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Abstract We consider the problem of optimal estimation of the linear functional ANξ =∑N
k=0 a(k)ξ(k) depending on the unknown values of a stochastic sequence ξ(m) with sta-

tionary increments from observations of the sequence ξ(m) + η(m) at points of the set Z \
{0, 1, 2, . . . , N}, where η(m) is a stationary sequence uncorrelated with ξ(m). We propose
formulas for calculating the mean square error and the spectral characteristic of the optimal
linear estimate of the functional in the case of spectral certainty, where spectral densities of
the sequences are exactly known. We also consider the problem for a class of cointegrated
sequences. We propose relations that determine the least favorable spectral densities and the
minimax spectral characteristics in the case of spectral uncertainty, where spectral densities are
not exactly known while a set of admissible spectral densities is specified.

Keywords Stochastic sequence with stationary increments, cointegrated sequences,
minimax-robust estimate, mean square error, least favorable spectral density, minimax-robust
spectral characteristic
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1 Introduction

In this paper, we investigate the problem of estimating the missed observations of
stochastic sequences with stationary increments. Kolmogorov [13], Wiener [27], and
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Yaglom [29, 30] developed effective methods of estimation of the unknown values
of stationary sequences and processes. Later on Yaglom [28] and Pinsker [21] intro-
duced and investigated stochastic processes with stationary increments of order n.
Properties of these and other processes generalizing the concept of stationarity are
described in the books by Yaglom [29, 30]. The stationary and related stochastic
sequences are widely used in econometrics and in financial time series analysis. Ex-
amples of these sequences are autoregressive sequences (AR), moving-average se-
quences (MA), and autoregressive moving-average sequences (ARMA). Time series
with trends are described by integrated ARMA sequences (ARIMA) and seasonal
time series, which are examples of stochastic sequences with stationary increments.
These models are properly described in the book by Box, Jenkins, and Reinsel [2].
Granger [8] introduced a concept of cointegrated sequences, namely, the integrated
sequences such that some linear combination of them has a lower order of integra-
tion. Cointegrated sequences are described in more details in the paper by Engle and
Granger [5]. We also refer to the papers [3, 4, 9, 12] for recent developments.

Traditional methods of finding solutions to extrapolation, interpolation, and filter-
ing problems for stationary and related stochastic processes are developed under the
basic assumption that the spectral densities of the considered stochastic processes are
exactly known. However, in most practical situations, complete information on the
spectral densities of the processes is not available. Investigators can apply the tradi-
tional methods considering the estimated spectral densities instead of the true ones.
However, as it was shown by Vastola and Poor [26] with the help of some examples,
this approach can result in significant increasing of the value of the error of estimate.
Therefore, it is reasonable to derive estimates that are optimal for all densities from
a certain class of spectral densities. These estimates are called minimax-robust since
they minimize the maximum of the mean-square errors for all spectral densities from
a set of admissible spectral densities simultaneously. This approach to study the prob-
lem of extrapolation of stationary stochastic processes was introduced by Grenander
[10]. Franke [6] investigated the minimax extrapolation and interpolation problems
for stationary sequences applying the convex optimization methods. In the book by
Moklyachuk [20], the minimax-robust estimates of the linear functionals of station-
ary sequences and processes are presented. See also the survey paper [18], The classi-
cal and minimax-robust problems of interpolation, extrapolation, and filtering of the
functional of stochastic sequences with stationary increments are investigated in the
papers by Luz and Moklyachuk [14–17, 19]. Particularly, the cointegrated sequences
are investigated in the papers [14, 15]. The classical extrapolation problem in the case
where both the signal and the noise processes are not stationary was investigated by
Bell [1].

In the present paper, we consider the problem of estimation of the linear functional

ANξ =
N∑

k=0

a(k)ξ(k),

which depends on the unknown values of the sequence ξ(k) with stationary nth in-
crements based on observations of the sequence ξ(k) + η(k) at points m ∈ Z \
{0, 1, 2, . . . , N}. The sequence η(k) is assumed to be stationary and uncorrelated
with ξ(k).
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2 Stationary increment stochastic sequences. Spectral representation

In this section, we present the main results of the spectral theory of stochastic se-
quences with nth stationary increments. For more details, we refer to the books by
Yaglom [29, 30].

Definition 1. For a given stochastic sequence {ξ(m),m ∈ Z}, the sequence

ξ (n)(m,μ) = (1 − Bμ)nξ(m) =
n∑

l=0

(−1)l
(

n

l

)
ξ(m − lμ), (1)

where Bμ is the backward shift operator with step μ ∈ Z such that Bμξ(m) = ξ(m−
μ), is called a stochastic nth increment sequence with step μ ∈ Z.

Definition 2. The stochastic nth increment sequence ξ (n)(m,μ) generated by a sto-
chastic sequence {ξ(m),m ∈ Z} is wide sense stationary if the mathematical expec-
tations

Eξ (n)(m0, μ) = c(n)(μ),

Eξ (n)(m0 + m,μ1)ξ (n)(m0, μ2) = D(n)(m,μ1, μ2)

exist for all m0, μ,m,μ1, μ2 and do not depend on m0. The function c(n)(μ) is called
the mean value of the nth increment sequence, and the function D(n)(m,μ1, μ2) is
called the structural function of the stationary nth increment sequence (or the struc-
tural function of nth order of the stochastic sequence {ξ(m),m ∈ Z}).
Theorem 1. The mean value c(n)(μ) and the structural function D(n)(m,μ1, μ2) of
the stochastic stationary nth increment sequence ξ (n)(m,μ) can be represented in the
following forms:

c(n)(μ) = cμn, (2)

D(n)(m,μ1, μ2) =
∫ π

−π

eiλm
(
1 − e−iμ1λ

)n(1 − eiμ2λ
)n 1

λ2n
dF (λ), (3)

where c is a constant, F(λ) is a left-continuous nondecreasing bounded function with
F(−π) = 0. The constant c and the function F(λ) are determined uniquely by the
increment sequence ξ (n)(m,μ).

Representation (3) and the Karhunen theorem [7] give us a spectral representation
of the stationary nth increment sequence ξ (n)(m,μ):

ξ (n)(m,μ) =
∫ π

−π

eimλ
(
1 − e−iμλ

)n 1

(iλ)n
dZξ(n) (λ), (4)

where Zξ(n) (λ) is a random process with uncorrelated increments on [−π, π) with
respect to the spectral function F(λ):

E
∣∣Zξ(n) (t2) − Zξ(n) (t1)

∣∣2 = F(t2) − F(t1) ∀ − π ≤ t1 < t2 < π.

We will use the spectral representation (4) for deriving the optimal linear esti-
mates of unknown values of stochastic sequences with stationary increments.
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3 Hilbert space projection method of interpolation

Consider a stochastic sequence {ξ(m),m ∈ Z} with stationary nth increments
ξ (n)(m,μ) and uncorrelated with ξ(m) stationary stochastic sequence {η(m),m ∈ Z}.
Suppose that these sequences have absolutely continuous spectral functions F(λ) and
G(λ) with spectral densities f (λ) and g(λ), respectively. We will suppose that the
stationary increment ξ (n)(m,μ) and the stationary sequence η(m) have zero mean
values and μ > 0.

