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1 Introduction

Our purpose is to establish large deviations principle for the maximum likelihood
estimator of drift parameter of the Ornstein–Uhlenbeck process driven by a mixed
fractional Brownian motion:

dXt = −ϑXtdt + dB̃t , t ∈ [0, T ], T > 0, (1)

where the initial state X0 = 0, and the drift parameter ϑ is strictly positive. The
process B̃ is a mixed fractional Brownian motion

B̃t = Bt + BH
t , t ∈ [0, T ],

where B = (Bt ) is a Brownian motion, and BH = (BH
t ) is an independent fractional

Brownian motion with Hurst exponent H ∈ (0, 1], that is, the centered Gaussian
process with covariance function

R(s, t) = EBH
t BH

s = 1

2

(
t2H + s2H − |t − s|2H

)
, s, t ∈ [0, T ].
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It is important to notice that the parameter H is considered to be known. The
problem of Hurst parameter estimation is not considered in this work but presents a
great interest for the future research.

Two following chapters contain information about maximum likelihood estima-
tion procedure for the mixed fractional Ornstein–Uhlenbeck process and description
of basic concepts of large deviations theory.

The formulation of our main results and their proofs are given in Section 4,
whereas Section 5 contains auxiliary results.

2 Maximum likelihood estimation procedure

The interest to mixed fractional Brownian motion was triggered by Cheridito [5]. Fur-
ther, a mixed fractional Brownian motion and related models were comprehensively
considered by Mishura [12]. Finally, the results of recent works of Cai, Kleptsyna,
and Chigansky [4] and Chigansky and Kleptsyna [6] concerning the new canonical
representation of mixed fractional Brownian motion present a great value for the pur-
poses of this paper.

An interesting change in properties of a mixed fractional Brownian motion B̃

occurs depending on the value of H . In particular, it was shown (see [5]) that B̃ is a
semimartingale in its own filtration if and only if either H = 1

2 or H ∈ ( 3
4 , 1].

The main contribution of paper [4] is a novel approach to the analysis of mixed
fractional Brownian motion based on the filtering theory of Gaussian processes. The
core of this method is a new canonical representation of B̃.

In fact, there is an integral transformation that changes the mixed fractional Brow-
nian motion to a martingale. In particular (see [4]), let g(s, t) be the solution of the
following integro-differential equation

g(s, t) + H
d

ds

∫ t

0
g(r, t)|s − r|2H−1sign(s − r)dr = 1, 0 < s < t ≤ T . (2)

Then the process

Mt =
∫ t

0
g(s, t)dB̃s, t ∈ [0, T ], (3)

is a Gaussian martingale with quadratic variation

〈M〉t =
∫ t

0
g(s, t)ds, t ∈ [0, T ].

Moreover, the natural filtration of the martingale M coincides with that of the
mixed fractional Brownian motion B̃.

Further, to what has just been mentioned concerning the mixed fractional Brow-
nian motion, an auxiliary semimartingale, appropriate for the purposes of statistical
analysis, can be also associated to the corresponding Ornstein–Uhlenbeck process X

defined by (1). In particular, for the martingale M defined by (3), the sample paths
of the process X are smooth enough in the sense that the following process is well
defined:

Qt = d

d〈M〉t
∫ t

0
g(s, t)Xsds. (4)
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We also define the process Z = (Zt , t ∈ [0, T ]) by

Zt =
∫ t

0
g(s, t)dXs. (5)

One of the most important results of [4] is that the process Z is the fundamental
semimartingale associated to X in the following sense.

Theorem 1. Let g(s, t) be the solution of (2), and the process Z be defined by (5).
Then the following assertions hold:

1. Z is a semimartingale with the decomposition

Zt = −ϑ

∫ t

0
Qsd〈M〉s + Mt, (6)

where Mt is the martingale defined by (3).

2. X admits the representation

Xt =
∫ t

0
ĝ(s, t)dZs, (7)

where

ĝ(s, t) = 1 − d

d〈M〉s
∫ t

0
g(r, s)dr.

