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Abstract The main object of this paper is the planar wave equation

(
∂2

∂t2
− a2Δ

)
U(x, t) = f (x, t), t ≥ 0, x ∈ R

2,

with random source f . The latter is, in certain sense, a symmetric α-stable spatial white noise
multiplied by some regular function σ . We define a candidate solution U to the equation via
Poisson’s formula and prove that the corresponding expression is well defined at each point al-
most surely, although the exceptional set may depend on the particular point (x, t). We further
show that U is Hölder continuous in time but with probability 1 is unbounded in any neighbor-
hood of each point where σ does not vanish. Finally, we prove that U is a generalized solution
to the equation.
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Introduction

Stochastic partial differential equations are widely used in modeling different phe-
nomena involving randomness, and the area of their application is constantly increas-
ing. This is reflected by increasing number of works devoted to such equations. Vast
majority of these articles is devoted to the case where the underlying noise is Gaus-
sian. In particular, a stochastic wave equation with Gaussian noise was studied in
[1–3, 5, 6, 8], to mention only a few authors. However, many phenomena are char-
acterized by heavy tails of the corresponding distributions; often not only variances,
but also expectations of underlying random variables are infinite. In such cases, the
underlying random noise is better modeled by a stable distribution.

In this paper, we study a wave equation in the plane, where the random source has
a stable distribution. We prove that a candidate solution to the equation, constructed
by means of Poisson’s formula, is a generalized solution. We also show that it is
Hölder continuous is time variable, but it is irregular in the spatial variable.

The paper is organized as follows. Section 1 contains the notation and auxiliary
information on objects involved. In Section 2, we introduce the main object of the
paper, a planar wave equation with stable noise, and establish main results. The ex-
istence and spatial properties of a candidate solution to the equation, constructed via
Poisson’s formula, are studied in Section 2.1. In Section 2.2, we prove that the can-
didate solution is a generalized solution to the equation. Finally, in Section 2.3, we
establish the Hölder regularity of the solution in the time variable.

1 Preliminaries

1.1 Notational conventions
Throughout the article, the symbol C denotes a generic constant, the exact value of
which is not important and may change from line to line. Similarly, C(ω) is be used
to denote a generic a.s. finite random variable. We use the notation |x| both for the
absolute value of a real number and for the Euclidean norm of a vector; the particular
meaning will be always clear from the context. The Euclidean ball {y : |y − x| ≤ r}
is denoted by B(x, r). Finally, R+ = [0,+∞).

1.2 Stable random variables and measures
In this section, we give essential information on symmetric α-stable SαS random
variables and measures; for details, we refer the reader to [7].

Let (Ω,F , P) be a complete probability space. For a number α ∈ (0, 2), called
the stability parameter, a random variable ξ is SαS with the scale parameter σα ,
σ ≥ 0, if its characteristic function is

E
[
eiλξ

] = e−σα |λ|α .

We also denote ‖ξ‖α = σ ; note that this is a (quasi-)norm for α ≥ 1.
SαS random variables and fields are often constructed by means of an indepen-

dently scattered SαS random measure, which is defined as follows. Denoting by
Bf (Rd) the family of Borel sets of finite Lebesgue measure, a random set function
M : Bf (Rd) × Ω → R is called an independently scattered SαS random measure
with Lebesgue control measure if
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1) for any A ∈ Bf (Rd), the random variable M(A) is SαS with scale parameter
equal to λd(A), the Lebesgue measure of A;

2) for any disjoint A1, . . . , An ∈ Bf (Rd), the values M(A1), . . . , M(An) are inde-
pendent.

3) for any disjoint An ∈ Bf (Rd), n ≥ 1, such that A = ⋃∞
n=1 An ∈ Bf (Rd),

M(A) =
∞∑

n=1

M(An)

almost surely.

For a function f (x) ∈ Lα(Rd), the integral

I (f ) =
∫

· · ·
∫
Rd

f (x)M(dx)

is defined as the limit in probability of integrals of simple compactly supported func-
tions; its value is an SαS random variable with∥∥I (f )

∥∥α

α
=

∫
· · ·

∫
Rd

∣∣f (x)
∣∣α dx.

