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Abstract The LAN property is proved in the statistical model based on discrete-time obser-
vations of a solution to a Lévy driven SDE. The proof is based on a general sufficient condition
for a statistical model based on discrete observations of a Markov process to possess the LAN
property, and involves substantially the Malliavin calculus-based integral representations for
derivatives of log-likelihood of the model.
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1 Introduction

Consider a stochastic equation of the form

𝑑𝑋u�
u� = 𝑎u�(𝑋u�

u� )𝑑𝑡 + 𝑑𝑍u�, (1)

where {𝑎u�(𝑥), 𝜃 ∈ 𝛩, 𝑥 ∈ ℝ} is a measurable function, 𝛩 = (𝜃1, 𝜃2) ⊂ ℝ is a para-
metric set. For a given 𝜃 ∈ 𝛩, assuming that the drift term 𝑎u� satisfies the standard
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local Lipschitz and linear growth conditions, Eq. (1) uniquely defines a Markov pro-
cess 𝑋. The aim of this paper is to establish the local asymptotic normality property
(LAN in the sequel) in a model, where the process 𝑋 is discretely observed with a
fixed time discretization value ℎ > 0, and a number of observations 𝑛 → ∞.

The LAN property provides a convenient and powerful tool for establishing lower
efficiency bounds in a statistical model, e.g. [6, 17, 18]. Such a property for statistical
models, based on discrete observations of processes with Lévy noise, was studied
mostly in the cases where the likelihood function (or, at least its “main part”) is explicit
in a sense, e.g., [1, 2, 7, 12, 13]. In the above references the models are linear in the
sense that the process under the observation is either a Lévy process, or a solution
of a linear (Ornstein-Uhlenbeck type) SDE driven by a Lévy process. The general
non-linear case remains unstudied to a great extent, and apparently the main reason
for this is that the transition probability density of the observed Markov process in
this case is highly implicit. In this paper we develop the tools convenient for proving
the LAN property in the framework of discretely observed solutions to SDE’s with
a Lévy noise. To make the exposition reasonably transparent we confine ourselves
to a particular case of one-dimensional and one-parameter model and a fixed sample
frequency ℎ. The various extensions (general state space, multiparameter model, high
frequency sampling, etc.) are possible, but we postpone their detailed analysis for a
further research.

Our approach consists of two principal parts. On one hand, we design a general
sufficient condition for a statistical model based on a discrete observations of a Markov
process to possess the LAN property, see Theorem 1 below. This result extends the
classical LeCam’s result about the LAN property for i.i.d. samples. It is closely re-
lated to [5, Theorem 13], but with some substantial differences in the basic assump-
tions which makes our result well designed to study a model based on observations
of a Lévy driven SDE, see Remark 1 below. On the other hand, we exploit Malliavin
calculus-based integral representations of derivatives of 1st and 2nd orders for the log-
likelihood, which we have derived in our recent papers [11] and [10]. The combination
of these two principal parts leads to a required LAN property. We note that in the diffu-
sion setting with high frequency sampling a Malliavin calculus-based approach to the
proof of the LAN property is developed in [4]. Our approach is substantially different.
The changes are yielded by a non-diffusive structure of the noise.

The structure of the paper follows the two-stage scheme outlined above. First, we
formulate in Section 2.1 (and prove in Section 3) a general sufficient condition for
the LAN property in a Markov model. Then we formulate in Section 2.2 (and prove in
Section 4) our main result about the LAN property for the discretely observed solution
to a Lévy driven SDE; here the proof involves the Malliavin calculus-based integral
representations of derivatives of the log-likelihood from [11] and [10].

2 The main results

2.1 LAN property for discretely observed Markov processes
Let 𝑋 be a Markov process taking its values in a locally compact metric space 𝕏. The
law of 𝑋 is assumed to be dependent on a real-valued parameter 𝜃; in what follows,
we assume that the parametric set 𝛩 is an interval (𝜃1, 𝜃2) ∈ ℝ. We denote by 𝖯u�

u� the
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law of 𝑋 with 𝑋0 = 𝑥, which corresponds to the parameter value 𝜃; the expectation
w.r.t. 𝖯u�

u� is denoted by 𝖤u�
u� . For a given ℎ > 0, we denote by 𝖯u�

u�,u� the law w.r.t. 𝖯u�
u� of

the vector 𝑋u� = {𝑋ℎu�, 𝑘 = 1, … , 𝑛} for discrete time observations of 𝑋 with the step ℎ.
Denote by ℰu� the statistical experiment generated by the sample 𝑋u� with 𝑋0 = 𝑥, i.e.