3. The natural filtrations (Xt ) and (Zt ) of X and Z, respectively, coincide.

In addition, it was shown by Chigansky and Kleptsyna [6] that the process Q

admits the following representation:

Qt =
∫ t

0
ψ(s, t)dZs = 1

2
ψ(t, t)Zt + 1

2

∫ t

0
ψ(s, s)dZs, t ∈ [0, T ], (8)

with

ψ(s, t) = 1

2

(
dt

d〈M〉t
+ ds

d〈M〉s

)
.

The specific structure of the process Q allows us to determine the likelihood func-
tion for (1), which according to Corollary 2.9 in [4] equals

LT (ϑ,X) = dμX

dμB̃
(X) = exp

(
−ϑ

∫ T

0
QtdZt − 1

2
ϑ2

∫ T

0
Q2

t d〈M〉t
)

,

where μX and μB̃ are the probability measures induced by the processes X and B̃, re-
spectively. Thus, the score function for (1), that is, the derivative of the log-likelihood
function from observations over the interval [0, T ] is given by

ΣT (θ) = −
∫ T

0
QtdZt − ϑ

∫ T

0
Q2

t d〈M〉t ,

which allows us to determine the maximum likelihood estimator for the drift parame-
ter ϑ . Moreover, according to Theorem 2.9 in [6], which is also presented further, the
maximum likelihood estimator is asymptotically normal.
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Theorem 2. Let g(s, t) be the solution of (2), and let the processes Q and Z be
defined by (4) and (5), respectively. The maximum likelihood estimator of ϑ is given
by

ϑ̂T (X) = −
∫ T

0 QtdZt∫ T

0 Q2
t d〈M〉t

. (9)

Since ϑ > 0, this estimator is asymptotically normal at the usual rate:

√
T

(
ϑ̂T (X) − ϑ

) d−−−→
T →∞ N(0, 2ϑ).

We will develop this result by proving the large deviation principle for the maxi-
mum-likelihood estimator (9).

3 Large deviation principle

The large deviations principle characterizes the limiting behavior of a family of ran-
dom variables (or corresponding probability measures) in terms of a rate function.

A rate function I is a lower semicontinuous function I : R → [0,+∞] such
that, for all α ∈ [0,+∞), the level sets {x : I (x) ≤ α} are closed subsets of R.
Moreover, I is called a good rate function if its level sets are compacts.

We say that a family of real random variables (ZT )T >0 satisfies the large deviation
principle with rate function I : R → [0,+∞] if for any Borel set Γ ⊂ R,

− inf
x∈Γ o

I (x) ≤ lim inf
T →∞

1

T
logP(ZT ∈ Γ ) ≤ lim sup

T →∞
1

T
logP(ZT ∈ Γ ) ≤ − inf

x∈Γ

I (x),

where Γ o and Γ denote the interior and closure of Γ , respectively. Note that a family
of random variables can have at most one rate function associated with its large devi-
ation principle (for the proof, we refer the reader to the book by Dembo and Zeitouni
[7]). Moreover, it is obvious that if (ZT )T >0 satisfies the large deviation principle and
a Borel set Γ ⊂ R is such that

inf
x∈Γ o

I (x) = inf
x∈Γ

I (x),

then

lim
T →∞

1

T
logP(ZT ∈ Γ ) = − inf

x∈Γ
I (x).

We shall prove the large deviation principle for a family of maximum likelihood
estimators (9) via a similar approach as that of [1] and [3] for an Ornstein–Uhlenbeck
process and fractional Ornstein–Uhlenbeck process, respectively.

In order to prove the large deviations principle for the drift parameter estimator
of mixed fractional Ornstein–Uhlenbeck process (1), the main tool is the normal-
ized cumulant generating function of arbitrary linear combination of

∫ T

0 QtdZt and∫ T

0 Q2
t d〈M〉t ,

LT (a, b) = 1

T
logE

[
exp

(
ZT (a, b)

)]
, (10)
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where, for any (a, b) ∈ R
2,

ZT (a, b) = a

∫ T

0
QtdZt + b

∫ T

0
Q2

t d〈M〉t .

Note that, for some (a, b) ∈ R
2, the expectation in (10) may be infinite. In fact,

in order to establish a large deviation principle for ϑ̂T it suffices to find the limit of
LT (a, b) as T → ∞ and apply the following lemma, which is a consequence of the
Gärtner–Ellis theorem (Theorem 2.3.6 in [7]).