Our analysis is based on the LePage series representation of M defined as fol-
lows. Let ϕ be an arbitrary continuous positive probability density function on R

d ,
and {Γk, k ≥ 1}, {ξk, k ≥ 1}, {gk, k ≥ 1} be three independent families of random
variables satisfying:

• Γk, k ≥ 1, is a sequence of arrivals of a Poisson process with unit intensity;

• ξk, k ≥ 1, are independent random vectors in R
d with density ϕ;

• gk, k ≥ 1, are independent centered Gaussian variables with E[|gk|α] = 1.

Then M (as a random process indexed by finite measure Borel sets) has the same
finite-dimensional distributions as

M ′(A) = Cα

∑
k≥1

Γ
−1/α
k ϕ(ξk)

−1/α1A(ξk)gk, (1)

where Cα = (Γ (2−α) cos πα
2

1−α

)1/α; the corresponding series converges almost surely for
any Borel set A ⊂ R

d of finite Lebesgue measure. Moreover, for any f1, f2, . . . , fn ∈
Lα(Rd), the vector (I (f1), I (f2), . . . , I (fn)) has the same distribution as (I ′(f1),

I ′(f2), . . . , I
′(fn)), where

I ′(f ) = Cα

∑
k≥1

Γ
−1/α
k ϕ(ξk)

−1/αf (ξk)gk. (2)

Throughout the paper, we work with a planar SαS measure M , that is, we consider
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the case d = 2. We will assume, without loss of generality, that M is given by (1), so
that, for any function f ∈ Lα(R2), the integral

I (f ) =
∫∫

R2
f (x)M(dx)

is given by an almost surely convergent series (2). Moreover, we assume that

(Ω,F , P) = (ΩΓ ⊗ Ωξ ⊗ Ωg,FΓ ⊗ Fξ ⊗ Fg, PΓ ⊗ Pξ ⊗ Pg)

and, for all ω = (ωΓ , ωξ , ωg) and k ≥ 1, Γk(ω) = Γk(ωΓ ), ξk(ω) = ξk(ωξ ), and
gk(ω) = gk(ωg). This will not harm the generality but will considerably simplify our
exposition.

2 Main results

For a positive constant a > 0, consider the planar wave equation(
∂2

∂t2
− a2Δ

)
U(x, t) = σ(x, t)Ṁ(x) (3)

with zero initial conditions. The random source is a product of a continuous function
σ and SαS white noise Ṁ(x), which is a formal derivative of a planar SαS random
measure M introduced in the previous section. The precise meaning of this equality
is not immediately obvious. Clearly, there can be no classical (belonging to C2(R2 ×
R+) solution to this equation, so we will look at generalized solutions.

Let D(R2 × R+) denote the class of all compactly supported infinitely contin-
uously differentiable functions on R

2 × R+. By a generalized solution we mean a
function satisfying∫ ∞

0

∫∫
R2

U(x, t)

(
∂2

∂t2
θ(x, t) − a2Δθ(x, t)

)
dx dt

=
∫ ∞

0

∫∫
R2

θ(x, t)σ (x, t)M(dx) dt (4)

for all θ ∈ D(R2 × R+).
Our approach is to consider a candidate solution given by Poisson’s formula

U(x, t) = U(x1, x2, t)

= 1

2πa

∫ t

0

∫∫
B(x,a(t−τ))

σ (y1, y2, τ )M(dy1, dy2) dτ√
a2(t − τ)2 − (y1 − x1)2 − (y2 − x2)2

= 1

2πa

∫ t

0

∫∫
B(x,a(t−τ))

σ (y, τ )M(dy) dτ√
a2(t − τ)2 − |y − x|2 (5)

and later, in Section 2.2, to show that it solves Eq. (3) in a generalized sense.