ℰu� = (𝕏u�, ℬ(𝕏u�), 𝖯u�
u�,u�, 𝜃 ∈ 𝛩); (2)

we refer to [8] for the notation and terminology. Our aim is to establish the LAN
property for the sequence of experiments {ℰu�}.

Recall that the sequence of statistical experiments {ℰu�} (or, equivalently, the family
{𝖯u�

u�,u�, 𝜃 ∈ 𝛩}) is said to have the LAN property at the point 𝜃0 ∈ 𝛩 as 𝑛 → ∞ if for
some sequence 𝑟(𝑛) > 0, 𝑛 ≥ 1 and all 𝑢 ∈ ℝ

𝑍u�,u�0
(𝑢) ∶=

𝑑𝖯u�0+u�(u�)u�
u�,u�

𝑑𝖯u�0
u�,u�

(𝑋u�) = exp{Δu�(𝜃0)𝑢 − 1
2

𝑢2 + 𝛹u�(𝑢, 𝜃0)},

with
ℒ(Δu�(𝜃0) | 𝖯u�0

u�,u�) ⇒ 𝑁(0, 1), 𝑛 → ∞; (3)

𝛹u�(𝑢, 𝜃0)
𝖯u�0

u�,u�⟶ 0, 𝑛 → ∞. (4)
In what follows we assume that 𝑋 admits a transition probability density 𝑝ℎ(𝜃; 𝑥, 𝑦)

w.r.t. some 𝜎-finite measure 𝜆. Furthermore, we assume that the experiment ℰ1 is
regular; that is, for every 𝑥 ∈ 𝕏

(a) the function 𝜃 ↦ 𝑝ℎ(𝜃; 𝑥, 𝑦) is continuous for 𝜆-a.s. 𝑦 ∈ 𝕏;
(b) the function √𝑝ℎ(𝜃; 𝑥, ⋅) is differentiable in 𝐿2(𝕏, 𝜆); that is, there exists

𝑞ℎ(𝜃; 𝑥, ⋅) ∈ 𝐿2(𝕏, 𝜆) such that

∫
𝕏

(
√𝑝ℎ(𝜃 + 𝛿; 𝑥, 𝑦) − √𝑝ℎ(𝜃; 𝑥, 𝑦)

𝛿
− 𝑞ℎ(𝜃; 𝑥, 𝑦))

2
𝜆(𝑑𝑦) → 0, 𝛿 → 0;

(c) the function 𝑞ℎ(𝜃; 𝑥, ⋅) is continuous in 𝐿2(𝕏, 𝜆) w.r.t. 𝜃; that is,

∫
𝕏

(𝑞ℎ(𝜃 + 𝛿; 𝑥, 𝑦) − 𝑞ℎ(𝜃; 𝑥, 𝑦))2𝜆(𝑑𝑦) → 0, 𝛿 → 0.

Denote
𝑔ℎ(𝜃, 𝑥, 𝑦) = 2𝑞ℎ(𝜃; 𝑥, 𝑦)√𝑝ℎ(𝜃; 𝑥, 𝑦); (5)

note that the function 𝑔ℎ is well defined by the definition of 𝑞ℎ and satisfies

𝖤u�
u� 𝑔ℎ(𝜃; 𝑥, 𝑋ℎ) = 0 (6)

for every 𝑥 ∈ ℝ, 𝜃 ∈ 𝛩. Furthermore, denote

𝐼u�(𝜃) =
u�

∑
u�=1

𝖤u�
u� (𝑔ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�))2 = 4𝖤u�

u�

u�

∑
u�=1

∫
𝕏

(𝑞ℎ(𝜃; 𝑋ℎ(u�−1), 𝑦))2𝜆(𝑑𝑦). (7)

Assuming that the statistical experiment ℰu� is regular, the above integral is finite and
defines the Fisher information for ℰu�.

We fix 𝜃0 ∈ 𝛩, and put 𝑟(𝑛) = 𝐼−1/2
u� (𝜃0) for large enough 𝑛, assuming that for

those 𝑛 one has 𝐼u�(𝜃0) > 0.
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Theorem 1. Suppose the following.
1. Statistical experiment (2) is regular for every 𝑥 ∈ 𝕏 and 𝑛 ≥ 1 and 𝐼u�(𝜃0) > 0

for large enough 𝑛.
2. The sequence

𝑟(𝑛)
u�

∑
u�=1

𝑔ℎ(𝜃0; 𝑋ℎ(u�−1), 𝑋ℎu�), 𝑛 ≥ 1

is asymptotically normal w.r.t. 𝑃u�0
u� with parameters (0, 1).