Lemma 1. For a family of maximum likelihood estimators (ϑT )T >0, let the function
LT (a, b) be defined by (10), and, for each fixed value of x, let �x denote the set of
a ∈ R for which limT →∞ LT (a,−xa) exists and is finite. If �x is not empty for
each value of x, then (ϑT )T >0 satisfies the large deviation principle with a good rate
function

I (x) = − inf
a∈�x

lim
T →∞LT (a,−xa). (11)

4 Main results

Theorem 3. The maximum likelihood estimator ϑ̂T defined by (9) satisfies the large
deviation principle with the good rate function

I (x) =
{

− (x+ϑ)2

4x
if x < −ϑ

3 ,

2x + ϑ if x ≥ −ϑ
3 .

Proof. As it was mentioned in the previous section, in order to establish the large
deviation principle for ϑ̂T and determine the corresponding good rate function, it is
necessary to find the limit

L(a, b) = lim
T →∞LT (a, b) (12)

and determine the set of (a, b) ∈ R
2 for which this limit is finite.

For arbitrary ϕ ∈ R, consider the Doleans exponential of (ϕ + ϑ)
∫ t

0 QsdMs ,

Λϕ(t) = exp

(
(ϕ + ϑ)

∫ t

0
QsdMs − (ϕ + ϑ)2

2

∫ t

0
Q2

s d〈M〉s
)

.

Note that ( 1√
ψ(t,t)

Qt )t≥0 is a Gaussian process whose mean and variance func-

tions are bounded on [0, T ]. Thus, Λϕ satisfies the conditions of Girsanov’s theorem
in accordance with Example 3 of paragraph 2 of Section 6 in [11], and we can apply
a usual change of measures and consider the new probability Pϕ defined by the local
density

dPϕ

dP
= Λϕ(T ) = exp

(
(ϕ + ϑ)

∫ T

0
QtdMt − (ϕ + ϑ)2

2

∫ T

0
Q2

t d〈M〉t
)

.
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Observe that, due to (6), Λϕ(T ) can be rewritten in terms of the fundamental
semimartingale

dPϕ

dP
= Λϕ(T )

= exp

(
(ϕ + ϑ)

∫ T

0
QtdZt + (ϕ + ϑ)ϑ

∫ T

0
Q2

t d〈M〉t − (ϕ + ϑ)2

2

∫ T

0
Q2

t d〈M〉t
)

= exp

(
(ϕ + ϑ)

∫ T

0
QtdZt − ϕ2 − ϑ2

2

∫ T

0
Q2

t d〈M〉t
)

.

Consequently, we can rewrite LT (a, b) as

LT (a, b) = 1

T
logE

[
exp

(
ZT (a, b)

)]
= 1

T
logEϕ

[
exp

(
ZT (a, b)

)
Λϕ(T )−1]

= 1

T
logEϕ exp

(
(a − ϕ − ϑ)

∫ T

0
QtdZt + 1

2

(
2b − ϑ2 + ϕ2)∫ T

0
Q2

t d〈M〉t
)

.

Given an arbitrary real number ϕ, we can choose ϕ = a − ϑ . Then

LT (a, b) = 1

T
logEϕ exp

(
1

2

(
2b − ϑ2 + (a − ϑ)2) ∫ T

0
Q2

t d〈M〉t
)

or, denoting μ = − 1
2 (2b − ϑ2 + (a − ϑ)2),

LT (a, b) = 1

T
logEϕ exp

(
−μ

∫ T

0
Q2

t d〈M〉t
)

. (13)

As it was mentioned before, the expectation in (13) can be infinite for some combi-
nations of μ and ϕ. Our purpose is to determine the set of (ϕ, μ) ∈ R

2 for which this
expectation and limit (12) are finite. According to Girsanov’s theorem, under Pϕ , the
process

Mt − (ϕ + ϑ)

∫ t

0
Qsd〈M〉s = Zt − ϕ

∫ t

0
Qsd〈M〉s (14)

has the same distribution as M under P. Consequently, applying the inverse integral
transformation (7) to (14), we get that, under Pϕ , the process Xt − ϕ

∫ t

0 Xsds is a
mixed fractional Brownian motion.

Under the new probability measure Pϕ , the process X is a mixed fractional Orn-
stein–Uhlenbeck process with drift parameter −ϕ. Consequently, in order to find the
limit of (13) as T → ∞, we can apply Lemma 1, which is presented in Section 5.
Thus, we have the equality

L(a, b) = −ϕ

2
−

√
ϕ2

4
+ μ

2
= −1

2

(
a − ϑ +

√
ϑ2 − 2b

)
,
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and convergence (12) holds for μ > −ϕ2

2 , which gives ϑ2 − 2b > 0.
For x ∈ R, denote the function

Lx(a) = L(a,−xa) = −1

2

(
a − ϑ +

√
ϑ2 + 2xa

)
defined on the set

�x = {
a ∈ R|ϑ2 + 2xa > 0

}
.

