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Abstract In this paper, we consider the Cox–Ingersoll–Ross (CIR) process in the regime
where the process does not hit zero. We construct additive and multiplicative discrete approx-
imation schemes for the price of asset that is modeled by the CIR process and geometric CIR
process. In order to construct these schemes, we take the Euler approximations of the CIR
process itself but replace the increments of the Wiener process with iid bounded vanishing
symmetric random variables. We introduce a “truncated” CIR process and apply it to prove the
weak convergence of asset prices. We establish the fact that this “truncated” process does not
hit zero under the same condition considered for the original nontruncated process.
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theorems
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1 Introduction

The problem of convergence of discrete-time financial models to the models with
continuous time is well developed; see, e.g., [6, 7, 9, 11, 14, 17, 19]. The reason for
such an interest can be explained as follows: from the analytical point of view, it
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is much simpler to deal with continuous-time models although all real-world mod-
els operate in the discrete time. In what concerns the rate of convergence, there can
be different approaches to its estimation. Some of this approaches are established in
[6, 7, 23–27]. In this paper, we consider the Cox–Ingersoll–Ross process and its ap-
proximation on a finite time interval. The CIR process was originally proposed by
Cox, Ingersoll, and Ross [8] as a model for short-term interest rates. Nowadays, this
model is widely used in financial modeling, for example, as the volatility process in
the Heston model [16]. The strong global approximation of CIR process is studied
in several articles. Strong convergence (without a rate or with a logarithmic rate) of
several discretization schemes is shown by [1, 4, 12, 15, 18]. In [1], a general frame-
work for the analysis of strong approximation of the CIR process is presented along
with extensive simulation studies. Nonlogarithmic convergence rates are obtained in
[2]. In [10], the author extends the CIR model of the short interest rate by assum-
ing a stochastic reversion level, which better reflects the time dependence caused by
the cyclical nature of the economy or by expectations concerning the future impact
of monetary policies. In this framework, the convergence of the long-term return by
using the theory of generalized Bessel-square processes is studied. In [28], the au-
thors propose an empirical method that utilizes the conditional density of the state
variables to estimate and test a term structure model with known price formula using
data on both discount and coupon bonds. The method is applied to an extension of a
two-factor model due to Cox, Ingersoll, and Ross. Their results show that estimates
based solely on bills imply unreasonably large price errors for longer maturities. The
process is also discussed in [5].

In this article, we focus on the regime where the CIR process does not hit zero and
study weak approximation of this process. In the first case, the sequence of prelimit
markets is modeled as the sequence of the discrete-time additive stochastic processes,
whereas in the second case, the sequence of multiplicative stochastic processes is
modeled. The additive scheme is widely used, for example, in the papers [1, 4, 13].
The papers [10, 28] are recent examples of modeling a stochastic interest rate by the
multiplicative model of CIR process. In [10], the authors say that the model has the
“strong convergence property,” whereas they refer to models as having the “weak con-
vergence property” when the returns converge to a constant, which generally depends
upon the current economic environment and that may change in a stochastic fashion
over time. We construct a discrete approximation scheme for the price of asset that
is modeled by the Cox–Ingersoll–Ross process. In order to construct these additive
and multiplicative processes, we take the Euler approximations of the CIR process
itself but replace the increments of the Wiener process with iid bounded vanishing
symmetric random variables. We introduce a “truncated” CIR process and use it to
prove the weak convergence of asset prices.

The paper is organized as follows. In Section 2, we present a complete and “trun-
cated” CIR process and establish that the “truncated” CIR process can be described
as the unique strong solution to the corresponding stochastic differential equation.
We establish that this “truncated” process does not hit zero under the same condition
as for the original nontruncated process. In Section 3, we present discrete approxi-
mation schemes for both these processes and prove the weak convergence of asset
prices for the additive model. In the next section, we prove the weak convergence of
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asset prices for the multiplicative model. Appendix contains additional and technical
results.

2 Original and “truncated” Cox–Ingersoll–Ross processes and some of their
properties

Let ΩF = (Ω,F , (Ft , t ≥ 0), P) be a complete filtered probability space, and
W = {Wt,Ft , t ≥ 0} be an adapted Wiener process. Consider a Cox–Ingersoll–
Ross process with constant parameters on this space. This process is described as the
unique strong solution of the following stochastic differential equation:

dXt = (b − Xt)dt + σ
√

XtdWt , X0 = x0 > 0, t ≥ 0, (1)

where b > 0, σ > 0. The integral form of the process X has the following form:

Xt = x0 +
t∫

0

(b − Xs)ds + σ

t∫
0

√
XsdWs.

