

V [α]s[N ]+1ks[N ]+1(t) +
N∑

i=1

V [α]1k1(t) − NV [α]1k1(t)

=
N∑

i=1

N−1∑
s=0

V [α]s+1ks+1(t)

=
N∑

i=1

N∑
s=1

V [α]sks(t)

⇒ E
[
HX(0)HX(t)

] = N

N∑
s=1

V [α]sks(t). (41)

Note that V [H(N)
X ] =t (E[HX(0)HX(θ1)], . . .E[HX(0)HX(θN)]). Since for 1 ≤ i ≤

N , V [H(N)
X ]i = N

∑N
s=1 V [α]sks(θi) = N

∑N
s=1 V [α]sKis(0), we have that

V
[
H

(N)
X

] = NK(0)V [α]. (42)

It is easy to see that K(0) is a symmetric positive definite matrix. Indeed, for 1 ≤
i, j ≤ N, Kij (0) = kS(θi − θj ) = kS(θj − θi) = Kji(0), and this K(0) is a
symmetric matrix. Furthermore, for all x ∈ R

N ,

t xK(0)x =
N∑

i=1

N∑
j=1

xixjKij (0)

=
N∑

i=1

N∑
j=1

xixj

1

π

∫ π

0

∣∣sin(θi − θj + z) sin(z)
∣∣ dz
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= 1

π

∫ π

0

N∑
i=1

N∑
j=1

xixj

∣∣sin(z − θi) sin(z − θj )
∣∣ dz

= 1

π

∫ π

0

( N∑
i=1

xi

∣∣sin(z − θi)
∣∣)2

dz.

Denote by Y the real-valued random variable Y = ∑N
i=1 xi | sin(z − θi)|, where z is

a uniform random variable on [0, π]. Then t xK(0)x = E[Y 2], and so t xK(0)x ≥ 0.
Furthermore, t xK(0)x = 0 if and only if Y = 0 almost surely, Y = 0 a.s. ⇒ ∀z ∈
[0, π], and

∑N
i=1 xi | sin(z− θi)| = 0 ⇒ x = 0. Finally, K(0) is a symmetric positive

definite matrix. Then it is invertible, and it follows that

V [α] = 1

N
K(0)−1V

[
H

(N)
X

]
.

This theorem gives the first- and second-order moments of the central face length
distribution from those of the Feret diameter. Note that V [α] and V [H(N)

X ] satisfy
the properties of symmetry. Indeed, by denoting m = �N

2 � we have shown that if
N is an even integer, then V [α] =t (v0, . . . , vm−1, vm, vm−1, . . . , v1) and if N is an
odd integer, then V [α] =t (v0, . . . , vm, vm, . . . , v1), where vk = E[α1α1+k], k =
0, . . . , m. The vector V [H(N)

X ] can be expressed in the same way: for i = 1, . . . , N ,
π − θi = N−i+2−1

N
π = θN−i+1[N ]+1, and

V
[
H

(N)
X

]
i
= E

[
HX(0)HX(θi)

]
= E

[
HX(0)HX(π − θi)

]
= V

[
H

(N)
X

]
N−i+1[N ]+1.

Therefore, if N is an even integer, then V [H(N)
X ] =t (c0, . . . , cm−1, cm,

cm−1, . . . , v1), and if N is an odd integer, then V [H(N)
X ] =t (c0, . . . , cm, cm, . . . , c1),

where ck = V [H(N)
X ]k+1, k = 0, . . . , m. In practice, the vector V [α] can be com-

puted by the knowledge of the m + 1 first components of V [H(N)
X ], and the linear

problem (42) can be rewritten and solved as a linear problem of size m + 1.

Remark 5. In practice, the estimation of E[HX(0)HX(t)] for t ∈ [0, π] is of-
ten noised. Then, a better choice it is to find V [α] in the least squares sense. Let
N ′ ≥ m + 1, and let 0 = t1 ≤ · · · ≤ tN ′ = π

2 be a subdivision of [0, π] con-
taining {θ1, . . . , θm+1}, the (ti)1≤i≤N ′ are observation points. Let us recall that for
all t ∈ [0, π

2 ], E[HX(0)HX(t)] = E[HX(0)HX(π − t)]. Then we can suppose that
there exist 2(N ′ − 1) points of observation such that zi = ti for i = 1, . . . , N ′ and

zi = t2N ′−i for i = N ′ + 1, . . . , 2N ′ − 2. Let Qij = kj (zi) and V [H(2(N ′−1))
X ] =t

(E[HX(0)HX(z1)], . . . ,E[HX(0)HX(z2(N ′−1))]). Then, by (41),

V
[
H

(2(N ′−1))
X

] = QV [α].
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Finally, if V̂ [H(2(N ′−1))
X ] is a noisy estimation of V [H(2(N ′−1))

X ], then the following
least square estimator of V [α] is better than that provided by (39):

Ṽ [α] = arg min
V ∈RN+

∥∥V̂
[
H

(2(N ′−1))
X

] − QV
∥∥2

. (43)

We have discussed some properties of the random zonotopes. The 0-regular ran-
dom zonotopes and the regular random zonotope were defined and studied. We have
shown that a 0-regular random zonotope can be describes by a unique face length
distribution. Such a distribution can be easily related to the Feret diameter of the
0-regular random zonotope by the relations established in Section 1.

