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Abstract Let {£1, &), ...} be a sequence of independent random variables (not necessarily
identically distributed), and n be a counting random variable independent of this sequence. We
obtain sufficient conditions on {£1, &, ...} and n under which the distribution function of the
random sum S, = &1 + & + - - - 4+ &, belongs to the class of O-exponential distributions.
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1 Introduction

Let {£1, &, ...} be a sequence of independent random variables (r.v.s) with distribu-
tion functions (d.f.s) {Fg,, F%,, ...}, and let n be a counting r.v., that is, an integer-
valued, nonnegative, and nondegenerate at zero r.v. In addition, suppose that the r.v.
n and r.v.s {&1, &, ...} are independent. Let So = Oand S;, = &1 + & + -+ - + &,
n € N, be the partial sums, and let
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N
Sn = Z &k
k=1

be the random sum of {&1, &, ...}.
We are interested in conditions under which the d.f. of S,

o
Fs,(x) =P(S; < x) = Y _P(n=nP(S, <x)
n=0
belongs to the class of O-exponential distributions.
According to Albin and Sunden [1] or Shimura and Watanabe [15], a d.f. F be-
longs to the class of O-exponential distributions OL if
F F
0< liminfw < limsupM < 00
X—>00 F(x) X—>00 F(x)
forall a € R, where F(x) = 1_— F(x),x € R, is the tail of ad.f. F.
Note that if F € OL, then F(x) > 0 for all x € R.
It is obvious that a d.f. F' belongs to the class OL if and only if
Fx—-1

limsup —— < © 1
x—)oop F(x) %

or, equivalently, if and only if
Fx—1
sup ——— < 00.
x>0 F(x)

The last condition shows that class OL is quite wide. We further describe some
more popular subclasses of OL for which we will present some results on the random
convolution of distributions from these subclasses.

A d.f. F is said to belong to the class L of long-tailed d.f.s if for every fixed a > 0,
we have _

. Fx+a)
lim — =1
xX—00 F(x)

A d.f. F is said to belong to the class L(y) of exponential distributions with some

y > 0 if for any fixed a > 0, we have

. Fx+a)
lim ——— =
X—>00 F(x)

A d.f. F belongs to the class D (or has a dominatingly varying tail) if for every
fixed a € (0, 1), we have

e .

. F(xa
lim sup —
X— 00 F(x

A d.f. F supported on the interval [0, 00) belongs to the class S (or is subexpo-
nential) if
FxF
lim 220,
xX—00 F(x)

where, as usual, x denotes the convolution of d.f.s.

3
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A d.f. F supported on the interval [0, 00) belongs to the class S* ( or is strongly
subexponential) if

X

W= f xdF(x) < oo and /f(x — Y)F(y)dy ~ 2uF(x).
X—>00
[0,00) 0

If a d.f. F is supported on R, then F belongs to some of the classes S or S* if
Ft(x)=F (x)1{[0,00)} (x) belongs to the corresponding class.

The presented definitions, together with Lemma 2 of Chistyakov [2], Lemma 9 of
Denisov et al. [5], Lemma 1.3.5(a) of Embrechts et al. [9], and Lemma 1 of Kaas and
Tang [11], imply that

S*cScLcoL, pcoL, | JLy coc
y>0

Now we present a few known results on when the d.f. Fs, belongs to some
class. The first result about subexponential distributions was proved by Embrechts
and Goldie (Theorem 4.2 in [8]) and Cline (Theorem 2.13 in [3]).

Theorem 1. Let {£1, &>, ...} be independent copies of a nonnegative r.v. £ with subex-
ponential d.f. Fg. Let ) be a counting r.v. independent of {§1, &, ...}. IfFE(1 4+ 68)" <
o< for some § > 0, then Fs, € S.

In the case of strongly subexponential d.f.s, the following result, which involves
weaker restrictions on the r.v. i, can be derived from Theorem 1 of Denisov et al. [6]
and Corollary 2.36 of Foss et al. [10].

Theorem 2. Let {&1, &>, ...} be independent copies of a nonnegative rv. & with

strongly subexponential d.f. Fy and finite mean E§. Let 1) be a counting r.v. indepen-

dent of &1, &, ...). If P(n > x/c) = o(Fg(x)) for some c > E&, then Fs, € S*.
X

—> 00

Similar results for classes D, £, and OL can be found in the papers of Leipus and
Siaulys [12] and Danilenko and Siaulys [4]. We further present Theorem 6 from [12].