Interpolation problem for the sequences ξ(m) and η(m) is considered as the prob-
lem of the mean-square optimal estimation of the linear functional

ANξ =
N∑

k=0

a(k)ξ(k),

which depends on the unknown values of the stochastic sequence ξ(m) at points m =
0, 1, . . . , N based on observations of the sequence ζ(m) = ξ(m) + η(m) at points of
the set Z \ {0, 1, 2 . . . , N}.

Suppose that the spectral densities f (λ) and g(λ) satisfy the minimality condition∫ π

−π

λ2n

|1 − eiλμ|2n(f (λ) + λ2ng(λ))
dλ < ∞. (5)

Under this condition, the mean-square error of the estimate of the functional ANξ is
not equal to zero [24].

The functional ANξ admits the representation

ANξ = ANζ − ANη = BNζ − ANη − VNζ = HNξ − VNζ, (6)

where

HNξ := BNζ − ANη, ANζ =
N∑

k=0

a(k)ζ(k), ANη =
N∑

k=0

a(k)η(k),

BNζ =
N∑

k=0

bμ,N(k)ζ (n)(k, μ), VNζ =
−1∑

k=−μn

vμ,N(k)ζ(k).

The coefficients vμ,N(k), k = −μn,−μn+1, . . . ,−1, and bμ,N(k), k = 0, 1, 2, . . . ,

N , are calculated by the formulas (see [15])

vμ,N(k) =
min{[ N−k

μ
],n}∑

l=[− k
μ

]′
(−1)l

(
n

l

)
bμ,N(lμ+k), k = −μn,−μn+1, . . . ,−1, (7)

bμ,N(k) =
N∑

m=k

a(m)dμ(m − k) = (
D

μ
N aN

)
k
, k = 0, 1, . . . , N, (8)
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where by [x]′ we denote the least integer number among the numbers that are greater
than or equal to x, the coefficients {dμ(k) : k ≥ 0} are determined by the relationship

∞∑
k=0

dμ(k)xk =
( ∞∑

j=0

xμj

)n

,

the matrix D
μ
N of dimension (N+1)×(N+1) is defined by the coefficients (D

μ
N)k,j =

dμ(j − k) if 0 ≤ k ≤ j ≤ N , and (D
μ
N)k,j = 0 if 0 ≤ j < k ≤ N ; and aN =

(a(0), a(1), a(2), . . . , a(N))′ is a vector of dimension (N + 1).
The functional HNξ from representation (6) has finite variance, and the functional

VNζ depends on the known observations of the stochastic sequence ζ(k) at the points
k = −μn,−μn + 1, . . . ,−1. Therefore, optimal estimates ÂNξ and ĤNξ of the
functionals ANξ and HNξ and the mean-square errors Δ(f, g; ÂNξ) = E|ANξ −
ÂNξ |2 and Δ(f, g; ĤNξ) = E|HNξ − ĤNξ |2 of the estimates ÂNξ and ĤNξ satisfy
the following relations:

ÂNξ = ĤNξ − VNζ,

Δ(f, g; ÂNξ) = E|ANξ − ÂNξ |2 = E|HNξ − VNζ − ĤNξ + VNζ |2
= E|HNξ − ĤNξ |2 = Δ(f, g; ĤNξ). (9)

Thus, the interpolation problem for the functional ANξ is equivalent to the interpo-
lation problem for the functional HNξ . This problem can be solved by applying the
Hilbert space projection method proposed by Kolmogorov [13]. The optimal linear
estimate ÂNξ of the functional ANξ can be represented in the form

ÂNξ =
∫ π

−π

hμ(λ)dZξ(n)+η(n) (λ) −
−1∑

k=−μn

vμ,N(k)
(
ξ(k) + η(k)

)
, (10)

where hμ(λ) is the spectral characteristic of the optimal estimate ĤNξ .

Let H 0−(ξ
(n)
μ + η

(n)
μ ) be the closed linear subspace generated by elements

{ξ (n)(k, μ)+η(n)(k, μ) : k ≤ −1} of the Hilbert space H = L2(Ω,F , P) of random
variables γ with zero mean value and finite variance, Eγ = 0, E|γ |2 < ∞, with
the inner product (γ1; γ2) = Eγ1γ2. Let HN+(ξ

(n)
−μ + η

(n)
−μ) be the closed linear sub-

space of the Hilbert space H = L2(Ω,F , P) generated by elements {ξ (n)(k,−μ) +
η(n)(k,−μ) : k ≥ N +1}. The equality ξ (n)(k,−μ) = (−1)nξ (n)(k+μn,μ) implies

HN+(
ξ

(n)
−μ + η

(n)
−μ

) = H(N+μn)+(
ξ (n)
μ + η(n)

μ

)
.

Let us also define the subspaces L0−
2 (p) and LN+

2 (p) of the Hilbert space L2(p)

with the inner product (x1; x2) = ∫ π

−π
x1(λ)x2(λ)p(λ)dλ that are generated by the

functions {eiλk(1 − e−iλμ)n(iλ)−n : k ≤ −1} and {eiλk(1 − e−iλμ)n(iλ)−n : k ≥
N + 1}, respectively, where the function

p(λ) = f (λ) + λ2ng(λ)
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is the spectral density of the sequence ζ(m), m ∈ Z [15]. The optimal estimate ĤNξ

of the functional HNξ is the projection of the element HNξ of the Hilbert space
H = L2(Ω,F , P) onto the subspace

H 0−(
ξ (n)
μ +η(n)

μ

)⊕HN+(
ξ

(n)
−μ +η

(n)
−μ

) = H 0−(
ξ (n)
μ +η(n)

μ

)⊕H(N+μn)+(
ξ (n)
μ +η(n)

μ

)
.

The following conditions characterize the estimate ĤNξ :

1) ĤNξ ∈ H 0−(ξ
(n)
μ + η

(n)
μ ) ⊕ H(N+μn)+(ξ

(n)
μ + η

(n)
μ );

2) (HNξ − ĤNξ) ⊥ H 0−(ξ
(n)
μ + η

(n)
μ ) ⊕ H(N+μn)+(ξ

(n)
μ + η

(n)
μ ).

The functional HNξ in the space H admits the spectral representation

HNξ =
∫ π

−π

B
μ
N

(
eiλ

) (1 − e−iλμ)n

(iλ)n
dZξ(n)+η(n) (λ) −

∫ π

−π

AN

(
eiλ

)
dZη(λ),

B
μ
N

(
eiλ

) =
N∑

k=0

bμ,N(k)eiλk =
N∑

k=0

(
D

μ
N aN

)
k
eiλk, AN

(
eiλ

) =
N∑

k=0

a(k)eiλk.