According to the paper [8], the condition σ 2 ≤ 2b is necessary and sufficient for the
process X to get positive values and not to hit zero. Further, we will assume that this
condition is satisfied.

For the proof of functional limit theorems, we will need a modification of the
Cox–Ingersoll–Ross process with bounded coefficients. This process is called a trun-
cated Cox–Ingerssol–Ross process. Let C > 0. Consider the following stochastic
differential equation with the same coefficients b and σ as in (1):

dXC
t = (

b − XC
t ∧ C

)
dt + σ

√(
XC

t ∨ 0
) ∧ CdWt, X0 = x0 > 0, t ≥ 0. (2)

Lemma 2.1. For any C > 0, (2) has a unique strong solution.

Proof. Since the coefficients σ(x) = σ
√

(x ∨ 0) ∧ C and b(x) = b− (x ∧C) satisfy
the conditions of Theorem A.3 and also the growth condition (14), a global strong
solution XC

t exists uniquely for every given initial value x0.

Remark 2.1. Denote σ−ε = inf {t : XC
t = −ε} with ε > 0 such that −ε + b > 0.

Suppose that P(σ−ε < ∞) > 0. Then for any r < σ−ε such that XC
t < 0 for

t ∈ (r, σ−ε), we would have, with positive probability,

dXC
t = (

b − XC
t ∧ C

)
dt > 0

on the interval (r, σ−ε), and hence t → XC
t would increase in this interval. This is

obviously impossible. Therefore, XC
t is nonnegative and can be written as

dXC
t = (

b − XC
t ∧ C

)
dt + σ

√
XC

t ∧ CdWt, XC
0 = x0 > 0, t ≥ 0. (3)
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The integral form of the process XC is as follows:

XC
t = x0 +

t∫
0

(
b − XC

s ∧ C
)
ds + σ

t∫
0

√
XC

s ∧ CdWs.

Lemma 2.2. Let 2b ≥ σ 2 and C > b ∨ 1. Then the trajectories of the process XC

are positive with probability 1.

Proof. In order to prove that the process XC is positive, we will use the proof similar
to that given in [22, p. 308] for the complete Cox–Ingersoll–Ross process with cor-
responding modifications. Note that the coefficients g(x) := σ

√
x ∧ C and f (x) :=

b − x ∧ C of (3) are continuous and g2(x) > 0 on x ∈ (0,∞). Fix α and β such
that 0 < α < x0 < β. Due to the nonsingularity of g on [α, β], there exists a unique
solution F(x) of the ordinary differential equation

f (x)F ′(x) + 1

2
g2(x)F ′′(x) = −1, α < x < β,

with boundary conditions F(α) = F(β) = 0, and this solution is nonnegative, which
follows from its representation through a nonnegative Green function given in [21,
p. 343]. Define the stopping times

τα = inf
{
t ≥ 0 : XC

t ≤ α
}

and τβ = inf
{
t ≥ 0 : XC

t ≥ β
}
.

By the Itô formula, for any t > 0,

E F
(
XC(t ∧ τα ∧ τβ)

) = F(x0) − E(t ∧ τα ∧ τβ). (4)

This formula and nonnegativity of F imply that

E(t ∧ τα ∧ τβ) ≤ F(x0)

and, as t → ∞,
E(τα ∧ τβ) ≤ F(x0) < ∞.

This means that XC exits from every compact subinterval of [α, β] ⊂ (0,∞) in finite
time. It follows from the boundary conditions and equality P(τα ∧ τβ < ∞) = 1 that
limt→∞ E F(XC(t ∧ τα ∧ τβ)) = 0, and then from (4) we have

E(τα ∧ τβ) = F(x0).

Let us now define the function

V (x) =
x∫

1

exp

{
−

y∫
1

2f (z)

g2(z)
dz

}
dy, x ∈ (0,∞),

which has a continuous strictly positive derivative V ′(x), and the second derivative
V ′′(x) exists and satisfies V ′′(x) = − 2f (x)

g2(x)
V ′(x). The Itô formula shows that, for any

t > 0,
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V
(
XC(t ∧ τα ∧ τβ)

) = V (x0) +
t∧τα∧τβ∫

0

V ′(XC
u

)
g
(
XC

u

)
dW(u)

and
E V

(
XC(t ∧ τα ∧ τβ)

) = V (x0).