Theorem 3. Ler {&1, &, ...} be independent r.v.s with common df. Fy € L, and
let n be a counting rv. independent of {§1,&>, ...} having d.f. F,. If F,,(6x) =
X

—00
o(/x F¢(x)) for each § € (0, 1), then Fs, € L.

In all presented results, r.v.s {£1, &, ...} are identically distributed. In this work,
we consider independent, but not necessarily identically distributed, r.v.s. As was
noted, we restrict our consideration on the class OL. In fact, in this paper, we gener-
alize the results of [4]. If {£1, &, ...} may be not identically distributed, then various
collections of conditions on r.v.s {1, &2, ...} and n imply that F5, € OL. The rest of
the paper is organized as follows. In Section 2, we formulate our main results. In Sec-
tion 3, we present all auxiliary assertions, and the detailed proofs of the main results
are presented in Section 4. Finally, a few examples of O-exponential random sums
are described in Section 5.
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2 Main results

In this section, we formulate our main results. The first result describes the situation
where the tails of d.f.s F, for large indices k are uniformly comparable with itself at
the points x and x — 1 for all x € [0, 00).

Theorem 4. Let {£1, &, ...} be independent nonnegative random variables with d.f.s
{Fg,, Fy,, ...}, and let n be a counting rv. independent of {§1,&2, ...}. Then Fs, €
OL if the following three conditions are satisfied.

o For some k € supp(n) \ {0} ={n e N: P(n =n) >0}, F, € OL.

e For each k € supp(n), k < k, either lim ;E"( )= =0or Fgy € OL.

x—>00 g (X
1
® sup sup %
x20k>1 Foe®
Since each d.f. from the class OL is comparable with itself, the next assertion

follows immediately from Theorem 4.

Corollary 1. Ler {&1, &, ...} be independent nonnegative random variables with
common d.f. Fg € OL. Then the d.f. of random sum Fy, is O-exponential for an
arbitrary counting r.v. n.

Our second main assertion is dealt with counting r.v.s having finite support.

Theorem 5. Let {£1,&>,...,&Ep}, D € N, be independent nonnegative random vari-
ables with d.f.s {Fg,, Fg,, ... Fgp}, and let n be a counting r.v. independent of {&1,
&, ...,&p}. Then Fs, € OL under the following three conditions.

eP(n<D)=1

e For some k € supp(n) \ {0}, Fg, € OL.

e Foreachk € {1,2, ..., D}, either hm _S"( *)
oo Fg ()

Our last main assertion describes the case where the tails of d.f.s F, are compa-
rable at x and x — 1 asymptotically and uniformly with respect to large indices k. In
this case, conditions are more restrictive for a counting r.v.

=0or Fg € OL.

Theorem 6. Let {£1, &, ...} be independent nonnegative random variables with d.f.s
{Fg,, Fe,, ...}, and let n be a counting rv. d.f. F, independent of {§1,&;,...}. Then
Fs, € OL if the following five conditions are satisfied.

e For some k € supp(n) \ {0}, Fg, € OL.

e For each k € supp(n), k < k, either lim ;E"( )= =0or Fgy € OL.

x—>00 I'g (x

(x—=1)
e lim sup sup )
x—>00 k>1 F5K+1<(X)

o limsup 1 37 lsup(FgH,(x 1) —Fg,,(x) <L

k— 00

e For each § € (o, 1), Fy(8x) = O(Jx Fg, (x)).

< Q.

3 Auxiliary lemmas

In this section, we present all assertions that we use in the proofs of our main results.
We present some of auxiliary results with proofs. The first assertion can be found in
[7] (see Eq. (2.12)).
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Lemma 1. Let F and G be two d.fs satisfying F(x) > 0, G(x) > 0, x € R. Then
FxG(x—1) { F(y—t) E(y—t)}
—_— < maxjy sup ————, su —_—

F % G(x) v FO) yza—vie GO

forallx e R,veR andt > 0.

The following assertion is the well-known Kolmogorov—Rogozin inequality for
concentration functions. Recall that the Lévy concentration function or simply con-
centration function of a r.v. X is the function

Ox(A) =supPx < X <x+A), Xtel0,00).

xeR
The proof of the next lemma can be found in [14] (Theorem 2.15).

Lemma 2. Let X1, X3, ..., X, be independent r.v.s, and let Z, = 22:1 Xi. Then,
foralln e N,

n —1/2
0z,0) < Ax{ > (- ka(m)} :
k=1
where A is an absolute constant, and 0 < Ay < A foreachk € {1,2,...,n}.