We have studied different face length distributions of a regular random zonotope.
We have shown that, among them, one can be identified, the central face length dis-
tribution. Finally, we have given some formulae that allow us to compute the first-
and second-order moments of the central face length distribution from those of the
Feret diameter of the regular random zonotope. The following section is devoted to a
description of a random symmetric convex set as a 0-regular random zonotope and as
a regular random zonotope.

4 Description of a random symmetric convex set as a random zonotope from
its Feret diameter

In Section 1, we have defined some approximations of a symmetric convex set as
zonotopes. In Section 2, we characterized the regular and 0-regular random zonotopes
from their Feret diameters random process. The aim of this section is to generalize
the previous approximations to a random symmetric convex set X.

Firstly, we will show that the 0-regular random zonotope corresponding to the
C(N)

0 -approximation of X can be characterized from the Feret diameter random pro-
cess of X. Secondly, we will show that the isotropic regular random zonotope corre-
sponding to the C(N)∞ -approximation of an isotropized set of X can be estimated from
the Feret diameter random process of X.

4.1 Approximation of a random symmetric convex set by a 0-regular random zono-
tope

Here we investigate the approximation of a random symmetric convex set X by a
0-regular random zonotope. We show that the random set X

(N)
0 valued in C(N)

0 that

is defined as the C(N)
0 -approximation of realizations of X can be characterized from

the Feret diameter of X. Finally, we give some formulas that allow us to compute the
moments of the random vector of the faces of X

(N)
0 .

Proposition 12 (Approximation by a 0-regular random zonotope). Let X be a ran-
dom convex set. For any ω ∈ Ω a.s., let X

(N)
0 (ω) be the C(N)

0 -approximation of X(ω).

The 0-regular random zonotope X
(N)
0 is called the C(N)

0 -approximation of the random
set X.
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For any N > 1, an interval of confidence for the Hausdorff distance can be built.
Indeed, for any a > 0, we have the relation

P
(
dH

(
X,X

(N)
0

)
> a

) ≤ (6 + 2
√

2)

a
sin

(
π

2N

)
E

[
diam(X)

]
. (44)

If ε ∈ [0, 1] is a confidence level, then a(ε,N) = (6+2
√

2)
ε

sin( π
2N

)E[diam(X)] can

be considered as an upper bound for dH (X,X
(N)
0 ) with confidence 1 − ε.

Consequently, such an approximation is consistent as N → ∞.

Proof. Let X be a random convex set. For any ω ∈ Ω a.s., let X
(N)
0 (ω) be the C(N)

0 -

approximation of X(ω) in C(N)
0 . According to Theorem 3, for any real a > 0,

∀ω ∈ Ω a.s., dH

(
X,X

(N)
0

) ≤ (6 + 2
√

2) sin

(
π

2N

)
diam(X)

⇒ P
(
dH

(
X,X

(N)
0

)
> a

) ≤ P

(
(6 + 2

√
2) sin

(
π

2N

)
diam(X) > a

)
.

By using the Markov inequality [9] it follows that

P
(
dH

(
X,X

(N)
0

)
> a

) ≤ (6 + 2
√

2)

a
sin

(
π

2N

)
E

[
diam(X)

]
.

The consistence of the approximation as N → ∞ follows directly from this relation.

According to relation (16), E[diam(X)] can be replaced by 1
2E[U(X)].

Let X be a random symmetric convex set, and X
(N)
0 be its C(N)

0 -approximation.
The, in the same way as in the deterministic case, the face length distribution can be
related to the Feret diameter of X.

Proposition 13 (Characterization of the C(N)
0 -approximation from the Feret diameter

process). Let N > 1 be an integer, and X be a random symmetric convex set. Let
X

(N)
0 be the C(N)

0 -approximation of X. Its face length vector α can be characterized
from the Feret diameter process:

∀ω ∈ Ω a.s. α(ω) = F (N)−1
H

(N)
X (ω), (45)

E[α] = F (N)−1
E

[
H

(N)
X

]
, (46)

C[α] = F (N)−1
C

[
H

(N)
X

]
tF (N)−1

, (47)

where H
(N)
X = t (HX(θ1), . . . , HX(θ1)) is the random vector composed by the Feret

diameter evaluated on the regular subdivision. The matrix F (N) is still defined as
(| sin(θi −θj )|)ij )1≤i,j≤N , and for a vector x, C[x] denotes its second-order moments
E[xtx].
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Proof. According to Theorem 3, the matrix F (N) is invertible, and thus by
the definition of the approximation relation (45) follows. Noting that αtα =
F (N)−1

H
(N)
X

tH
(N)
X

tF (N)−1
, relations (46) and (47) follow from the linearity of the

expectation.