Taking the limit as t → ∞, we get

V (x0) = E V
(
XC(τα ∧ τβ)

) = V (α) P(τα < τβ) + V (β) P(τβ < τα),

and hence

P(τα < τβ) = V (β) − V (x0)

V (β) − V (α)
and P(τβ < τα) = V (x0) − V (α)

V (β) − V (α)
. (5)

Consider the integral

V (x) =
x∫

1

exp

{
−

y∫
1

2(b − z ∧ C)

σ 2(z ∧ C)
dz

}
dy.

First, consider the case x < 1. Then

V (x) =
x∫

1

exp

{
−

y∫
1

2(b − z)

σ 2z
dz

}
dy =

x∫
1

y
− 2b

σ2 exp

{
2(y − 1)

σ 2

}
dy,

and if σ 2 ≤ 2b, then
lim
x↓0

V (x) = −∞.

Now let x increase and tend to infinity. Denote C1 = ∫ C

1 exp{ 2(y−1)

σ 2 }y− 2b

σ2 dy. Then,
for x > C,

V (x) =
C∫

1

exp

{
−

y∫
1

2(b − z)

σ 2z
dz

}
dy

+
x∫

C

exp

{
−

C∫
1

2(b − z)

σ 2z
dz −

y∫
C

2(b − C)

σ 2C
dz

}
dy

=
C∫

1

exp

{
2(y − 1)

σ 2

}
y

− 2b

σ2 dy + C
− 2b

σ2 exp

{
2(C − 1)

σ 2

}

×
x∫

C

exp

{
−2(b − C)

σ 2C
(y − C)

}
dy
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= C1 + C
− 2b

σ2 +1 σ 2

2(C − b)
exp

{
2(C − 1)

σ 2

}

×
(

exp

{
2(C − b)

σ 2C
(x − C)

}
− 1

)
,

and thus limx↑∞ V (x) = ∞. Define

τ0 = lim
α↓0

τα and τ∞ = lim
β↑∞ τβ

and put τ = τ0 ∧ τ∞. From (5) we get

P
(

inf
0≤t<τ

XC
t ≤ α

)
≥ P(τα < τβ) = 1 − V (x0)/V (β)

1 − V (α)/V (β)
,

and, as β ↑ ∞, we get that, for any α > 0, P(inf0≤t<τ XC
t ≤ α) = 1, whence, finally,

P(inf0≤t<τ XC
t = 0) = 1. Similarly, P(sup0≤t<τ XC

t = ∞) = 1. Assume now that
P(τ < ∞) > 0. Then

P
(

lim
t→τ

XC
t exists and equals 0 or ∞

)
> 0.

So the events {inf0≤t<τ XC
t = 0} and {sup0≤t<τ XC

t = ∞} cannot both have proba-
bility 1. This contradiction shows that P(τ < ∞) = 0, whence

P(τ = ∞) = P
(

inf
0≤t<τ

XC
t = 0

)
= P

(
sup

0≤t<τ

XC
t = ∞

)
= 1

if 2b ≥ σ 2.

Now, let T > 0 be fixed.

Lemma 2.3.
P

{∃ t ∈ [0, T ] : Xt �= XC
t

} → 0

as C → ∞.

Proof. Obviously, it suffices to show that

P
{

sup
t∈[0,T ]

|Xt | ≥ C
}

→ 0 as C → ∞.

It is well known (see, e.g., [29]) that 4
σ 2(1−e−t )

Xt follows a noncentral χ2 distribu-

tion with (in general) noninteger degree of freedom 4b

σ 2 and noncentrality parameter
4

σ 2(1−e−t )
x0e

−t . The first and second moments for any t ≥ 0 are given by

E Xt = x0e
−t + b

(
1 − e−t

)
,

E(Xt )
2 = x0

(
2b + σ 2)e−t + (

x2
0 − x0σ

2 − 2x0b
)
e−2t +

(
bσ 2

2
+ b2

)(
1 − e−t

)2
.
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Therefore, there exists a constant B > 0 such that E X2
t ≤ B, whence E Xt ≤ B1/2,

0 ≤ t ≤ T .
Using the Doob inequality, we estimate

P
{

sup
t∈[0,T ]

|Xt | ≥ C
}

≤ 1

C2
E sup

t∈[0,T ]
X2

t

= 1

C2
E sup

t∈[0,T ]

{(
X0 +

t∫
0

(b − Xs)ds + σ

t∫
0

√
XsdWs

)2}

≤ 3

C2

{
X2

0 + T E
( T∫

0

|b − Xs |ds

)2

+ σ 2 E sup
t∈[0,T ]

( t∫
0

√
XsdWs

)2}

≤ 3

C2

{
X2

0 + T E

T∫
0

(b − Xs)
2ds + 4σ 2 E

T∫
0

Xsds

}
≤ B1

C2

for some constant B1 > 0. The lemma is proved.