The following assertion describes sufficient conditions under which the d.f. of
two independent r.v.s belongs to the class OL.

Lemma 3. Let X1 and X be independent r.v.s with d.f.s Fx, and Fy,, respectively.
Then the d.f. Fx, * Fx, of the sum X1 + X5 is O-exponential if Fx, € OL and one
of the following two conditions holds:

o lim 2% _ )
X—>00 FX1 (x)
o Fx,eOL.

Proof. We split the proof into three parts.

L. First, suppose that P(X, < D) = 1 for some D > 0. In this case, condition (2)
holds evidently.

For each real x, we have

FX]*FXZ(X):P(X1+X2>X): / FXI(X—)’)dFXZ(y)-

(=00,D]
Hence, for such x,
- - 1 fxl(x—y)
Fx, x Fx,(x —1) Jwom Fxie=1=y le(—x_y)dFXz(Y)
Fx % o () Jcoo.p1 Fxi (& = )dFx, (9)

FX] x—1-y)— B
e 3 P s

X

f(—oo,D] le (x — )’)dFXz()’)
fXI(Z - 1)

Z})C*D FXI (Z)
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This estimate implies that

. Fxl*sz(x—l) . fxl(z—l)
lim sup ——— < limsup sup ————
X—00 Fx, x Fx,(x) x—>00 >x-D Fx,(2)

. Fx,(y—1
= limsup ———
y=oo  Fx(y)

< 00

because Fx, € OL. So, Fx, * Fx, € OL as well. B
II. Now let us consider the case where condition (2) holds but F'x, (x) > 0 for all
x € R. For each real x, we have

[e¢]

Fx, * Fx,(x) = / Fx, (x — y)dFx, ().

—00

Therefore,

FX]*FXQ(X_I):( / + / )fXI(X—l_)’)dFXZ(y)

(=00, x—=M]  (x—M,00)

— Fx (x —y) —
< / Fy, (= 1= X =D g (3 4+ Fryxr — M)
FX](x_y)
(=00, x—M]
F -1 _ —
<s FanG=D Fx,(x — y)dFx,(y) + Fx,(x — M)
Z}M FX](Z)

(—00, x—M]
for all M, x such that 0 < M < x — 1. In addition, for such M and x, we obtain
Fr,  Fry (1) > / Fr, (r — ndFx, (),
(=00, x—M]

Fx, x Fx,(x) 2 / Fx,(x — y)dFx,(y)
(M, 00)
> Fx,(x — M)Fx,(M).

The obtained estimates imply that

Fx, * o= _ fxl(z—1)+ Fx,(x — M)
FX] * FXz(x) =M FX](Z) FX](x - M)FX2(M)

for all x and M such that 0 < M < x — 1. Consequently,

. Fx, * Fx,(x — 1) Fx, (z—1) 1 . Fx,(x — M)
lim SUp ————— < su — + = limsup —/———
X—>00 Fx, x Fx,(x) =M Fx,(2) Fx,(M) x—o00 Fx,(x —M)
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fXI (z—1
>M Fx, ()

for all positive M. Therefore,

Fyx, % F —1 Fx (M —1
lim sup Xk P )<1 FuM -1 )<oo

X—00 Fx, x Fx,(x) M—>00 FXI(M)

because Fy, is O-exponential. Consequently, Fx, * Fx, € OL by (1).
IIL. It remains to prove the assertion when both d.f.s Fx, and Fx, are O-exponen-
tial. By Lemma 1 we have

FX1 *sz(x — 1)
FX] *sz(x)

F -1 F -1
<max{supM, su M}

oM Fx, (@) ami1 Fx,(2)

for all x and M such that 0 < M < x — 1. Therefore, for every positive M,

i Fx, * Fx,(x — 1)
msup ————
X—> 00 FX] * sz(x)

. { Fx,(z—1) Fx,(z—1) }

<maxj sup ——,limsup sup ———
=M Fx,(2) x—>00 2x-M+1  Fx,(2)
=M Fx (@) yooo Fx(y)

Letting M tend to infinity, we get that

FX1 * FXZ()C — 1)

lim sup ————
xX—>00 FX1 * sz(x)
. Fx,(M 1) . Fx,(y = 1)
< max | limsup ———, limsup —— < o©
M—oo Fx (M) y—>00 Fx,(y)

because Fx, and Fx, belong to class OL. Consequently, Fx, * Fx, € OL due to
requirement (1). Lemma 3 is proved. O

Lemma 4. Let (X1, X5, ..., X,} be independent nonnegative r.v.s with d.f.s {Fx,,
Fx,,..., Fx,}. Let Fx, € OL and suppose that, for each k € {2,3, ..., n}, either

Do _ 0 or Fx, € OL. Then the d.f. Fx, * Fx, % --- % Fx, belongs to the

x—o0 Fx (x)

class OL.
Proof. We use induction on n. If n = 2, then the statement follows from Lemma 3.
Suppose that the statement holds if n = m, that is, Fx, % Fx, *---*% Fx, € OL, and

we will show that the statement is correct forn = m + 1.