Stochastic wave equation in a plane driven by spatial stable noise 241

The integral in (5) is understood in the following sense: we define

G(x, y, t) = 1

2πa

∫ t− |x−y|
a

0

σ(y, τ )√
a2(t − τ)2 − |y − x|2 dτ 1|x−y|<at

and set

U(x, t) =
∫∫

R2
G(x, y, t)M(dy). (6)

In what follows, we need some assumptions about the coefficient σ .

(S1) Boundedness: |σ(x, t)| ≤ C for all t ≥ 0 and x ∈ R
2.

(S2) Continuity: σ ∈ C(R2 × R+).

(S3) Hölder continuity in time: there exists γ ∈ (0, 1] such that, for all t, s ≥ 0 and
x ∈ R

2, ∣∣σ(x, t) − σ(x, s)
∣∣ ≤ |t − s|γ .

2.1 Existence and spatial properties of a candidate solution
First, we establish a result on the existence of the integral defining the candidate
solution U(x, t).

Theorem 1. Under (S1), for any t ≥ 0 and x ∈ R
2, the integral in (6) is well defined.

Proof. According to the definition of the integral with respect to M , the integral is
well defined, provided that ∫∫

R2

∣∣G(x, y, t)
∣∣α dy < ∞. (7)

Taking into account (S1), we have the estimate

∣∣G(x, y, t)
∣∣ = 1

2πa

∣∣∣∣ ∫ t− |x−y|
a

0

σ(y, τ )√
a2(t − τ)2 − |y − x|2 dτ

∣∣∣∣1|x−y|<at

≤ C

∫ t− |x−y|
a

0

dτ√
a2(t − τ)2 − |y − x|2 1|x−y|<at

= C

a
ln

(
at

|x − y| +
√

a2t2

|x − y|2 − 1

)
1|x−y|<at .

Therefore,∫∫
R2

∣∣G(x, y, t)
∣∣α dy ≤ C

∫∫
B(x,at)

∣∣∣∣ ln

(
at

|x − y| +
√

a2t2

|x − y|2 − 1

)∣∣∣∣α dy

=
∣∣∣∣y1 = x1 + at r cos φ

y2 = x2 + at r sin φ

∣∣∣∣ = C

∫ 2π

0
dφ

∫ 1

0
r
(

ln
∣∣r−1 +

√
r−2 − 1

∣∣)α
dr

≤ C

∫ 1

0
r
∣∣ ln

(
2r−1)∣∣α dr ≤ C

∫ 1

0
r1−ε dr < ∞,

where ε is a small positive number. This proves the statement.
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Recall that M is assumed to coincide with its LePage series, so we have that, for
all t ≥ 0 and x ∈ R

2, U(x, t) is given by the almost surely convergent series

U(x, t) =
∑
k≥1

Γ
−1/α
k ϕ(ξk)

−1/αG(t, x, ξk)gk.

We will further see that the exceptional event of zero probability generally de-
pends on x and t . Moreover, if σ is continuous, then U is unbounded in any neigh-
borhood of any point where σ does not vanish. In order to prove this, we first note
that G(x, x, t) is infinite for any t ≥ 0 and x ∈ R

2 such that σ(x, t) �= 0. Indeed, let
σ(x, t) > 0 for some t ≥ 0 and x ∈ R

2. Then there is ε > 0 such that σ(x, s) > ε

for all s ∈ [t − ε, t]. Write

G(x, x, t) =
∫ t−ε

0

σ(x, τ )

a(t − τ)
dτ +

∫ t

t−ε

σ (x, τ )

a(t − τ)
dτ.

The first integral is finite, whereas∫ t

t−ε

σ (x, τ )

a(t − τ)
dτ ≥ ε

∫ t

t−ε

dτ

a(t − τ)
= +∞.

This observation leads to the following statement.

Theorem 2. Assume (S1) and (S2). Then, for all t ≥ 0 and x ∈ R
2 such that

σ(t, x) �= 0 and for all δ > 0,

sup
y∈B(x,δ)

∣∣U(y, t)
∣∣ = +∞

almost surely.