Remark 6. The C(N)
0 -approximation of a random symmetric convex set X is a con-

sistent approximation as N → ∞. Furthermore, if X is already a 0-regular random
zonotope in C(N)

0 , then its Mth approximation X
(M)
0 coincides with X if and only if

N is a divider of M .
Such an approximation is sensitive to a rotation of X. Indeed, if Rη(X) is the

rotation of X by the random angle η, then the random sets X and Rη(X) have different
approximations. This property can be seen as an advantage or a disadvantage. Indeed,
if the objective is to describe the direction of some random set, then it is an advantage,
but there is a need to use large N . However, when the objective is to describe the shape
of a random set with a small N without taking into consideration its direction, then it
can be a great disadvantage; see the following example.

Example 3. Let N = 2, and let θ1 = 0, θ2 = π
2 , the regular subdivision. Let us

consider the random symmetric convex set X as a deterministic square of side 1, that
is, X = Sθ1 ⊕ Sθ2 . Its C(2)

0 -approximation coincides with X: X
(2)
0 = X. The matrix

F (N) is defined as

F (N) = F (N)−1 =
(

0 1
1 0

)
,

and, consequently,

E[αX] =
(

1
1

)
, C[αX] =

(
1 1
1 1

)
and Cov(αX) = 0.

Consider now the random symmetric convex set Y = Rη(X) where η is a uniform
random variable on [0, π]. Then the mean and covariance of its Feret diameter can be
computed (see (31) to (33)):

E
[
H

(N)
Y

] =
(

4
π
4
π

)
and C

[
H

(N)
Y

] =
(

1 + 2

π

) (
1 1
1 1

)
.

So

E[αY ] = 4

π

(
1
1

)
, C[αY ] =

(
π + 2

π

) (
1 1
1 1

)
,

and

Cov(αY ) = π2 + 2π − 16

π2

(
1 1
1 1

)
.

The random set Y is approximated by a random rectangle that has a varying sides
(Cov(αY ) �= 0). However, Y have the same geometrical shape as X. This example
shows that the C(N)

0 -approximation cannot be used to describe the shape of a random
symmetric convex set for small N .
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In order to describe the shape of a random symmetric convex set as a zonotope
with a small number of faces, we need to have an approximation insensitive to the
rotations. This leads us to the following approximation.

4.2 Approximation of a random symmetric convex set by an isotropic random zono-
tope

Previously, we have shown that a random symmetric convex set can be approximated
as a random 0-regular zonotope. However, we have also shown that such an approxi-
mation can be problematic for small values of N . The aim of this section is to define
and characterize an approximation in C(N)∞ that is invariant up to a rotation and that
can be used for not so large N . For this objective, we give the approximation for an
isotropized set of X instead of X. We will show that a random symmetric convex set
can be approximated up to a rotation by an isotropic random regular zonotope.

Let us note Y = Rz(X) the isotropized set of X with z an independent uniform
variable on [0, π]. Let X

(N)∞ be a C(N)∞ -approximation of X. Then

∀ω ∈ Ω a.s., X(N)∞ (ω) = Rτ(ω)

(
X̃

(N)
0 (ω)

)
.

According to the definition of the C(N)∞ -approximation, the random set Y
(N)∞ =

Rz(X
(N)∞ ) is a C(N)∞ -approximation of Y . Consequently, Y

(N)∞ = Rz+τ (X̃
(N)
0 ). Be-

cause of the independence of η and X, by the property of addition modulo π the
random variable η = z + τ is a uniform random variable on [0, π] independent of
X. Then Y

(N)∞ is an isotropic regular zonotope. We will use such a random regular
zonotope as the approximation of X up to a rotation.

Definition 11 (C(N)∞ -isotropic approximation). Let X be a random symmetric con-
vex set, and Y = Rz(X) its isotropized set. The isotropic random regular zonotope
Y

(N)∞ = Rz(X
(N)∞ ) is called the C(N)∞ -isotropic approximation of X and denoted by

X̃
(N)∞ .

Proposition 14 (Properties of the C(N)∞ -isotropic approximation). Let X be a random
symmetric convex set, and X̃

(N)∞ be its C(N)∞ -isotropic approximation.