3 Discrete approximation schemes for complete and “truncated”
Cox–Ingersoll–Ross processes

Consider the following discrete approximation scheme for the process X. Assume
that we have a sequence of the probability spaces (Ω(n),F (n), P(n)), n ≥ 1. Let
{q(n)

k , n ≥ 1, 0 ≤ k ≤ n} be the sequence of symmetric iid random variables defined

on the corresponding probability space and taking values ±
√

T
n

, that is, Pn(q
(n)
k =

±
√

T
n
) = 1

2 . Let further n > T . We construct discrete approximation schemes for the

stochastic processes X and XC as follows. Consider the following approximation for
the complete process:

X
(n)
0 = x0 > 0, X

(n)
k = X

(n)
k−1 + (b − X

(n)
k−1)T

n
+ σq

(n)
k

√
X

(n)
k−1,

Q
(n)
k := X

(n)
k − X

(n)
k−1 = (b − X

(n)
k−1)T

n
+ σq

(n)
k

√
X

(n)
k−1, 1 ≤ k ≤ n, (6)

and the corresponding approximations for XC given by

X
(n,C)
0 = x0 > 0,

X
(n,C)
k = X

(n,C)
k−1 + (b − (X

(n,C)
k−1 ∧ C))T

n
+ σq

(n)
k

√
X

(n,C)
k−1 ∧ C,

Q
(n,C)
k : = X

(n,C)
k − X

(n,C)
k−1

= (b − (X
(n,C)
k−1 ∧ C))T

n
+ σq

(n)
k

√
X

(n,C)
k−1 ∧ C, 1 ≤ k ≤ n. (7)
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The following lemma confirms the correctness of the construction of these approxi-
mations.

Lemma 3.1. Let, n > 2T .

1) If 2b ≥ σ 2, then all values given by (6) and (7) are positive.

2) We have
P

{∃k, 0 ≤ k ≤ n : X
(n)
k �= X

(n,C)
k

} → 0 (8)

as C → ∞.

Proof. 1) We apply the method of mathematical induction. When k = 1,

X
(n)
1 = x0 + (b − x0)T

n
+ σq

(n)
1

√
x0.

Let us show that

x0 + (b − x0)T

n
+ σq

(n)
1

√
x0 > 0. (9)

We denote α := √
x0 and reduce (9) to the quadratic inequality

α2
(

1 − T

n

)
± σ

√
T

n
α + bT

n
> 0,

which obviously holds because the discriminant D = σ 2T
n

− 4bT
n

(1 − T
n
) < 0 when

σ 2 ≤ 2b and n > 2T . So, X
(n)
1 > 0. Assume now that X

(n)
k > 0. It can be shown

by applying the same transformation that when σ 2 ≤ 2b and n > 2T , the values
X

(n)
k+1 > 0.

It can be proved similarly that the values given by (7) are positive.
2) X

(n)
k can be represented as

X
(n)
k = x0 +

k∑
i=1

(
b − X

(n)
i−1

)T

n
+ σ

k∑
i=1

q
(n)
i

√
X

(n)
i−1

= X
(n)
k−1 + (b − X

(n)
k−1)T

n
+ σq

(n)
k

√
X

(n)
k−1. (10)

Compute

E
(
X

(n)
i

)2 = E
(

X
(n)
i−1

(
1 − T

n

)
+ bT

n
+ σ

√
X

(n)
i−1q

(n)
i

)2

= E
(

X
(n)
i−1

(
1 − T

n

)
+ bT

n

)2

+ σ 2T

n
E X

(n)
i−1

=
(

bT

n

)2

+
[
σ 2T

n
+ 2bT

n

(
1 − T

n

)]
E X

(n)
i−1

+
(

1 − T

n

)2

E
(
X

(n)
i−1

)2
. (11)
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Assume that E(X
(n)
j )2 ≤ β2, 1 ≤ j ≤ i − 1, for some β > 0. Then E X