Proof. Define

Ω̃ξ = {
ωξ ∈ Ωξ | ∃k ≥ 1 : ∣∣ξk(ωξ ) − x

∣∣ ≤ δ
}
.

Since {ξk, k ≥ 1} are iid with everywhere positive density, it is clear that Pξ (Ω̃ξ ) = 1.
Fix some ωξ ∈ Ω̃ξ and ωΓ ∈ ΩΓ . Then U(x, t) has a centered Gaussian distribution,
so that by the 0–1 law for Gaussian measures

Pg

(
sup

y∈B(x,δ)

∣∣U(y, t)
∣∣ < +∞

)
∈ {0, 1} .

Suppose by contradiction that

Pg

(
sup

y∈B(x,δ)

∣∣U(y, t)
∣∣ < +∞

)
= 1.

Then by Fernique’s theorem

Eg

[
sup

y∈B(x,δ)

∣∣U(y, t)
∣∣2

]
< ∞. (8)
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On the other hand,

Eg

[
sup

y∈B(x,δ)

∣∣U(y, t)
∣∣2

]
≥ sup

y∈B(x,δ)

Eg

[∣∣U(y, t)
∣∣2]

= C2
α sup

y∈B(x,δ)

∑
k≥1

Γ
−2/α
k ϕ(ξk)

−2/α
∣∣G(y, ξk, t)

∣∣2

≥ C2
αΓ

−2/α

k(ωξ )
ϕ(ξk(ωξ ))

−2/α sup
y∈B(x,δ)

G(y, ξk(ωξ ), t)
2,

where k(ωξ ) is an integer such that |ξk(ωξ ) − x| < δ (it exists since ωξ ∈ Ω̃ξ ).
Since σ is continuous, there exists ε > 0 such that, for all y ∈ R

2 with |x−y| < ε,
σ(y, t) �= 0. Without loss of generality, we can assume that ε ≥ δ. Taking into
account that ξk(ωξ ) ∈ B(x, δ), we get

Eg

[
sup

y∈B(x,δ)

∣∣U(y, t)
∣∣2

]
≥ C2

αΓ
−2/α

k(ωξ ) ϕ(ξk(ωξ ))
−2/αG(ξk(ωξ ), ξk(ωξ ), t)

2.

However, since σ(ξk(ωξ ), t) �= 0, the observation preceding the theorem yields
G(ξk(ωξ ), ξk(ωξ ), t)

2 = +∞, which contradicts (8).
Consequently, for all ωξ ∈ Ω̃ξ and ωΓ ∈ ΩΓ ,

Pg

(
sup

y∈B(x,δ)

∣∣U(y, t)
∣∣ < +∞

)
= 0,

whence

P
(

sup
y∈B(x,δ)

∣∣U(y, t)
∣∣ < +∞

)
=

∫
ΩΓ

∫
Ωξ

Pg

(
sup

y∈B(x,δ)

∣∣U(y, t)
∣∣ < +∞

)
dPξ (ωξ ) dPΓ (ωΓ ) = 0,

as claimed.

2.2 Generalized solution

Theorem 2 shows that the function U(x, t) cannot be a classical solution to Eq. (3).
Our next aim is to show that it solves (3) in a generalized sense.

Theorem 3. Assume (S1) and (S2). 1. If α ∈ (0, 1), then there is Ω0 ∈ F , P(Ω0) = 1,
such that, for all ω ∈ Ω0 and θ ∈ D(R2 × R+), Eq. (4) holds. 2. If α ∈ [1, 2), then,
for any θ ∈ D(R2 × R+), Eq. (4) holds almost surely.

Remark 4. In the second part of this theorem, the exceptional event of probability
zero may depend on θ .

Proof. Write the LePage representation for the left-hand side of Eq. (4):

L(θ) = Cα

∞∑
k=1

Γ
−1/α
k K(x, ξk, t)gk,
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K(x, y, t) = ϕ(ξk)
−1/α

∫ ∞

0

∫∫
R2

G(x, y, t)
( ∂2

∂t2
θ(x, t) − a2Δθ(x, t)

)
dx dt

and its right-hand side

R(θ) = Cα

∫ ∞

0

∞∑
k=1

Γ
−1/α
k ϕ(ξk)

−1/αθ(ξk, t)σ (ξk, t)gk dt.