Conditions of the lemma imply that Fx,,,, € OL or

lim Pt @) = lim Pty ()
x_’OOFXl*FXZ*-”*FXm()C) x>0 P(X + -4+ Xy > X)
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F F
x—o00 P(X| > x) X—00 FX1 (x)

So, using Lemma 3 again, we get

FX1*FX2*"'*FX =(FX1*FX2*-'->I<FX”1)*FX e OL.

m+1 m+1

We see that the statement of the lemma holds for n = m + 1 and, consequently, by
induction, for all n € N. The lemma is proved. 4

4 Proofs of the main results

In this section, we present proofs of our main results.

Proof of Theorem 4. Conditions of Theorem and Lemma 4 imply that the d.f.
Fg (x) = P(S¢ < x) belongs to the class OL. So, we have

Fg (x — 1
lim sup M < 00 3)
X—>00 Fs (x)

or, equivalently,

Fgs (x—1) <o

d 4)
x20 Fg (x)
for some positive constant cy.
We observe that, for all x > 0,
P(S, >x—1)
S , 5
PGS, > ) J1(x) + J2(x) )]
where
P(S, >x—1,n<«)
Ji(x) = (S, = ©) ;
PSS, >x—1,n>«)
Ja(x) = (S, > ¥) .

Since « € supp(n), we obtain

Yoo P(Sy > x — DP(n =n)
ZZC):() P(S, > x)P(n =n)
< 1
P(Se > 0)P(n =«)
_P(Se>x—-DPOHn <)
P(S, >x) P(n=«)

Ji(x) =

D> P(Se > x = DP( =n)
n=0
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Hence, it follows from (3) that

lim sup J(x) < oo. (6)
X—>00
By Lemma 1 we have
- - F -1
P(Seri>x =1 _ max{ p PO = 2= 1) 6 (@ )} o
P(Sk+1 > x) >u PSe>2)  o>v-mp1 Fe (2

for all real x and M.
The third condition of the theorem implies that

F -1
sup M ) ®)

20 Fg (x)

for all kK € N and some positive ¢;.
If we choose M = x /2 in estimate (7), then, using (4), we get

P(S -1
sup w < max {cq, 2} := c3. ©)]
x>0 P(Se+1 > x)

Applying Lemma 1 again, we obtain

P(Sk42 >x —1)

P(Se+1 >z — 1) Fe ,(z—1) }
P(Set2 > x) '

<maxq sup ————, =
A {@M P(Sc+1>2)  >x-mt1 Fe o, (2)

By choosing M = x /2 we get from inequalities (8) and (9) that

P(Se2 >x—1)
SUp —————— < c3.
x>0 P(SK+2 > X)

Continuing the process, we find

P(Sctk >x -1

<G
x>0 ]P)(SK_H( > x)

for all £ € N. Therefore,

l o
Jo(x) = m kE=1P(5x+k >x—DP(n =« +k)
Cc3 ad N
< IP)(S,7—>x) kEZI P(Skk > X)P(n =« + k)

a3P(S, > x) _

forall x > 0.
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The obtained relations (5), (6), and (10) imply that
P(S, >x—1)

lim sup ————— < oo.
X—>00 P(Sn > x)
Therefore, the d.f. Fs, belongs to the class OL due to requirement (1). Theorem 4 is
proved. O

Proof of Theorem 5. The statement of the theorem can be derived from Theorem 4
or proved directly. We present the direct proof of Theorem 5.

It is evident that Sy = & + Zﬁ:L nti &, for each k > «. Hence, by Lemma 4,
Fs, e OLforallk <k < D.