Making use of the described representation and condition 2), we derive the following
equation for determining the spectral characteristic hμ(λ):∫ π

−π

[(
B

μ
N

(
eiλ

) (1 − e−iλμ)n

(iλ)n
− hμ(λ)

)
p(λ) − A

(
eiλ

)
g(λ)(−iλ)n

]
× (1 − eiλμ)n

(−iλ)n
e−iλkdλ = 0 ∀k ≤ −1, ∀k ≥ N + μn + 1.

Thus, the spectral characteristic hμ(λ) can be represented as follows:

hμ(λ) = B
μ
N

(
eiλ

) (1 − e−iλμ)n

(iλ)n
− AN

(
eiλ

) (−iλ)ng(λ)

p(λ)
− (−iλ)nC

μ
N(eiλ)

(1 − eiλμ)np(λ)
,

C
μ
N

(
eiλ

) =
N+μn∑
k=0

cμ(k)eiλk, (11)

where cμ(k), k = 0, 1, 2, . . . , N + μn, are unknown coefficients we have to deter-
mine. Condition 1) implies that the spectral characteristic hμ(λ) satisfies the follow-
ing equations:∫ π

−π

[
B

μ
N

(
eiλ

) − AN(eiλ)λ2ng(λ)

(1 − e−iλμ)np(λ)
− λ2nC

μ
N(eiλ)

|1 − eiλμ|2np(λ)

]
e−iλldλ = 0,

0 ≤ l ≤ N + μn.

The derived equations are represented as a system of N + μn + 1 linear equations:

bμ,N(l) −
N+μn∑
m=0

T
μ
l,maμ,N(m) =

N+μn∑
k=0

P
μ
l,kcμ(k), 0 ≤ l ≤ N, (12)
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−
N+μn∑
m=0

T
μ
l,maμ,N(m) =

N+μn∑
k=0

P
μ
l,kcμ(k), N + 1 ≤ l ≤ N + μn, (13)

where the coefficients {aμ,N(m) : 0 ≤ m ≤ N + μn} are calculated by the formula

aμ,N(m) =
min{[ m

μ
],n}∑

l=max{[ m−N
μ

]′,0}
(−1)l

(
n

l

)
a(m − μl), 0 ≤ m ≤ N + μn, (14)

and the Fourier coefficients {T μ
k,j , P

μ
k,j : 0 ≤ k, j ≤ N + μn} are calculated by the

formulas

T
μ
k,j = 1

2π

∫ π

−π

eiλ(j−k) λ2ng(λ)

|1 − eiλμ|2n(f (λ) + λ2ng(λ))
dλ, 0 ≤ k, j ≤ N + μn,

P
μ
k,j = 1

2π

∫ π

−π

eiλ(j−k) λ2n

|1 − eiλμ|2n(f (λ) + λ2ng(λ))
dλ, 0 ≤ k, j ≤ N + μn.

Denote by [Dμ
N aN ]+μn the vector of dimension (N + μn + 1) constructed by

adding μn zeros to the vector D
μ
NaN of dimension (N + 1). Using these definitions,

system (12)–(13) can be represented in the matrix form[
D

μ
NaN

]
+μn

− Tμ
N aμ

N = Pμ
N cμ

N,

where
aμ
N = (

aμ,N(0), aμ,N (1), aμ,N (2), . . . , aμ,N (N + μn)
)′

and
cμ
N = (

cμ(0), cμ(1), cμ(2), . . . , cμ(N + μn)
)′

are vectors of dimension (N + μn + 1); and Pμ
N and Tμ

N are matrices of dimension
(N + μn + 1) × (N + μn + 1) with elements (Pμ

N)l,k = P
μ
l,k and (Tμ

N)l,k = T
μ
l,k ,

0 ≤ l, k ≤ N + μn. Thus, the coefficients cμ(k), 0 ≤ k ≤ N + μn, are determined
by the formula

cμ(k) = ((
Pμ

N

)−1[
D

μ
NaN

]
+μn

− (
Pμ

N

)−1Tμ
N aμ

)
k
, 0 ≤ k ≤ N + μn,

where ((Pμ
N)−1[Dμ

NaN ]+μn−(Pμ
N)−1Tμ

N aμ
N)k , 0 ≤ k ≤ N+μn, is the kth element of

the vector (Pμ
N)−1[Dμ

N aN ]+μn−(Pμ
N)−1Tμ

N aμ
N . The existence of the invertible matrix

(Pμ
N)−1 was shown in [25] under condition (5). The spectral characteristic hμ(λ) of

the estimate ĤNξ of the functional HNξ is calculated by formula (11), where

C
μ
N

(
eiλ

) =
N+μn∑
k=0

((
Pμ

N

)−1[
D

μ
NaN

]
+μn

− (
Pμ

N

)−1Tμ
N aμ

N

)
k
eiλk.

The value of the mean-square errors of the estimates ÂNξ and ĤNξ can be calculated
by the formula

Δ(f, g; ÂNξ) = Δ(f, g; ĤNξ) = E|HNξ − ĤNξ |2
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= 1

2π

∫ π

−π

|AN(eiλ)(1 − eiλμ)nf (λ) − λ2nC
μ
N(eiλ)|2

|1 − eiλμ|2n(f (λ) + λ2ng(λ))2
g(λ)dλ

+ 1

2π

∫ π

−π

|AN(eiλ)(1 − eiλμ)nλ2ng(λ) + λ2nC
μ
N(eiλ)|2

λ2n|1 − eiλμ|2n(f (λ) + λ2ng(λ))2
f (λ)dλ

= 〈[
D

μ
NaN

]
+μn

− Tμ
N aμ

N,
(
Pμ

N

)−1[
D

μ
NaN

]
+μn

− (
Pμ

N

)−1Tμ
N aμ

N

〉
+ 〈QNaN, aN 〉, (15)

where QN is the matrix of dimension (N+1)×(N+1) with the coefficients (QN)l,k =
Ql,k , 0 ≤ l, k ≤ N , calculated by the formula

Qk,j = 1

2π

∫ π

−π

eiλ(j−k) f (λ)g(λ)

f (λ) + λ2ng(λ)
dλ, 0 ≤ k, j ≤ N.

We can summarize the derived results in the form of the following theorem.

Theorem 2. Let {ξ(m),m ∈ Z} be a stochastic sequence with stationary nth incre-
ments ξ (n)(m,μ), and let {η(m),m ∈ Z} be a stationary stochastic sequence uncor-
related with ξ(m). Let the spectral densities f (λ) and g(λ) of the sequences satisfy
the minimality condition (5). The optimal linear estimate ÂNξ of the functional ANξ ,
which depends on the values ξ(m), 0 ≤ m ≤ N , based on the observations of the
sequence ξ(m) + η(m) at points of the set Z \ {0, 1, 2, . . . , N} is calculated by for-
mula (10). The spectral characteristic hμ(λ) and the value of the mean-square error
Δ(f, g; ÂNξ) of the optimal estimate ÂNξ are calculated by formulas (11) and (15),
respectively.

Corollary 1. Let the spectral density f (λ) of the sequence ξ(m) satisfy the minimal-
ity condition ∫ π

−π

λ2n

|1 − eiλμ|2nf (λ)
dλ < ∞.