The proof consists of two steps: showing the convergence of the LePage series and
then proving that (4) holds for partial sums of the LePage series.

Let us estimate the terms in the series for L(θ). Assume that supp θ ⊂ [0, R] ×
B(0, R). Then, denoting ψ(x, t) = ∂2

∂t2 θ(x, t) − a2Δθ(x, t), we have

∣∣K(x, ξk, t)
∣∣ ≤ ∫ R

0

∫∫
B(0,R)

∣∣ϕ(ξk)
∣∣−1/α∣∣G(x, ξk, t)

∣∣∣∣ψ(x, t)
∣∣ dx dt

≤
(

inf
B(0,R)

∣∣ϕ(x)
∣∣)−1/α

× sup
x∈R2,t≥0

∣∣ψ(x, t)
∣∣ ∫ R

0

∫∫
B(0,R)

∣∣G(x, ξk, t)
∣∣ dx dt

≤ CR,θ . (9)

Consider first the case α ∈ (0, 1). By the strong law of large numbers and well-
known properties of Gaussian random variables there exists Ω0 ∈ F , P(Ω0) = 1,
such that, for all ω ∈ Ω0 and k ≥ 1,

Γk ≥ C1(ω)k, |gk| ≤ C2(ω) (log k + 1) ,

where C1, C2 are some positive random variables. Therefore, the kth term in the series
for L(θ) is bounded by

CαΓ
−1/α
k

∣∣K(t, x, ξk)gk

∣∣ ≤ C(ω)k−1/α |log k + 1| .
Consequently, the series for L(θ) is convergent for all ω ∈ Ω0 and θ(x, t) ∈ D(R2 ×
R+). Similarly, we can show the convergence of R(θ).

For α ∈ [1, 2), the argument is changed slightly. Specifically, we show the almost
sure convergence of the series for L(θ) and R(θ) for all θ(x, t) ∈ D(R2 × R+).
Indeed, for fixed ωξ ∈ Ωξ,ωΓ ∈ ΩΓ , in view of (9), we have

Eg

[
L(θ)2] = C2

α

∑
k≥1

Γ
−2/α
k K(x, ξk, t)

2 ≤ C(ω)
∑
k≥1

k−2/α

almost surely. Therefore, by the Kolmogorov theorem the series for L(θ) converges
Pg-almost surely for almost all ωξ ∈ Ωξ and ωΓ ∈ ΩΓ and, therefore, P-almost
surely. The almost sure convergence of R(θ) is shown in a similar way.

Now we prove that Eq. (4) holds for partial sums of the LePage series; the argu-
ment does not depend on the value of α. The counterpart of Eq. (4) for the partial
sums reads as
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Cα

N∑
k=1

Γ
−1/α
k ϕ(ξk)

−1/α

×
∫ ∞

0

∫∫
R2

∫ t

0

σ(ξk, τ )√
a2(t − τ)2 − |y − ξk|2

1|y−ξk |<a(t−τ)ψ(y, t) dτ dy dt

= Cα

N∑
k=1

Γ
−1/α
k ϕ(ξk)

−1/α

∫ ∞

0
θ(ξk, τ )σ (ξk, τ ) dτ.

It suffices to show the equality of the corresponding terms, that is, to prove that, for
any x ∈ R

2,∫ ∞

0

∫ ∞

τ

∫∫
B(x,a(t−τ))

σ (y, τ )ψ(y, t)√
a2(t − τ)2 − |x − y|2

dy dt dτ =
∫ ∞

0
σ(x, τ )θ(x, τ ) dτ.

This equality, in turn, would follow if we show that∫ ∞

τ

∫∫
B(x,a(t−τ))

ψ(y, t)√
a2(t − τ)2 − |x − y|2

dy dt = θ(x, τ ) (10)

for all τ ≥ 0, y ∈ R
2.