(n)
j ≤ β,

1 ≤ j ≤ i − 1. We get the quadratic inequality of the form(
1 − T

n

)2

β2 +
[
σ 2T

n
+ 2bT

n

(
1 − T

n

)]
β +

(
bT

n

)2

< β2

or, equivalently,((
1 − T

n

)2

− 1

)
β2 +

[
σ 2T

n
+ 2bT

n

(
1 − T

n

)]
β +

(
bT

n

)2

< 0,

which obviously holds when β >
σ 2+2b+

√
σ 4+4bσ 2+8b2

3
2

. So, for all 1 ≤ i ≤ n,

E X
(n)
i ≤ σ 2+2b+

√
σ 4+4bσ 2+8b2

3
2

∨ x0 =: γ .

Using the Burkholder inequality, we estimate

0 ≤ E sup
0≤k≤n

(
X

(n)
k

)2 ≤ 2(x0 + bT )2 + 2σ 2 E sup
0≤k≤n

( n∑
i=1

q
(n)
i

√
X

(n)
i−1

)2

≤ 2(x0 + bT )2 + 8σ 2 E
( n∑

i=1

q
(n)
i

√
X

(n)
i−1

)2

≤ 2(x0 + bT )2 + 8σ 2γ T .

Therefore,

P
{∃k, 0 ≤ k ≤ n : X

(n)
k �= X

(n,C)
k

} = P
{

sup
0≤k≤n

X
(n)
k ≥ C

}
≤ C−2 E sup

0≤k≤n

(
X

(n)
k

)2

≤ 2C−2(x0 + bT )2 + 8σ 2C−2γ T ,

whence the proof follows.

Consider the sequences of step processes corresponding to these schemes:

X
(n)
t = X

(n)
k for

kT

n
≤ t <

(k + 1)T

n

and

X
(n,C)
t = X

(n,C)
k for

kT

n
≤ t <

(k + 1)T

n
.

Thus, the trajectories of the processes X(n) and X(n,C) have jumps at the points
kT /n , k = 0, . . . , n, and are constant on the interior intervals. Consider the fil-
trations Fn

k = σ(X
(n)
t , t ≤ kT

n
). The processes X(n,C) are adapted with respect to

them. Therefore, we can consider the same filtrations for all discrete approximation
schemes. So, we can identify Fn

t with Fn
k for kT

n
≤ t <

(k+1)T
n

.

Remark 3.1. Now we can rewrite relation (8) as follows:

P
{∃t, t ∈ [0, T ] : X

(n)
t �= X

(n,C)
t

} → 0

as C → ∞.
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Denote by Q and Qn, n ≥ 1, the measures corresponding to the processes X and
X(n), n ≥ 1, respectively, and by QC and Qn,C, n ≥ 1, the measures corresponding

to the processes XC and X(n,C), n ≥ 1, respectively. Denote by
W−→ the weak con-

vergence of measures corresponding to stochastic processes. We apply Theorem 3.2
from [23] to prove the weak convergence of measures Qn,C to the measure QC . This
theorem can be formulated as follows.

Theorem 3.1. Assume that the following conditions are satisfied:

(i) For any ε > 0,

lim
n

P
(

sup
1≤k≤n

∣∣Q(n,C)
k

∣∣ ≥ ε
)

= 0;

(ii) For any ε > 0 and a ∈ (0, 1],

lim
n

Pn

(
sup
t∈T

∣∣∣∣ ∑
1≤k≤[ nt

T
]
E

(
Q

(n,C)
k I|Q(n,C)

k |≤a

∣∣Fn
k−1

)

−
t∫

0

(
b − X(n,C)

s ∧ C
)
ds

∣∣∣∣ ≥ ε

)
= 0;

(iii) For any ε > 0 and a ∈ (0, 1],

lim
n

Pn

(
sup
t∈T

∣∣∣∣ ∑
1≤k≤[ nt

T
]

(
E

((
Q

(n,C)
k

)2
I|Q(n,C)

k |≤a

∣∣Fn
k−1

)

− (
E

(
Q

(n,C)
k I|Q(n,C)

k |≤a

∣∣Fn
k−1

))2
)

− σ 2

t∫
0

(
X(n,C)

s ∧ C
)
ds

∣∣∣∣ ≥ ε

)
= 0;

Then Qn,C W−→ QC .

Using Theorem 3.1, we prove the following result.

Theorem 3.2. Qn,C W−→ QC .