1. X̃
(N)∞ is an isotropic random regular zonotope.

2. ∀ω ∈ Ω a.s., ∃t (ω) ∈ [0, π], ∀i = 1, . . . , N, HX(t + θi) = H
X̃

(N)∞
(t + θi).

3. ∀ω ∈ Ω a.s., dP (X, Y
(N)∞ ) → 0 as N → ∞.

4. The C(N)∞ -isotropic approximation is invariant up to a rotation of X.

5. If X is a random regular zonotope, then any face length vector of X̃
(N)∞ is a face

length vector of X.

Proof.

1. It is easy to see that X̃
(N)∞ is an isotropized set of X

(N)∞ . Consequently, it is an
isotropic random regular zonotope.
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2–4. These properties are direct consequences of Theorem 2.

5. Suppose that X is a random regular zonotope. Then X and X̃
(N)∞ coincide up to

a random rotation, and any face length vector of the one is a face length vector
of the other one.

In order to describe the shape of X, the best way would be to characterize the cen-
tral face length distribution of X̃

(N)∞ from information available on X. Unfortunately,
there is no way to compute the characteristics of the random process H

X̃
(N)∞

from
those of HX. However, the approximation of the first- and second-order moments of
H

X̃
(N)∞

can be estimated from those of the Feret diameters of an isotropized set of X

(i.e., HY , where Y is an isotropized set of X).

Proposition 15 (Approximation of the moments of the central face length distribu-
tion). Let X be a symmetric random convex set, Y its isotropized set, X̃

(N)∞ the C(N)∞ -
isotropic approximation of X, and α the central face length vector of X̃

(N)∞ .

1. An approximation of the first- and second-order moments of α is given by

Ê[α] = π

2N
E

[
H

(N)
Y

]
, (48)

V̂ [α] = 1

N
K(0)−1V

[
H

(N)
Y

]
. (49)

Such an approximation is consistent as N → ∞: Ê[α] − E[α] → 0 and
V̂ [α] − V [α] → 0 as N → ∞.

2. If α̂ is a positive random vector satisfying V [α̂] = V̂ [α], E[α̂] = Ê[α], and η

an independent uniform variable on [0, π], then the random set X̂ defined as

X̂ = Rη

( N⊕
i=1

α̂iSθi

)
(50)

satisfies E[U(X)] = E[U(X̂)].
Proof.

1. The consistence of the estimate is trivial regarding that E[H(N)
Y ] → E[H(N)

X̃
(N)∞

]
and V [H(N)

Y ] → V [H(N)

X̃
(N)∞

] as N → ∞.

2. Let α̂ be a positive random vector satisfying V [α̂] = V̂ [α], E[α̂] = Ê[α], and
η an independent uniform variable on [0, π]. Because of the isotropy of Y , the
vector E[H(N)

Y ] has all its components equal to 1
π
E[(U(Y )], and the random

set X̂ = Rη(
⊕N

i=1 α̂iSθi
) satisfies

E
[
U(X̂)

] = 2
N∑

i=1

E[α̂i]

= E
[
U(Y )

]
= E

[
U(X)

]
.
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Remark 7. Firstly, note that the quantities E[H(N)
Y ] and V [H(N)

Y ] are easily obtained
from the mean and autocovariance of HX by using property 4. The approximations
Ê[α] and V̂ [α] can be regarded as the characteristics of the central face length vector
of an isotropic random regular zonotope X̂, which has the same Feret diameter on
the θi as an isotropized set of X. In particular, such a zonotope has the same mean
perimeter as X.

Furthermore, if X is an N th random regular zonotope, then such quantities coin-
cide with those of a face length vector of X. Consequently it is more interesting to use
the C(N)∞ -isotropic approximation when X is assumed to be an N th random regular
zonotope.

5 Conclusions and prospects

In this paper, we proposed different approximations of a symmetric convex set as a
zonotope. These approximations have been further generalized to random symmetric
convex sets. We have shown that a random convex set can be approximated as pre-
cisely as we want as a random zonotope in terms of the Hausdorff distance. More
specifically, for a random symmetric convex set X, the first- and second-order mo-
ments of the face length vector of its zonotope approximation can be computed from
the first- and second-order moments of the Feret diameter process of X.

This work involves several perspectives. The first one would be to get higher mo-
ments of the central face length distribution and to generalize this work in higher
dimension. One potential application of this work would be to describe the primary
grain of the germ–grain model. Indeed, in a large class of such models, there exist es-
timators for the moments of the Feret diameter of the primary grain [25]. In particular,
we prospect to apply this to the images of oxalate ammonium crystals modeled by the
Boolean model (see [25, 26]). However, we need to study the estimators involved by
the zonotope approximation in those germ–grain models.
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