As before, assume that supp θ ⊂ [0, R] × B(0, R). Define

θ̃ (x, u) = θ(x, R − u), u ≤ R.

Then

∂2

∂t2
θ(x, R − u) = ∂2

∂t2
θ̃ (x, u); θ̃ (x, 0) = 0; ∂

∂t
θ̃ (x, 0) = 0;

Δθ(x,R − u) = Δθ̃(x, u).

Consider the following Cauchy problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
∂2

∂t2
− a2Δ

)
V (x, t) = ∂2

∂t2
θ̃ (x, t) − a2Δθ̃(x, t),

V (x, 0) = 0,

∂V (x, t)

∂t
|t=0 = 0,

Clearly, the function θ̃ is a solution. On the other hand, by Poisson’s formula, for all
x ∈ R

2 and r ≥ 0,

θ̃ (x, r) = 1

2πa

∫ r

0

∫∫
B(x,a(r−s))

∂2

∂t2 θ̃ (y, s) − a2Δθ̃(y, s)√
a2(r − s)2 − |x − y|2

dy ds.

Changing the variables r → R − τ , s → R − t and noticing that ψ(t, x) vanishes for
τ ≥ R, we get (10) for all t ∈ [0, R]. For τ ≥ R, the both sides of the equality are
zero, whence the proof follows.
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2.3 Regularity of solution in time variable

In this section, adapting the argument of [4], we show that the solution U constructed
by means of Poisson’s formula (6) is Hölder continuous in the time variable. Since
we have already shown that U is highly irregular in the spatial variable, our findings
for the planar wave equation are in a sharp contrast with the scalar case, where the
time and space regularity are the same.

Theorem 5. Assume (S1)–(S3). Then for any T > 0 and x ∈ R
2 the function U(x, ·)

is Hölder continuous on [0, T ] almost surely with any exponent less than γ ∧ 1
2 . This

implies the required statement.

Proof. Take some h > 0 and t ∈ [0, T − h]. For fixed ωξ ∈ Ωξ and ωΓ ∈ ΩΓ , we
have the estimate

Eg

[(
U1(x, t) − U1(x, t + h)

)2]
= C2

α

∑
k≥1

Γ
−2/α
k ϕ(ξk)

−2/α
∣∣G(x, ξk, t2) − G(x, ξk, t2)

∣∣2 ≤ g(h),

where

g(h) = C2
α

∑
k≥1

Γ
−2/α
k ϕ(ξk)

−2/α sup
t1,t2∈[0,T ]
0<t1−t2<h

∣∣G(x, ξk, t1) − G(x, ξk, t2)
∣∣2

.

Let t1, t2 ∈ [0, T ] be such that 0 < t2 − t1 < h. Write∣∣G(x, y, t1) − G(x, y, t2)
∣∣2

=
∣∣∣∣ ∫ t1− |x−y|

a

0

σ(y, τ )√
a2(t1 − τ)2 − |x − y|2 dτ 1|x−y|<at1

−
∫ t2− |x−y|

a

0

σ(y, τ )√
a2(t2 − τ)2 − |x − y|2 dτ 1|x−y|<at2

∣∣∣∣2

.

Consider first the case |x − y| < at1. Changes of variable τ = t1 − s and τ = t2 − s

in the first and second integrals, respectively, give∣∣∣∣ ∫ t1

|x−y|
a

σ (y, t1 − s) ds√
a2s2 − |x − y|2 −

∫ t2

|x−y|
a

σ (y, t2 − s) ds√
a2s2 − |x − y|2

∣∣∣∣
≤

∣∣∣∣ ∫ t1

|x−y|
a

σ (y, t1 − s) − σ(y, t2 − s)√
a2s2 − |x − y|2 ds

∣∣∣∣ +
∣∣∣∣ ∫ t2

t1

σ(y, t1 − s) ds√
a2s2 − |x − y|2

∣∣∣∣ =: I1 + I2.