The optimal linear estimate ÂNξ of the functional ANξ of unknown values ξ(m),
0 ≤ m ≤ N , based on observations of the sequence ξ(m) at the points m ∈ Z \
{0, 1, 2, . . . , N} can be calculated by the formula

ÂNξ =
∫ π

−π

hξ
μ(λ)dZξ(n) (λ) −

−1∑
k=−μn

vμ,N(k)ξ(k). (16)

The spectral characteristic h
ξ
μ(λ) and the mean-square error Δ(f ; ÂNξ) of the opti-

mal estimate ÂNξ can be calculated by the formulas

hξ
μ(λ) = B

μ
N

(
eiλ

) (1 − e−iλμ)n

(iλ)n
− (−iλ)n

∑N+μn
k=0 ((Fμ

N)−1[Dμ
N aN ]+μn)ke

iλk

(1 − eiλμ)nf (λ)
, (17)

Δ(f ; ÂNξ) = 1

2π

∫ π

−π

λ2n|∑N+μn
k=0 ((Fμ

N)−1[Dμ
NaN ]+μn)ke

iλk|2
|1 − eiλμ|2nf (λ)

dλ
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= 〈(
Fμ

N

)−1[
D

μ
NaN

]
+μn

,
[
D

μ
NaN

]
+μn

〉
, (18)

where Fμ
N is the matrix of dimension (N + μn + 1) × (N + μn + 1) with elements

(Fμ
N)k,j = F

μ
k,j , 0 ≤ k, j ≤ N + μn,

F
μ
k,j = 1

2π

∫ π

−π

eiλ(j−k) λ2n

|1 − eiλμ|2nf (λ)
dλ, 0 ≤ k, j ≤ N + μn.

In the case of estimation of an unobserved value ξ(p), 0 ≤ p ≤ N , the following
statement holds true.

Theorem 3. Let the conditions of Theorem 2 hold. The optimal linear estimate ξ̂ (p)

of an unobserved value ξ(p), 0 ≤ p ≤ N , of the stochastic sequence with nth sta-
tionary increments based on observations of the sequence ξ(m) + η(m) at the points
m ∈ Z \ {0, 1, 2, . . . , N} is calculated by the formula

ξ̂ (p) =
∫ π

−π

hμ,p(λ)dZξ(n)+η(n) (λ) −
n∑

l=1

(−1)l
(

n

l

)(
ξ(p − μl) + η(p − μl)

)
,

hμ,p(λ) = (1 − e−iλμ)n

(iλ)n

p∑
k=0

dμ(p − k)eiλk − eiλp(−iλ)ng(λ)

p(λ)
− (−iλ)nC

μ
p (eiλ)

(1 − eiλμ)np(λ)
,

Cμ
p (eiλ) =

N+μn∑
k=0

((
Pμ

N

)−1dμ,p − (
Pμ

N

)−1Tμ
pan

)
k
eiλk,

where
dμ,p = (

dμ(p), dμ(p − 1), dμ(p − 2), . . . , dμ(0), 0, . . . , 0
)′

and
an = (

an(0), an(1), . . . , an(n), 0, . . . , 0
)′
,

an(k) = (−1)k
(
n
k

)
, k = 0, 1, 2, . . . , n, are vectors of dimension (N + μn + 1), Tμ

p is
the (N +μn+ 1)× (N +μn+ 1) matrix with elements (Tμ

p)l,k = T
μ
l,p+μk if 0 ≤ l ≤

N + μn, 0 ≤ k ≤ n, and (Tμ
p)l,k = 0 if 0 ≤ l ≤ N + μn, N + 1 ≤ k ≤ N + μn. The

value of the mean-square error of the optimal estimate is calculated the by formula

Δ
(
f, g; ξ̂ (p)

) = 〈
dμ,p − Tμ

pan,
(
Pμ

N

)−1dμ,p − (
Pμ

N

)−1Tμ
pan

〉 + Q0,0.

Corollary 2. In the case of estimating the sequence ξ(m) with nth stationary incre-
ments at points of the set Z \ {0, 1, 2, . . . , N}, the optimal linear estimate of a value
ξ(p), 0 ≤ p ≤ N , is calculated by the formula

ξ̂ (p) =
∫ π

−π

hξ
μ,p(λ)dZξ(n) (λ) −

n∑
l=1

(−1)l
(

n

l

)
ξ(p − μl),

hξ
μ,p(λ) = (1 − e−iλμ)n

(iλ)n

p∑
k=0

dμ(p − k)eiλk − (−iλ)n
∑N+μn

k=0 ((Fμ
N)−1dμ,p)ke

iλk

(1 − eiλμ)nf (λ)
.
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The value of the mean-square error of the estimate is calculated by the formula

Δ
(
f ; ξ̂ (p)

) = 1

2π

∫ π

−π

λ2n|∑N+μn
k=0 ((Fμ

N)−1dμ,p)ke
iλk|2

|1 − eiλμ|2nf 2(λ)
dλ

= 〈(
Fμ

N

)−1dμ,p, dμ,p

〉
.

Example 1. Consider the stochastic sequence ξ(m), m ∈ Z, defined by the equation

ξ(m) = (1 − φ)ξ(m − 1) + φξ(m − 2) + ε(m),

which means that values of the sequence ξ(m) are defined as a weighted sum of two
previous values of the sequence plus a value ε(m) of the sequence of independent
identically distributed random variables with mean value Eε(m) = 0 and variance
Eε2(m) = 1.

Consider the increment ξ (1)(m; 1) = ξ(m) − ξ(m − 1) of the sequence. We can
find that

ξ (1)(m; 1) = −φξ(1)(m − 1; 1) + ε(m).

Thus, the increment sequence ξ (1)(m; 1) with step μ = 1 is an autoregressive se-
quence with parameter 0 < φ < 1. The sequence ξ(m) is an ARIMA(1;1;0) sequence
with the spectral density

f (λ) = λ2

|1 − e−iλ|2|1 + φe−iλ|2 .

Let us find the estimate Â1ξ of the value of the functional A1ξ = 2ξ(0) + ξ(1)

based on observations of the sequence ξ(m) at the points m ∈ Z\{0, 1}. Let φ = 1/2.
In this case, v1,1(−1) = −2,

F1 = 1

4

⎛⎝5 2 0
2 5 2
0 2 5

⎞⎠ , F−1
1 = 4

85

⎛⎝ 21 −10 4
−10 25 −10

4 −10 21

⎞⎠ ,
[
D1

1a1
]
+1 =

⎛⎝3
1
0

⎞⎠.

Therefore,

h
ξ
1(λ) = −106

85
e−iλ − 4

85
e3iλ,

Â1ξ = −106

85
ξ (1)(−1; 1) − 4

85
ξ (1)(3; 1) − 3ξ(−1)

= 106

85
ξ(−2) + 149

85
ξ(−1) + 4

85
ξ(2) − 4

85
ξ(3).

The value of the mean-square error of the estimate is Δ(f, g; Â1ξ) = 88
17 .