Proof. According to Theorem 3.1, we need to check conditions (i)–(iii). Relation

(7) implies that sup0≤k≤n |Q(n,C)
k | ≤ b+CT

n
+ σ

√
T C
n

. Hence, there exists a constant

C2 > 0 such that sup0≤k≤n |Q(n,C)
k | ≤ C2√

n
. This means that condition (i) is satisfied.

Furthermore, in order to establish (ii), we consider any fixed a > 0 and n ≥ 1
such that C2√

n
≤ a, that is, n ≥ (

C2
a

)2. For such n,

E
(
Q

(n,C)
k I|Q(n,C)

k |≤a

∣∣Fn
k−1

) = E
(
Q

(n,C)
k

∣∣Fn
k−1

)
= (b − (X

(n,C)
k−1 ∧ C))T

n
+ σ E q

(n)
k

√
X

(n,C)
k−1 ∧ C

= (b − (X
(n,C)
k−1 ∧ C))T

n
. (12)



Functional limit theorems in the Cox–Ingersoll–Ross model 11

For any ε > 0, we have

lim
n

Pn

(
sup
t∈T

∣∣∣∣ ∑
1≤k≤[ nt

T
]
E

(
Q

(n,C)
k I|Q(n,C)

k |≤a

∣∣Fn
k−1

) −
t∫

0

(
b − (

X(n,C)
s ∧ C

))
ds

∣∣∣∣ ≥ ε

)

= lim
n

Pn

(
sup
t∈T

∣∣∣∣ ∑
1≤k≤[ nt

T
]

(b − (X
(n,C)
k−1 ∧ C))T

n
−

∑
0≤k≤[ nt

T
]−1

(
b − (

X
(n,C)
k ∧ C

))T

n

− (
b − (

X
(n,C)

[ nt
T

] ∧ C
))(

t − [nt
T

]T
n

)∣∣∣∣ ≥ ε

)

= lim
n

Pn

(
sup
t∈T

∣∣∣∣(b − (
X

(n,C)

[ nt
T

] ∧ C
))(

t − [nt
T

]T
n

)∣∣∣∣ ≥ ε

)
= 0,

and hence condition (ii) is satisfied. Now let us check condition (iii). We have

E
((

Q
(n,C)
k

)2
I|Q(n,C)

k |≤a
|Fn

k−1

) = E
((

Q
(n,C)
k

)2|Fn
k−1

)
=

(
(b − (X

(n,C)
k−1 ∧ C))T

n

)2

+ 2
(b − (X

(n,C)
k−1 ∧ C))T

n
σ E q

(n)
k

√
X

(n,C)
k−1 ∧ C

+ σ 2 E
(
q

(n)
k

)2(
X

(n,C)
k−1 ∧ C

)
=

(
(b − (X

(n,C)
k−1 ∧ C))T

n

)2

+ σ 2 T

n

(
X

(n,C)
k−1 ∧ C

)
.

Therefore, for any ε > 0,

lim
n

Pn

(
sup
t∈T

∣∣∣∣ ∑
1≤k≤[ nt

T
]

(
E

((
Q

(n,C)
k

)2
I|Q(n,C)

k |≤a

∣∣Fn
k−1

)

− (
E

(
Q

(n,C)
k I|Q(n,C)

k |≤a

∣∣Fn
k−1

))2
)

− σ 2

t∫
0

(
X(n,C)

s ∧ C
)
ds

∣∣∣∣ ≥ ε

)

= lim
n

Pn

(
sup
t∈T

∣∣∣∣ ∑
1≤k≤[ nt

T
]

((
(b − (X

(n,C)
k−1 ∧ C))T

n

)2

+ σ 2 T

n

(
X

(n,C)
k−1 ∧ C

)

−
(

(b − (X
(n,C)
k−1 ∧ C))T

n

)2)
−

∑
0≤k≤[ nt

T
]−1

(
σ 2 T

n

(
X

(n,C)
k ∧ C

))

− σ 2(X(n,C)

[ nt
T

] ∧ C
)(

t − [nt
T

]T
n

)∣∣∣∣ ≥ ε

)

= lim
n

Pn

(
sup
t∈T

(
σ 2(X(n,C)

[ nt
T

] ∧ C
)(

t − [nt
T

]T
n

))
≥ ε

)
= 0.

The theorem is proved.

Theorem 3.3. Qn W−→ Q, n → ∞.
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Proof. According to Theorem A.1 and Theorem 3.2, it suffices to prove that

lim
C→∞ lim

n→∞ P
{

sup
0≤t≤T

∣∣X(n)
t − X

(n,C)
t

∣∣ ≥ ε
}

= 0.