If x > 1, then we have

P P(S, > x — P =n)

P(SW >x—1) _ nesupp(n)
P(Sy > x) P P(S, > )Py =n)
nesupp(n)
P(Se > x — DP( < «) + Y P0cii P(S, > x — DP( = n)

< nesupp(n)

P(Se > x)P(n =) + ZDM(I P(S, > x)P(n = n)
nesupp(n)
PS¢ > x — DP(n < k) P(S, >x—1)
< max , max —— ¢, (11)
PS¢ > x)P(n =«k)  «+isn<d P(S, > x)

nesupp(i)

where in the last step we use the inequality

ata+--+ay {a] as an}
< X s

<max{—, —=,..., —
bi+by+---+by b1 by b,

provided thatn > 1 and a;, b; > Ofori € {1,2,...,n}.
Since Fs, € OL for alln > «, we get from (11) that

. P(S, >x—1)
limsup ——— < oo, (12)
X—>00 P(Sn > x)

and the statement of Theorem 5 follows. O

Proof of Theorem 6. As usual, it suffices to prove relation (12). If x > 0, then we
have

P(Sy > x) =Y P(S, > x)P(n=n)
n=l1
= P(S¢ > x)P(n = «)
> Fe, ()P = 1) (13)

Similarly, for K > 2 and x > 2K,

PSSy >x—1) = ZP(Sn >x— DP(n =n)
n=1
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+ > P(Scir > x — DP(n =k + k)
1<k (= 1)/(K—1)
+ Z P(x — 1 < Sear < OP( =k +k)
k>x—1)/(K—-1)
+ Y. PG =0Ph=k+k
k>x—1)/(K—1)
=K1x) + Ka(x) + K3(x) + Ka(x). (14)

The distribution function Fs, belongs to the class OL due to Lemma 4. So, by esti-
mate (6) we have
Ki(x)

lim sup —————— = limsup J;(x) < oo. 15
x—>oop P(Sn > X) x—>oop 1(x) (13

Now we consider the sum /C>(x). Since Fs, is O-exponential, we have

IP’(S,(>x—1)<

sup <y

x>0 P(Sk > x)
with some positive constant c4. On the other hand, the third condition of Theorem 6
implies that o

F x—1

sup M < ¢

xzes Fe ()
for some constants ¢cs5 > 2, cg > O and all k € N.

By Lemma 1 (with v = ¢5) we have

P(Set1 > x — 1)
P(Set1 > %)

{ P(Se > z— 1) féﬂ@—lq
< max sup ) = .
z=2x—cs5+1 ]P(SK > Z) z2c5 F§K+1 (Z)

Consequently,
P(S -1
sup w < max {cg, cg} : = c7.
e P(Se+1 > X)

Applying Lemma 1 again for the sum S, = Sc41 + &c42 (With v = x/2 4+ 1/2),
we get

P(Se2 > x — 1)

P(Seq1 >z —1) ?hﬂ@—lq
P(Sc12 > x) '

< max{ sup , S =
P(Sct1 > 2) Zzi+d Fe ()

23+)
Ifx > 2(c5—1)+1,then x/2+1/2 > c5. Therefore, by the last inequality we obtain
that
P(Se2 > x — 1)
sup — < 7.
x22cs—)+1  P(Se+2 > X)

Applying Lemma 1 once again (with v = x/3 4 2/3), we get

P(Sepp>z=1) ?EH&—D}
P(Se2>2) 23+3% f€K+3(Z)

P(Scy3 >x—1)

< max{ sup
P(Sk+3 > x)

z}z%+%
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Ifx >3(s—1)+1,then2x/3+1/3 > 2(¢c5 — 1)+ 1 and x/3 +2/3 > c5. So, the
last estimate implies
P(Scs3 > x — 1)

sup — “ <.
x23(cs—)+1  P(Se+3 > X)

Continuing the process, we can get that

P(S, —1
sup M <7 (16)
Skes—D+1  P(Setr > X)

forall k € N.
We can suppose that K = cs in representation (14). In such a case, it follows from
inequality (16) that

Ka(x) c7
limsup ————— < limsup ——— P(S >x)Pn=«x+k
msup ey Simswp e >, PSen > 0P( )
1<k<;5
< o7. 17
Since, obviously,
K

hmsupﬂ <1, (18)

X—00 P(Sn > x)
it remains to estimate sum &3 (x). Using Lemma 2, we obtain

k

Ks(x) < A Xij—x+m(§j( mme—1<aH<x0)

P =1 xeR

—1/2

5

with some absolute positive constant A. By the fourth condition of the theorem,

k
1 o J—
- E suﬁ (Feo(x = 1) = Fg ,(x)) < 1= A

1=1 xXe

=~

for some 0 < A < 1 and all sufficiently large k. So, for such k,

k
> (1= supP — 1 < er < 0)) > kA

=1 xeR

From the last estimate it follows that

A 1
K < — —P(n = k
3(x) ~@'2;¢%w )