4 Interpolation of cointegrated sequences

Consider two integrated sequences {ξ(m),m ∈ Z} and {ζ(m),m ∈ Z} with absolutely
continuous spectral functions F(λ) and P(λ) and the corresponding spectral densities
f (λ) and p(λ).
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Definition 3. Two integrated sequences {(ξ(m), ζ(m)),m ∈ Z} are called cointe-
grated (of order 0) if, for some constant β = 0, the linear combination {ζ(m) −
βξ(m) : m ∈ Z} is a stationary sequence.

The interpolation problem for cointegrated sequences consists in mean-square
optimal linear estimation of the functional

ANξ =
N∑

k=0

a(k)ξ(k)

of unknown values of the stochastic sequence ξ(m) based on observations of the
stochastic sequence ζ(m) at the points m ∈ Z\{0, 1, 2, . . . , N}. To solve the problem,
we can use the results obtained in the previous sections.

Suppose that the spectral density p(λ) of the sequence ζ(m) satisfies the mini-
mality condition ∫ π

−π

λ2n

|1 − eiλμ|2np(λ)
dλ < ∞. (19)

Let the matrices Pμ,β
N , Tμ,β

N , Qβ
N be defined by the Fourier coefficients of the func-

tions

λ2n

|1 − eiλμ|2np(λ)
,

p(λ) − β2f (λ)

|1 − eiλμ|2np(λ)
,

[f (λ)p(λ) − β2f 2(λ)]+
λ2np(λ)

(20)

in the same way as the matrices Pμ
N , Tμ

N , QN were defined. Theorem 2 implies the

following formula for calculating the spectral characteristic h
β
μ,N(λ) of the optimal

estimate

ÂNξ =
∫ π

−π

h
β
μ,N(λ)dZζ(n) (λ) −

−1∑
k=−μn

vμ,N(k)ζ(k) (21)

of the functional ANξ :

h
β
μ,N (λ) = B

μ
N

(
eiλ

) (1 − e−iλμ)n

(iλ)n
− AN

(
eiλ

)p(λ) − β2f (λ)

(iλ)np(λ)
− (−iλ)nC

β
μ,N(eiλ)

(1 − eiλμ)np(λ)
,

(22)
where

C
β
μ,N

(
eiλ

) =
N+μn∑
k=0

((
Pμ,β

N

)−1[
D

μ
NaN

]
+μn

− (
Pμ,β

N

)−1Tμ,β
N aμ

N

)
k
eiλk.

The value of the mean-square error of the estimate ÂNξ is calculated by the for-
mula

Δ(f, g; ÂNξ)

= 1

2π

∫ π

−π

|AN(eiλ)(1 − eiλμ)nβ2f (λ) − λ2nC
β
μ,N(eiλ)|2

λ2n|1 − eiλμ|2np2(λ)
p(λ)dλ
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− β2

2π

∫ π

−π

|AN(eiλ)(1 − eiλμ)nβ2f (λ) − λ2nC
β
μ,N(eiλ)|2

λ2n|1 − eiλμ|2np2(λ)
f (λ)dλ

+ 1

2π

∫ π

−π

|AN(eiλ)(1 − eiλμ)n[p(λ) − β2f (λ)]+ + λ2nC
β
μ,N(eiλ)|2

λ2n|1 − eiλμ|2np2(λ)
f (λ)dλ

= 〈[
D

μ
N aN

]
+μn

− Tμ,β
N aμ

N,
(
Pμ,β

N

)−1[
D

μ
N aN

]
+μn

− (
Pμ,β

N

)−1Tμ,β
N aμ

N

〉
+ 〈

Qβ
NaN, aN

〉
. (23)

The described results are presented as the following theorem.

Theorem 4. Let {(ξ(m), ζ(m)),m ∈ Z} be two cointegrated sequences with spec-
tral densities f (λ) and p(λ), and let the spectral density p(λ) satisfy the minimality
condition (19). If the stochastic sequences ξ(m) and ζ(m) − βξ(m) are uncorre-
lated, then the spectral characteristic h

β
μ,N (λ) and the value of the mean-square er-

ror Δ(f, g; ÂNξ) of the optimal estimate ÂNξ (21) of the functional ANξ based on
the observations of the sequence ζ(m) at the points m ∈ Z \ {0, 1, 2, . . . , N} are
calculated by formulas (22) and (23), respectively.

5 Minimax-robust method of interpolation

Formulas for calculating values of the mean-square error Δ(h(f, g); f, g) =
Δ(f, g; ÂNξ) = E|ANξ − ÂNξ |2 and the spectral characteristics of the optimal
estimates of the functional ANξ based on observations of the sequence ξ(m) + η(m)

can be applied under the condition that the spectral densities f (λ) and g(λ) of the
stochastic sequences ξ(m) and η(m) are known. However, these formulas often can-
not be used in many practical situations since the exact values of the densities are
not available. In this situation, the minimax-robust method can be applied. It consists
in finding the estimate that provides a minimum of the mean-square errors for all
spectral densities from a given set D = Df × Dg of admissible spectral densities
simultaneously.

Definition 4. For a given class of spectral densities D = Df ×Dg , spectral densities
f 0(λ) ∈ Df and g0(λ) ∈ Dg are called the least favorable densities in the class D for
the optimal linear interpolation of the functional ANξ if the following relation holds:

Δ(f 0, g0) = Δ
(
h(f 0, g0); f 0, g0) = max

(f,g)∈Df ×Dg

Δ
(
h(f, g); f, g

)
.

Definition 5. For a given class of spectral densities D = Df × Dg , the spectral
characteristic h0(λ) of the optimal linear estimate of the functional ANξ is called
minimax-robust if the following conditions are satisfied:

h0(λ) ∈ HD =
⋂

(f,g)∈Df ×Dg

L0−
2 (p) ⊕ L

(N+μn)+
2 (p),

min
h∈HD

max
(f,g)∈Df ×Dg

Δ(h; f, g) = max
(f,g)∈Df ×Dg

Δ
(
h0; f, g

)
.
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Lemma 1. The spectral densities f 0 ∈ Df and g0 ∈ Dg that satisfy the minimality
condition (5) are the least favorable in the class D for the optimal linear interpolation
of the functional ANξ based on observations of the sequence ξ(m) + η(m) at the
points m ∈ Z \ {0, 1, 2, . . . , N} if the matrices (Pμ

N)0, (Tμ
N)0, (QN)0 whose elements

are defined by the Fourier coefficients of the functions

λ2n

|1 − eiλμ|2np0(λ)
,

λ2ng0(λ)

|1 − eiλμ|2np0(λ)
,

f 0(λ)g0(λ)

p0(λ)
, (24)

where p0(λ) = f 0(λ) + λ2ng0(λ), determine a solution to the constrained optimiza-
tion problem

max
(f,g)∈Df ×Dg

(〈[
D

μ
N aN

]
+μn

− Tμ
N aμ,

(
Pμ

N

)−1[
D

μ
NaN

]
+μn

− (
Pμ

N

)−1Tμ
N aμ

N

〉
+ 〈QNaN, aN 〉)

= 〈[
D

μ
NaN

]
+μn

− (
Tμ

N

)0aμ
N,

((
Pμ

N

)0)−1[
D

μ
N aN

]
+μn

− ((
Pμ

N

)0)−1(Tμ
N

)0aμ
N

〉
+ 〈

Q0
NaN, aN

〉
. (25)

The minimax-robust spectral characteristic h0 = hμ(f 0, g0) is calculated by formula
(11) if hμ(f 0, g0) ∈ HD.