Then, according to (11), the rate function I (x) for the maximum likelihood estimator
ϑ̂T can be found as

I (x) = − inf
a∈�x

Lx(a).

Consequently, straightforward calculations of this infimum finish the proof of the
theorem.

Remark 1. Observe that the rate function I (x) does not depend on the parame-
ter H . Hence, ϑ̂T shares the same large deviation principles as those established by
Florens-Landais and Pham [8] for a standard Ornstein–Uhlenbeck process and by
Bercu, Coutin, and Savy [3] for a fractional Ornstein–Uhlenbeck process (see also
[2, 9]).

5 Auxiliary results

We can observe that the following lemma plays a key role in the proof of Theorem 3.

Lemma 2. For a mixed fractional Ornstein–Uhlenbeck process X with drift param-
eter ϑ , we have the following limit:

KT (μ) = 1

T
logE exp

(
−μ

∫ T

0
Q2

t d〈M〉t
)

→ ϑ

2
−

√
ϑ2

4
+ μ

2
, T → ∞, (15)

for all μ > −ϑ2

2 .

Proof. We shall prove the lemma using an approach similar to that in [6]. Denote
Vt = ∫ t

0 ψ(s, s)dZs . Then, according to (8), we can rewrite

dZt = −ϑQtd〈M〉t + dMt = −ϑ

2
ψ(t, t)Ztd〈M〉t − ϑ

2
Vtd〈M〉t + dMt

= −ϑ

2
Ztdt − ϑ

2
Vt

1

ψ(t, t)
dt + 1√

ψ(t, t)
dWt ,

where Wt is a Brownian motion. Consequently, we get

dVt = ψ(t, t)dZt = −ϑ

2
ψ(t, t)Ztdt − ϑ

2
Vtdt + √

ψ(t, t)dWt .

The Gaussian vector ζt = (Zt , Vt )
T is a solution of the linear system of the Itô

stochastic differential equation

dζt = −ϑ

2
A(t)ζtdt + b(t)dWt ,



114 D. Marushkevych

where

A(t) =
(

1 1
ψ(t,t)

ψ(t, t) 1

)
and b(t) =

(
1√

ψ(t,t)√
ψ(t, t)

)
.

Moreover, KT (μ) in (15) can be rewritten as

KT (μ) = 1

T
logE exp

(
−μ

∫ T

0
Q2

t d〈M〉t
)

= 1

T
logE exp

(
−μ

4

∫ T

0

(
ψ(t, t)Zt + Vt

)2
d〈M〉t

)
= 1

T
logE exp

(
−μ

4

∫ T

0

(√
ψ(t, t)Zt + 1√

ψ(t, t)
Vt

)2

dt

)
= 1

T
logE exp

(
−μ

4

∫ T

0
ζ T
t R(t)ζt dt

)
,

where

R(t) =
(

ψ(t, t) 1
1 1

ψ(t,t)

)
.

By the Cameron–Martin-type formula from Section 4.1 of [10],

KT (μ) = − μ

4T

∫ T

0
tr
(
Γ (t)R(t)

)
dt,

where Γ (t) is the solution of the equation

˙Γ (t) = −ϑ

2
A(t)Γ (t) − ϑ

2
Γ (t)AT (t) − μ

2
Γ (t)R(t)Γ (t) + B(t) (16)

with B(t) = b(t)bT (t) and initial condition Γ (0) = 0.
We shall search solution of (16) as the ratio Γ (t) = Ψ −1

1 (t)Ψ2(t), where Ψ1(t)

and Ψ2(t) are the solutions of the following equation system:

Ψ̇1(t) = ϑ

2
Ψ1(t)A(t) + μ

2
Ψ2(t)R(t),

Ψ̇2(t) = Ψ1(t)B(t) − ϑ

2
Ψ2(t)A

T (t),

(17)

with initial conditions Ψ1(0) = I and Ψ2(0) = 0. From the first equation of (17) we
get

Ψ −1
1 (t)Ψ̇1(t) = ϑ

2
A(t) + μ

2
Γ (t)R(t),

and since tr A(t) = 2, it follows that

μ

2
tr
(
Γ (t)R(t)

) = tr
(
Ψ −1

1 (t)Ψ̇1(t)
) − ϑ.
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Since Ψ̇1(t) = Ψ1(t)(Ψ
−1
1 (t)Ψ̇1(t)), by Liouville’s formula we have

− μ

4T

∫ T

0
tr
(
Γ (t)R(t)

)
dt = − 1

2T

∫ T

0
tr

(
Ψ −1

1 (t)Ψ̇1(t)
)
dt + ϑ

2

= − 1

2T
log det Ψ1(T ) + ϑ

2
.

In order to calculate limT →∞ 1
T

log det Ψ1(T ), define the matrix

J =
(

0 1
1 0

)
and note that A(t)T = JA(t)J , R(t) = JA(t), and B(t) = A(t)J . Setting Ψ̃2(t) =
Ψ2(t)J , from (17) we obtain the following equation system:

Ψ̇1(t) = ϑ

2
Ψ1(t)A(t) + μ

2
Ψ2(t)A(t),

˙̃Ψ 2(t) = Ψ1(t)A(t) − ϑ

2
Ψ̃2(t)A(t),

(18)

with initial conditions Ψ1(0) = I and Ψ̃2(0) = 0. When ϑ2

2 + μ > 0, the coefficient
matrix of system (18) (

ϑ
2

μ
2

1 −ϑ
2

)

has two real eigenvalues ±λ with λ =
√

ϑ2

4 + μ
2 and eigenvectors

v± =
(

ϑ
2 ± λ

1

)
.

Denote a± = ϑ
2 ± λ = ϑ

2 ±
√

ϑ2

4 + μ
2 . Diagonalizing system (18), we get

Ψ1(t) = a+Υ1(t) + a−Υ2(t),

where Υ1(t) and Υ2(t) are the solutions of the equations

Υ̇1(t) = λΥ1(t)A(t),

Υ̇2(t) = −λΥ2(t)A(t),
(19)

with initial conditions Υ1(0) = 1
2λ

I and Υ2(0) = − 1
2λ

I . Denote the matrix M(T ) =
Υ −1

2 (T )Υ1(T ), which is the solution of the equation

Ṁ(t) = λ
(
A(t)M(t) + M(t)A(t)

)
(20)

subject to initial condition M(0) = −I . Then

1

T
log det Ψ1(T ) = 1

T
log det

(
a+Υ1(T ) + a−Υ2(T )

)
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= 1

T
log det

(
a−Υ2(T )

) + 1

T
log det

(
I + a+

a− M(T )

)
= 1

T
log det

(
a−Υ2(T )

)
+ 1

T
log

(
1 +

(
a+

a−

)2

det M(T ) + a+

a− tr M(T )

)
= 1

T
log det

(
a−Υ2(T )

) + 1

T
log

(
1 +

(
a+

a−

)2

det M(T )

)
+ 1

T
log

(
1 +

a+
a− tr M(T )

1 + ( a+
a− )

2
det M(T )

)
.

Applying Liouville’s formula to (19), we get

1

T
log det

(
a−Υ2(t)

) + 1

T
log

(
1 +

(
a+

a−

)2

det M(T )

)
= 1

T
log

((
a−

2λ

)2

exp(−2λT )

)
+ 1

T
log

(
1 +

(
a+

a−

)2

exp(4λT )

)
→ 2λ

as T → ∞. Thus, in order to prove that limit (15) holds, we should show that

1

T
log

(
1 +

a+
a− tr M(T )

1 + ( a+
a− )

2
exp(4λT )

)
→ 0, T → ∞. (21)

Given (20), by Theorem 3 in [13] we have

|tr M(T )| ≤ 2
√

2 exp(2λT ).

Thus, limit (21) holds, which finishes the proof of the lemma.
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