However, due to Remark 3.1,

lim
C→∞ lim

n→∞ P
{

sup
0≤t≤T

∣∣X(n)
t − X

(n,C)
t

∣∣ ≥ ε
}

≤ lim
C→∞ lim

n→∞ P
{∃t, t ∈ [0, T ] : X

(n)
t �= X

(n,C)
t

} = 0.

4 Multiplicative scheme for Cox–Ingersoll–Ross process

In this section, we construct a multiplicative discrete approximation scheme for the
process eXt , t ∈ [0, T ], where Xt is the CIR process given by (2). We construct the
following multiplicative process based on the discrete approximation scheme (6)–(7).
We introduce limit and prelimit processes as follows:

S
n,C
t = exp{x0}

∏
1≤k≤[ tn

T
]

(
1 + Q

(n,C)
k

)
, t ∈ T,

SC
t = exp

{
XC

t − σ 2

2

t∫
0

(
XC

t ∧ C
)
dt

}
, t ∈ T,

Sn
t = exp{x0}

∏
1≤k≤[ tn

T
]

(
1 + Q

(n)
k

)
, t ∈ T,

St = exp

{
Xt − σ 2

2

t∫
0

Xtdt

}
, t ∈ T,

S̃n
t = exp{x0}

∏
1≤k≤[ tn

T
]

[(
1 + Q

(n,C)
k

)
exp

{
σ 2

2n
X

(n)
k

}]
, t ∈ T,

and

S̃t = exp{Xt }, t ∈ T.

Denote by GC , Gn,C , G, Gn, G̃, and G̃n, n ≥ 1, the measures corresponding to the
processes SC

t , S
n,C
t , St , Sn

t , S̃t , and S̃n
t , n ≥ 1, respectively.

We apply Theorem 3.3 from [23] to prove the weak convergence of measures.
This theorem can be formulated as follows.

Theorem 4.1. Let the following conditions hold:

(i) sup1≤k≤n |Q(n,C)
k | P−→ 0, n → ∞;

(ii) For any a ∈ (0, 1],

lim
D→∞ lim

n→∞ Pn

( ∑
1≤k≤n

E
((

Q
(n,C)
k

)2
I|Q(n,C)

k |≤a

∣∣Fn
k−1

) ≥ D

)
= 0;
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(iii) For any a ∈ (0, 1],

lim
D→∞ lim

n→∞ Pn

( ∑
1≤k≤n

∣∣E(
Q

(n,C)
k I|Q(n,C)

k |≤a

∣∣Fn
k−1

)∣∣ ≥ D

)
= 0;

(iv) For any ε > 0 and a ∈ (0, 1],

lim
n

Pn

(
sup
t∈T

∣∣∣∣ ∑
1≤k≤[ nt

T
]
E

(
Q

(n,C)
k I|Q(n,C)

k |≤a

∣∣Fn
k−1

)

−
t∫

0

(
b − X(n,C)

s ∧ C
)
ds

∣∣∣∣ ≥ ε

)
= 0;

(v) For any ε > 0 and a ∈ (0, 1],

lim
n

Pn

(
sup
t∈T

∣∣∣∣ ∑
1≤k≤[ nt

T
]
E

((
Q

(n,C)
k

)2
I|Q(n,C)

k |≤a

∣∣Fn
k−1

)

− σ 2

t∫
0

(
X(n,C)

s ∧ C
)
ds

∣∣∣∣ ≥ ε

)
= 0.

Then
Gn,C W−→ GC.

We prove the following result using Theorem 4.1.

Theorem 4.2. Gn,C W−→ GC .

Proof. According to Theorem 4.1, we need to check conditions (i)–(v). It was es-
tablished in the proof of Theorem 3.2 that conditions (i) and (iv) are satisfied. Let us
show that condition (ii) holds. It was also established in the proof of Theorem 3.2
that sup0≤k≤n |Q(n,C)

k | ≤ C2√
n

. So, for all a ∈ (0, 1], starting from some number n, we
have ∑

1≤k≤n

E
((

Q
(n,C)
k

)2
I|Q(n,C)

k |≤a

∣∣Fn
k−1

)

=
∑

1≤k≤n

E
((

Q
(n,C)
k

)2∣∣Fn
k−1

) ≤
∑

1≤k≤n

C2
2

n
≤ C2

2 ,

whence condition (ii) holds. Now, (12) implies that, for all a ∈ (0, 1], starting from
some number n, we have