>efl

A Jes—1

x—1
—P
\/_ x—1 <n>K+C5—1>
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for sufficiently large x. Therefore,

i K3(x)
imsup ————
X—00 P(Sr; > x)
A s — hm up 77(05 ) Jim sup Fe(x—1)
J—P( =K) x—so0 VX —1Fg(x—1) x»00 Fg (x)
<0 (19)

by estimate (13) and the last condition of the theorem. Representation (14) and es-
timates (15), (17), (18), and (19) imply the desired inequality (12). Theorem 6 is
proved. g

5 Examples of O-exponential random sums

In this section, we present three examples of random sums ;) for which the d.f.s Fg,
are O-exponential.

Example 1. Let {£1, &, ...} be independent r.v.s. We suppose that the r.v. & for

k e€{1,2,..., D}is distributed according to the Pareto law with parameters k and «,
that is,

_ o

F = ’ 2 O»
where k € {1,2,...,D}, D > 1, and @ > 0. In addition, we suppose that the r.v.

Ep+k for each k € N is distributed according to the exponential law with parameter
A/ k, that is,
F§D+k (x)=e Mk x>0

It follows from Theorem 4 that the d.f. of the random sum S, is O-exponential for
each counting r.v. n independent of {£1, &>, ...} under the condition P(n = x) > 0
for some k € {1, 2, ..., D} because:

o Fr e LCOL foreachk <«

F X
o supsupL)
x20k21  Fg (x)
1 F X
:max{ sup sup ——, supsu pM}
o<x<1k>1 Fe (X)) x>1k>1 Fgm(X)

Kk+k+x o /k
= max Sup max max E—— , Sup € ,
0<x<1 1<k<D—« kK +k k>1

K+k+x \* Wk
Sup max max —_——— , Sup €
x>1 1<k<D—« K+k+x—l k>1

< max {27, e’\}.
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Example 2. Let a r.v. n be uniformly distributed on {1, 2, ..., D}, that is,

1
Pn=k =5, ke(l.2.....D}.

for some D > 2. Let {£1, &, ..., &p} be independent r.v.s, where & is exponentially
distributed, and &, . .., £p are uniformly distributed.
If the r.v. n is independent of the r.v.s {§1, &, ..., Ep}, then Theorem 5 implies

that the d.f. of the random sum §,, is O-exponential.

Example 3. Let {£1, &>, ...} be independent r.v.s, where {£1, &, . .., &1} are finitely
supported, ¥ > 2, and &, is distributed according to the Weibull law, that is,

Fe, (x) = eV x>0

In addition, we suppose that the r.v. &« for each k = m?, m > 2, has the d.f. with
tail

ifx <0,

if0<x <k,
e R ifx >k,

F§K+k (x) =

e —

whereas for each remaining index k ¢ {m?,m e N\ {1}}, the r.v. ¢k has the expo-
nential distribution, that is,

FSK+;<(X) =e*, x>=0.

If the counting r.v. 1 is independent of {£1, &, ...} and is distributed according to
the Poisson law with parameter A, then it follows from Theorem 6 that the random
sum S, is O-exponentially distributed because:

o Fi €cLCOL;

F
o tim 280 g o1 -t
X—>00 F§ (x)
X
. supsupM
21kl Fe ()
F x —1 F x—1
= sup max{ sup M su gfr#)}
xz1 k1 k=m2m>2 Feo () k>1, k#m? Fe  (x)

sup max { sup {100 + e g1y () + el jkt1,00) 0}

x>1 k>1, k=m2, m>2
sup e} =e;
k>1, k#m?

e limsup— Zsup Fg ,(x—1)— Fg ,(x))

k— 00 1=1 x=0

k

“wmswi( 32 (1-9)+(1-0) 2 )

I=1,1=m I=1,1#m?
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(1-5)
S e §
€

eA

° fn(x)<<—>, X > A.
X

e.g.

Here the last estimate is the well-known Chernof bound for the Poisson law (see,
,p-971in [13]).
As we can see, the r.v.s {£1, &, ...} from the last example satisfy the conditions

of Theorem 6, whereas the third condition of Theorem 4 does not hold because, in

this case,

F, x—1 F x—1
sup sup M = sup sup M = sup sup k= oo.
x=0k>1  Fg (%) o<x<lk>1 Fg (x) 0<x <1 k=m2,m>2
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