The presented statements follow from the introduced definitions and Theorem 2.
The minimax-robust spectral characteristic h0 and the least favorable spectral

densities (f 0, g0) form a saddle point of the function Δ(h; f, g) on the set HD × D.
The saddle-point inequalities

Δ
(
h; f 0, g0) ≥ Δ

(
h0; f 0, g0) ≥ Δ

(
h0; f, g

) ∀f ∈ Df ,∀g ∈ Dg,∀h ∈ HD

hold if h0 = hμ(f 0, g0), hμ(f 0, g0) ∈ HD, and (f 0, g0) is a solution to the con-
strained optimization problem

Δ̃(f, g) = −Δ
(
hμ

(
f 0, g0); f, g

) → inf, (f, g) ∈ D,

Δ
(
hμ

(
f 0, g0); f, g

)
= 1

2π

∫ π

−π

|AN(eiλ)(1 − eiλμ)nf 0(λ) − λ2nC
μ,0
N (eiλ)|2

|1 − eiλμ|2n(f 0(λ) + λ2ng0(λ))2
g(λ)dλ

+ 1

2π

∫ π

−π

|AN(eiλ)(1 − eiλμ)nλ2ng0(λ) + λ2nC
μ,0
N (eiλ)|2

λ2n|1 − eiλμ|2n(f 0(λ) + λ2ng0(λ))2
f (λ)dλ,

C
μ,0
N

(
eiλ

) =
N+μn∑
k=0

(((
Pμ

N

)0)−1[
D

μ
N aN

]
+μn

− ((
Pμ

N

)0)−1(Tμ
N

)0aμ
N

)
k
eiλk.

This constrained optimization problem is equivalent to the unconstrained optimiza-
tion problem

ΔD(f, g) = Δ̃(f, g) + Δ(f, g|Df × Dg) → inf, (26)
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where Δ(f, g|Df × Dg) is the indicator function of the set Df × Dg: Δ(f, g|Df ×
Dg) = 0 if (f ; g) ∈ Df × Dg and Δ(f, g|Df × Dg) = +∞ if (f ; g) /∈ Df × Dg .
A solution (f 0, g0) to the unconstrained optimization problem is determined by the
condition 0 ∈ ∂ΔD(f 0, g0), which is a necessary and sufficient condition that the
pair (f 0, g0) belongs to the set of minimums of the convex functional ΔD(f, g)

[11, 22, 23]. By ∂ΔD(f, g) we denote the subdifferential of the functional ΔD(f, g)

at the point (f, g) = (f 0, g0), that is, the set of all linear continuous functionals Λ

on the space L1 × L1 that satisfy the inequality

ΔD(f, g) − ΔD
(
f 0, g0) ≥ Λ

(
(f, g) − (

f 0, g0)), (f, g) ∈ D.

In the case of estimating the cointegrated sequences, we have the following opti-
mization problem of finding the least favorable spectral densities:

ΔD(f, p) = Δ̃(f, p) + Δ(f, p|Df × Dp) → inf, (27)

Δ̃(f, p)

= Δ
(
hβ

μ

(
f 0, p0); f, p

)
= 1

2π

∫ π

−π

|AN(eiλ)(1 − eiλμ)nβ2f 0(λ) − λ2nC
β,0
μ,N(eiλ)|2

λ2n|1 − eiλμ|2n(p0(λ))2
p(λ)dλ

− β2

2π

∫ π

−π

|AN(eiλ)(1 − eiλμ)nβ2f 0(λ) − λ2nC
β,0
μ,N(eiλ)|2

λ2n|1 − eiλμ|2nl(p0(λ))2
f (λ)dλ

+ 1

2π

∫ π

−π

|AN(eiλ)(1 − eiλμ)n[p0(λ) − β2f 0(λ)]+ + λ2nC
β,0
μ,N(eiλ)|2

λ2n|1 − eiλμ|2n(p0(λ))2
f (λ)dλ

C
β,0
μ,N

(
eiλ

) =
N+μn∑
k=0

(((
Pμ,β

N

)0)−1([
D

μ
N aN

]
+μn

− (
Tμ,β

N

)0aμ
N

))
k
eiλk.

A solution (f 0, p0) to this optimization problem is characterized by the condition
0 ∈ ∂ΔD(f 0, p0).

The derived representations of the linear functionals Δ(hμ(f 0, g0); f, g) and

Δ(h
β
μ(f 0, p0); f, p) allow us to calculate derivatives and subdifferentials in the space

L1 × L1. Therefore, the complexity of the optimization problems (26) and (27) is
determined by the complexity of calculation of the subdifferentials of the indicator
functions Δ(f, g|Df ×Dg) and Δ(f, p|Df ×Dp) of the sets Df ×Dg and Df ×Dp.

6 The least favorable spectral densities in the class D−
0,f × D−

0,g

Consider the problem of minimax-robust estimation of the functional ANξ of un-
known values of the sequence with stationary increments ξ(m) based on observations
of the sequence ξ(m) + η(m) at the points m ∈ Z \ {0, 1, 2, . . . , N} for the set of
admissible spectral densities D = D−

0,f × D−
0,g , where

D−
0,f =

{
f (λ)

∣∣∣∣ 1

2π

∫ π

−π

1

f (λ)
dλ ≥ P1

}
,
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D−
0,g =

{
g(λ)

∣∣∣∣ 1

2π

∫ π

−π

1

g(λ)
dλ ≥ P2

}
.

If the spectral densities f 0 ∈ D−
0,f , g0 ∈ D−

0,g and the functions

hμ,f

(
f 0, g0) = |AN(eiλ)(1 − eiλμ)nλ2ng0(λ) + λ2nC

μ,0
N (eiλ)|

|λ|n|1 − eiλμ|np0(λ)
, (28)

hμ,g

(
f 0, g0) = |AN(eiλ)(1 − eiλμ)nf 0(λ) − λ2nC

μ,0
N (eiλ)|

|1 − eiλμ|np0(λ)
, (29)

where p0(λ) = f 0(λ) + λ2ng0(λ), are bounded, then the linear functional
Δ(hμ(f 0, g0); f, g) is continuous and bounded in the space L1 × L1. The condi-
tion 0 ∈ ∂ΔD(f 0, g0) implies that the spectral densities f 0 ∈ D−

0,f and g0 ∈ D−
0,g

are determined by the relations

|λ|nf 0(λ)
∣∣AN

(
eiλ

)(
1 − eiλμ

)n
g0(λ) + C

μ,0
N

(
eiλ

)∣∣
= α1

∣∣1 − eiλμ
∣∣n(f 0(λ) + λ2ng0(λ)

)
, (30)

g0(λ)
∣∣AN

(
eiλ

)(
1 − eiλμ

)n
f 0(λ) − λ2nC

μ,0
N

(
eiλ

)∣∣
= α2

∣∣1 − eiλμ
∣∣n(f 0(λ) + λ2ng0(λ)

)
, (31)

where the constants α1 ≥ 0, α2 ≥ 0 with α1 = 0 if
∫ π

−π
(f 0(λ))−1dλ = 2πP1 and

α2 = 0 if
∫ π

−π
(g0(λ))−1dλ = 2πP2.