∣∣E(
Q

(n,C)
k I|Q(n,C)

k |≤a

∣∣Fn
k−1

)∣∣ = ∣∣E(
Q

(n,C)
k

∣∣Fn
k−1

)∣∣ ≤ C3

n
,

whence condition (iii) holds.
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Let us check condition (v). For any ε > 0 and a ∈ .(0, 1], we have

lim
n

Pn

(
sup
t∈T

∣∣∣∣ ∑
1≤k≤[ nt

T
]
E

((
Q

(n,C)
k

)2
I|Q(n,C)

k |≤a

∣∣Fn
k−1

) − σ 2

t∫
0

(
X(n,C)

s ∧ C
)
ds

∣∣∣∣ ≥ ε

)

= lim
n

Pn

(
sup
t∈T

∣∣∣∣ ∑
1≤k≤[ nt

T
]

((
(b − (X

(n,C)
k−1 ∧ C))T

n

)2

+ σ 2 T

n

(
X

(n,C)
k−1 ∧ C

))

−
∑

0≤k≤[ nt
T

]−1

(
σ 2 T

n

(
X

(n,C)
k ∧ C

)) − σ 2(X(n,C)

[ nt
T

] ∧ C
)(

t − [nt
T

]T
n

)∣∣∣∣ ≥ ε

)

≤ lim
n

Pn

(
sup
t∈T

(
(|b| + C)2T t

n
+ σ 2(X(n,C)

[ nt
T

] ∧ C
)(

t − [nt
T

]T
n

))
≥ ε

)
= 0.

The theorem is proved.

Theorem 4.3. Gn W−→ G, n → ∞.

Proof. The proof immediately follows from Theorem A.1, Theorem 4.2, and Re-
mark 3.1. Indeed,

lim
C→∞ lim

n→∞ P
{

sup
0≤t≤T

∣∣X(n)
t − X

(n,C)
t

∣∣ ≥ ε
}

≤ lim
C→∞ lim

n→∞ P
{∃t, t ∈ [0, T ] : X

(n)
t �= X

(n,C)
t

} = 0.

Remark 4.1. The weak convergence

G̃n W−→ G̃, n → ∞,

can be proved in a similar way.

A Additional results

We state here Theorem 4.2 from [3]:

Theorem A.1. Suppose that we have sets of processes {X(n,C), n ≥ 1, C > 0},
{XC,C > 0}, {X(n), n ≥ 1} and a stochastic process X on the interval [0, T ]. Let
Qn,C , QC , Qn, and Q be their corresponding measures. Suppose that, for any C > 0,

Qn,C W−→ QC , n → ∞, and that QC W−→ Q as C → ∞. Suppose further that, for
any ε > 0,

lim
C→∞ lim

n→∞ P
{

sup
0≤t≤T

∣∣X(n,C)
t − X

(n)
t

∣∣ ≥ ε
}

= 0.

Then Qn W−→ Q, n → ∞.
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Let b, σ : R → R be continuous functions. Consider the stochastic differential
equation

dX(t) = σ
(
X(t)

)
dW(t) + b

(
X(t)

)
dt, (13)

where W = (W(t)) is a Wiener process.

Theorem A.2. [20, p. 177]. If σ and b are continuous functions satisfying the con-
dition ∣∣σ(x)

∣∣2 + ∣∣b(x)
∣∣2 ≤ K

(
1 + |x|2) (14)

for some positive constant K , then for any solution of (13) such that E(|X(0)|2) <

∞, we have E(|X(t)|2) < ∞ for all t > 0.

Theorem A.3. [20, p. 182]. Suppose that σ and b are bounded functions. Assume
further that the following conditions are satisfied:

(i) there exists a strictly increasing function ρ(u) on [0,∞) such that

ρ(0) = 0,

∫
0+

ρ−2(u)du = ∞, and
∣∣σ(x) − σ(y)

∣∣ ≤ ρ
(|x − y|)

for all x, y ∈ R.

(ii) there exists an increasing and concave function k(u) on [0,∞) such that

k(0) = 0,

∫
0+

k−1(u)du = ∞, and
∣∣b(x) − b(y)

∣∣ ≤ k
(|x − y|)

for all x, y ∈ R.

Then the pathwise uniqueness of solutions holds for (13), and hence it has a unique
strong solution.
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