Taking into account (S3), we have

I1 ≤
∫ t1

|x−y|
a

|σ(y, t1 − s) − σ(y, t2 − s)|√
a2s2 − |x − y|2 ds

≤ |t1 − t2|γ
∫ t1

|x−y|
a

ds√
a2s2 − |x − y|2
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≤ C |t1 − t2|γ
∫ t1

|x−y|
a

ds√
(as − |x − y|)(as + |x − y|)

≤ C |t1 − t2|γ √
at1 − |x − y|√|x − y| ≤ C |t1 − t2|γ√|x − y| ;

I2 ≤ C

∫ t2

t1

ds√
a2s2 − |x − y|2

≤ C

∫ t2

t1

ds√
(as − |x − y|) (as + |x − y|)

≤ 2C

a
√|x − y|

(√
at2 − |x − y| − √

at1 − |x − y|) ≤ C
√

t2 − t1√|x − y| .

Now let at1 < |x − y| < at2. In this case,∣∣G(t1, x, y) − G(t2, x, y)
∣∣

=
∣∣∣∣ ∫ t2− |x−y|

a

0

σ(y, τ )√
a2(t2 − τ)2 − |x − y|2 dτ1|x−y|<at2

∣∣∣∣
≤ C

∫ t2− |x−y|
a

0

1|x−y|<aT dτ√
a2(t2 − τ)2 − |x − y|2

≤ C

∫ t2− |x−y|
a

0

1|x−y|<aT dτ√
(a(t2 − τ) − |x − y|)(a(t2 − τ) + |x − y|)

≤ C√|x − y|
∫ t2− |x−y|

a

0

1|x−y|<aT dτ√
(a(t2 − τ) − |x − y|)

≤ C
√

at2 − |x − y|√|x − y| 1|x−y|<aT ≤ C
√

h√|x − y|1|x−y|<aT .

Combining the estimates, we get

g(h) ≤ Ch2β
∑
k≥1

Γ
−2/α
k ϕ(ξk)

−2/α 1

|x − ξk|1|x−ξk |<aT ,

where β = γ ∧ 1
2 . Taking the expectation w.r.t. ξ , we obtain

Eξ

[
g(h)

] ≤ Ch2β
∑
k≥1

Γ
−2/α
k Eξ

[
ϕ(ξk)

−2/α

|x − ξk| 1|x−ξk |<aT

]

≤ Ch2β
∑
k≥1

Γ
−2/α
k inf

B(x,aT )
ϕ(y)−2/α

∫∫
B(x,aT )

1

|x − y| dy ≤ C(ωΓ )h2β.

Hence, for any η > 0,

Eξ

[ ∞∑
n=1

2nβ

n1+η
g
(
2−n

)] ≤ C(ωΓ )

∞∑
n=1

n−1−η < ∞.
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Therefore,
∞∑

n=1

2nβg(2−n)

n1+η
< ∞

Pξ ⊗ PΓ -almost surely. In particular, 2nβg(2−n)

n1+η → 0, n → ∞, Pξ ⊗ PΓ -almost

surely. Since the function g is nondecreasing and the function f (x) = x−2β | ln x|1+η

satisfies f (2x) ≤ Cf (x) for x small enough, the latter convergence implies

g(h)

h2β |ln h|1+η
→ 0, h → 0,

Pξ ⊗ PΓ -almost surely. Therefore, the inequality

Eg

[(
U(x, t1) − U(x, t2)

)2] ≤ (t2 − t1)
2β

∣∣ ln(t2 − t1)
∣∣1+η

,

holds Pξ ⊗PΓ -almost surely for all t1, t2 ∈ [0, T ] close enough and such that t1 < t2.
Since U has a centered Gaussian distribution for fixed ωξ ∈ Ωξ and ωΓ ∈ ΩΓ , the
last observation yields that∣∣U(x, t1) − U(x, t2)

∣∣ ≤ C(ω) |t1 − t2|β
∣∣ ln |t2 − t1| + 1

∣∣1+η/2

P-almost surely for all t1, t2 ∈ [0, T ] close enough.
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