The derived statements allow us to formulate the following theorems.

Theorem 5. Suppose that the spectral densities f 0(λ) ∈ D−
0,f and g0(λ) ∈ D−

0,g

satisfy the minimality condition (5) and the functions hμ,f (f 0, g0) and hμ,g(f
0, g0)

calculated by formulas (28) and (29) are bounded. The spectral densities f 0(λ) and
g0(λ) determined by Eqs. (30)) and (31) are the least favorable densities in the class
D = D−

0,f × D−
0,g for the linear interpolation of the functional ANξ if they give a

solution to the constrained optimization problem (25). The function hμ(f 0, g0) cal-
culated by formula (11) is the minimax-robust spectral characteristic of the optimal
estimate of the functional ANξ .

Theorem 6. Suppose that the spectral density f (λ) (or g(λ)) is known, the spectral
density g0(λ) ∈ D−

0,g (f 0(λ) ∈ D−
0,f ), and they satisfy the minimality condition (5).

Suppose also that the function hμ,g(f, g0) (hμ,f (f 0, g)) is bounded. Then the spec-
tral density

g0(λ) = f (λ)

[
1

α2|1 − eiλμ|n
∣∣AN

(
eiλ

)(
1 − eiλμ

)n
f (λ) − C

μ,0
N

(
eiλ

)∣∣ − λ2n

]−1

+
or

f 0(λ) = λ2ng(λ)

[ |λ|n
α1|1 − eiλμ|n

∣∣AN

(
eiλ

)(
1 − eiλμ

)n
g(λ) + C

μ,0
N

(
eiλ

)∣∣ − 1

]−1

+
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is the least favorable in the class D−
0,g (or D−

0,f ) for the linear interpolation of the

functional ANξ if the functions f (λ) + λ2ng0(λ), g0(λ) (or f 0(λ) + λ2ng(λ)) give
a solution to the constrained optimization problem (25). The function hμ(f, g0) (or
hμ(f 0, g)) calculated by formula (11) is the minimax-robust spectral characteristic
of the optimal estimate of the functional ANξ .

Consider the problem of minimax-robust estimation of the functional ANξ of
unknown values of the sequence ξ(m), cointegrated with the sequence ζ(m), based
on observations of the sequence ζ(m) at the points m ∈ Z\{0, 1, 2, . . . , N}. Suppose
that the stochastic sequences ξ(m) and ζ(m) − βξ(m) are uncorrelated. The least
favorable spectral densities in the class D0

f × D0
p, where

D−
0,f =

{
f (λ)

∣∣∣∣ 1

2π

∫ π

−π

1

f (λ)
dλ ≥ P1

}
, D−

0,p =
{
p(λ)

∣∣∣∣ 1

2π

∫ π

−π

1

p(λ)
dλ ≥ P2

}
,

are determined by the condition 0 ∈ ∂ΔD(f 0, p0), which implies the following rela-
tions for determining the least favorable spectral densities f 0 ∈ D0

f and p0 ∈ D0
p:∣∣AN

(
eiλ

)(
1 − eiλμ

)n
β2f 0(λ) − λ2nC

β,0
μ,N

(
eiλ

)∣∣ = α2|λ|n∣∣1 − eiλμ
∣∣n, (32)

f 0(λ)
∣∣AN

(
eiλ

)(
1 − eiλμ

)n[
p0(λ) − β2f 0(λ)

]
+ + λ2nC

β,0
μ,N

(
eiλ

)∣∣
= |λ|n∣∣1 − eiλμ

∣∣n(α1p
0(λ) + α2|β|f 0(λ)

)
, (33)

where the constants α1 ≥ 0, α2 ≥ 0 with α1 = 0 if
∫ π

−π
(f 0(λ))−1dλ = 2πP1 and

α2 = 0 if
∫ π

−π
(p0(λ))−1dλ = 2πP2.

Theorem 7. Suppose that the spectral density p0(λ) ∈ D−
0,p satisfies the minimality

condition (19) and the functions hμ,f (f 0, g0) and hμ,g(f
0, g0), calculated by for-

mulas (28) and (29), are bounded for g(λ) := λ−2n(p(λ) − β2f (λ)). The spectral
densities f 0(λ) and p0(λ) determined by Eqs. (32) and (33) are the least favorable
in the class D = D−

0,f × D−
0,p for the linear interpolation of the functional ANξ

based on observations of the stochastic sequence ζ(m), which is cointegrated with
ξ(m) and such that the stochastic sequences ξ(m) and ζ(m) − βξ(m) are uncor-
related, if these densities determine a solution to constrained optimization problem
(25) for g0(λ) := λ−2n(p0(λ) − β2f 0(λ)). The function hμ(f 0, p0), calculated by
formula (22), is the minimax-robust spectral characteristic of the optimal estimate of
the functional ANξ .

7 The least favorable spectral densities in the class D = D2ε1 × D1ε2

Consider the problem of minimax-robust interpolation of the functional ANξ based
on observations of the sequence ξ(m)+η(m) at the points of m ∈ Z\{0, 1, 2, . . . , N}
in the case where the spectral densities f (λ) and g(λ) belong to the set D = D2ε1 ×
D1ε2 , where

D2ε1 =
{
f (λ)

∣∣∣∣ 1

2π

∫ π

−π

∣∣f (λ) − f1(λ)
∣∣2

dλ ≤ ε1

}
,
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D1ε2 =
{
g(λ)

∣∣∣∣ 1

2π

∫ π

−π

∣∣g(λ) − g1(λ)
∣∣dλ ≤ ε2

}
are ε-neighborhoods of the given spectral densities f1(λ) and g1(λ) in the spaces L2
and L1, respectively.

Suppose that the spectral densities f1(λ) and g1(λ) are bounded and the func-
tions hμ,f (f 0, g0) and hμ,g(f

0, g0) calculated by formulas (28) and (29) with spec-
tral densities f 0 ∈ D2ε1 and g0 ∈ D1ε2 are bounded as well. The condition 0 ∈
∂ΔD(f 0, g0) implies the following relations for determining the least favorable spec-
tral densities:∣∣AN

(
eiλ

)(
1 − eiλμ

)n
λ2ng0(λ) + λ2nC

μ,0
N

(
eiλ

)∣∣2

= α1|λ|2n
∣∣1 − eiλμ

∣∣2n(
f 0(λ) − f1(λ)

)(
f 0(λ) + λ2ng0(λ)

)2
, (34)

∣∣AN

(
eiλ

)(
1 − eiλμ

)n
f 0(λ) − λ2nC

μ,0
N

(
eiλ

)∣∣2

= α2γ (λ)
∣∣1 − eiλμ

∣∣2n(
f 0(λ) + λ2ng0(λ)

)2
, (35)

where the function |γ (λ)| ≤ 1 and γ (λ) = sign(g(λ) − g1(λ)) if g(λ) = g1(λ);
α1, α2 are two constants to be found using the equations

1

2π

∫ π

−π

∣∣f 0(λ) − f1(λ)
∣∣2

dλ = ε1,
1

2π

∫ π

−π

∣∣g0(λ) − g1(λ)
∣∣dλ = ε2. (36)

Now we can present the following theorems, which describe the least favorable
spectral densities in the class D = D2ε1 × D1ε2 .

Theorem 8. Suppose that the spectral densities f 0(λ) ∈ D2ε1 and g0(λ) ∈ D1ε2

satisfy the minimality condition (5), the functions hμ,f (f 0, g0) and hμ,g(f
0, g0),

calculated by formulas (28) and (29), are bounded. The spectral densities f 0(λ) and
g0(λ) determined by equations (34)–(36) are the least favorable spectral densities in
the class D = D2ε1 × D1ε2 for the linear interpolation of the functional ANξ if they
give a solution to constrained optimization problem (25). The function hμ(f 0, g0),
calculated by formula (11) is the minimax-robust spectral characteristic of the opti-
mal estimate of the functional ANξ .

Theorem 9. Suppose that the spectral density f (λ) is known, the spectral density
g0(λ) ∈ D1ε2 , and they satisfy the minimality condition (5). Suppose also that the
function hμ,g(f, g0) calculated by formula (29) is bounded. Then the spectral density

g0(λ) = max
{
g1(λ), λ−2nf2(λ)

}
,

f2(λ) = α−1
2

∣∣1 − eiλμ
∣∣−n

∣∣∣AN

(
eiλ

)(
1 − eiλμ

)n
f (λ) − λ2nC

μ,0
N

(
eiλ

)∣∣∣ − f (λ),

is the least favorable in the class D1ε2 for the linear interpolation of the functional
ANξ if a pair (f, g0) provides a solution to constrained optimization problem (25).
The function hμ(f, g0), calculated by formula (11) is the minimax-robust spectral
characteristic of the optimal estimate of the functional ANξ .
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Theorem 10. Suppose that the spectral density g(λ) is known, the spectral density
f 0(λ) ∈ D2ε1 , and they satisfy the minimality condition (5). Suppose also that the
function hμ,f (f 0, g), calculated by formula (28), is bounded. The spectral density
f 0(λ) determined by the equation∣∣AN

(
eiλ

)(
1 − eiλμ

)n
λ2ng(λ) + λ2nC

μ,0
N

(
eiλ

)∣∣2

= α1|λ|2n
∣∣1 − eiλμ

∣∣2n(
f 0(λ) − f1(λ)

)(
f 0(λ) + λ2ng(λ)

)2

and the condition
∫ π

−π
|f 0(λ) − f1(λ)|2dλ = 2πε1 is the least favorable spectral

density in the class D2ε1 for the linear interpolation of the functional ANξ if a pair
(f 0, g) provides a solution to constrained optimization problem (25). The function
hμ(f 0, g) calculated by formula (11) is the minimax-robust spectral characteristic
of the optimal estimate of the functional ANξ .

Consider the problem of minimax-robust interpolation of the functional ANξ in
the case of cointegrated sequences ξ(m) and ζ(m) on the set of admissible spectral
densities D = D2ε1 × D1ε2 , where

D2ε1 =
{
f (λ)

∣∣∣∣ 1

2π

∫ π

−π

∣∣f (λ) − f1(λ)
∣∣2

dλ ≤ ε1

}
,

D1ε2 =
{
p(λ)

∣∣∣∣ 1

2π

∫ π

−π

∣∣p(λ) − p1(λ)
∣∣dλ ≤ ε2

}
.

From the condition 0 ∈ ∂ΔD(f 0, g0) we obtain the following relations that deter-
mine the least favorable spectral densities:∣∣AN

(
eiλ

)(
1 − eiλμ

)n
β2f 0(λ) − λ2nC

β,0
μ,N

(
eiλ

)∣∣2

= α2λ
2nγ (λ)

∣∣1 − eiλμ
∣∣2n(

p0(λ)
)2

, (37)∣∣AN

(
eiλ

)(
1 − eiλμ

)n[
p0(λ) − β2f 0(λ)

]
+ + λ2nC

β,0
μ,N

(
eiλ

)∣∣2

= λ2n
∣∣1 − eiλμ

∣∣2n(
p0(λ)

)2(
α1

(
f 0(λ) − f1(λ)

) + α2β
2γ (λ)

)
, (38)

where the function |γ (λ)| ≤ 1 and γ (λ) = sign(p(λ) − p1(λ)) if p(λ) = p1(λ);
α1, α2 are two constants that can be found from the equations

1

2π

∫ π

−π

∣∣f 0(λ) − f1(λ)
∣∣2

dλ = ε1,
1

2π

∫ π

−π

∣∣p0(λ) − p1(λ)
∣∣dλ = ε2. (39)

Thus, we have the following theorem.

Theorem 11. Suppose that the spectral density p0(λ) ∈ D1ε2 satisfies the minimality
condition (19) and the functions hμ,f (f 0, g0) and hμ,g(f

0, g0), calculated by for-
mulas (28) and (29), are bounded for g(λ) := λ−2n(p(λ) − β2f (λ)). Then the least
favorable spectral densities for the linear interpolation of the functional ANξ based
on observations of the stochastic sequence ζ(m), which is cointegrated with ξ(m) and
such that the stochastic sequences ξ(m) and ζ(m) − βξ(m) are uncorrelated, are the
spectral densities f 0(λ) and p0(λ) determined by Eqs. (37)–(39) and provide a solu-
tion to constrained optimization problem (25) for g0(λ) := λ−2n(p0(λ) − β2f 0(λ)).
The function hμ(f 0, p0) calculated by formula (22) is the minimax-robust spectral
characteristic of the optimal estimate of the functional ANξ .
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8 Conclusions

In the article, the problem of the mean-square optimal linear estimation of the func-
tional ANξ = ∑N

k=0 a(k)ξ(k), which depends of unknown values of the sequence
ξ(m) with nth stationary increments based on observations of the sequence ξ(m) +
η(m) at the points m ∈ Z \ {0, 1, 2, . . . , N}, is considered in the case of observations
with the stationary noise η(m) uncorrelated with ξ(m). The classical and minimax-
robust methods of interpolation are applied in the case of spectral certainty and in
the case spectral uncertainty. Particularly, in the case of spectral certainty, formu-
las for calculating the spectral characteristics and the value of the mean-square error
of the optimal estimate are found. The derived results are applied to interpolation
problem for a class of cointegrated sequences. In the case spectral uncertainty, where
spectral densities are not known exactly, whereas some sets of admissible spectral
densities are given, formulas that determine the least favorable spectral densities and
the minimax-robust spectral characteristics are derived for some special sets of ad-
missible spectral densities.
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