3. The sequence

𝑟2(𝑛)
u�

∑
u�=1

𝑔2
ℎ(𝜃0; 𝑋ℎ(u�−1), 𝑋ℎu�), 𝑛 ≥ 1

converges to 1 in 𝑃u�0
u� -probability.

4. There exists a constant 𝑝 > 2 such that

lim
u�→∞

𝑟u�(𝑛)𝖤u�0
u�

u�

∑
u�=1

∣𝑔ℎ(𝜃0; 𝑋ℎ(u�−1), 𝑋ℎu�)∣u� = 0. (8)

5. For every 𝑁 > 0

lim
u�→∞

sup
|u�|<u�

𝑟2(𝑛)𝖤u�0
u�

u�

∑
u�=1

∫
𝕏

(𝑞ℎ(𝜃0 + 𝑟(𝑛)𝑣; 𝑋ℎ(u�−1), 𝑦)

− 𝑞ℎ(𝜃0; 𝑋ℎ(u�−1), 𝑦))2𝜆(𝑑𝑦) = 0. (9)

Then {𝖯u�
u�,u�, 𝜃 ∈ 𝛩} has the LAN property at the point 𝜃0.

Remark 1. The above theorem is closely related to [5, Theorem 13]. One important
difference is that in [5] the main conditions are formulated in the terms of the functions

√𝑝ℎ(𝜃 + 𝑡; 𝑥, 𝑦)/𝑝ℎ(𝜃; 𝑥, 𝑦) − 1,

while within our approach the main assumptions are imposed on the log-likelihood
derivative 𝑔ℎ(𝜃; 𝑥, 𝑦), and can be verified efficiently e.g. in a model where 𝑋 is defined
by an SDE with jumps (see Section 2.2 below). Another important difference is that
the whole approach in [5] is developed under the assumption that the log-likelihood
function smoothly depends on the parameter 𝜃. For a model where 𝑋 is defined by
an SDE with jumps, such an assumption may be very restrictive (see the detailed
discussion in [11]). This is the reason why we use the assumption of regularity of the
experiments instead. It is much milder and easily verifiable (see [11]).

Let us note briefly two possible extensions of the result above, can be obtained
without any essential changes in the proof. We do not expose them here in details
since they will not be used in the current paper.

Remark 2. The statement of Theorem 1 still holds true if ℎ is allowed to depend on
𝑛 with conditions 1–5 have been changed, respectively.
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Remark 3. The statement of Theorem 1 still holds true if, instead of one 𝜃0, a se-
quence 𝜃u� → 𝜃0 is considered, with conditions 2–5 have been changed, respectively.
Moreover, in that case relations (3) and (4) would still hold true if instead of the fixed
𝑢 the sequence 𝑢u� → 𝑢 is considered. That is, under the uniform version of condi-
tions 2–5 the uniform asymptotic normality holds true (see [8, Definition 2.2]).

2.2 LAN property for families of distributions of solutions to Lévy driven SDE’s
We assume that 𝑍 in the SDE (1) is a Lévy process without a diffusion component;
that is,

𝑍u� = 𝑐𝑡 + ∫
u�

0
∫

|u�|>1
𝑢𝜈(𝑑𝑠, 𝑑𝑢) + ∫

u�

0
∫

|u�|≤1
𝑢�̃�(𝑑𝑠, 𝑑𝑢),

where 𝜈 is the Poisson point measure with the intensity measure 𝑑𝑠𝜇(𝑑𝑢), and
�̃�(𝑑𝑠, 𝑑𝑢) = 𝜈(𝑑𝑠, 𝑑𝑢) − 𝑑𝑠𝜇(𝑑𝑢) is the respective compensated Poisson measure.
In the sequel, we assume the Lévy measure 𝜇 to satisfy the following.

H. (i) For some 𝛽 > 0,
∫

|u�|≥1
𝑢4+u�𝜇(𝑑𝑢) < ∞;

(ii) For some 𝑢0 > 0, the restriction of 𝜇 on [−𝑢0, 𝑢0] has a positive density
𝑚 ∈ 𝐶2([−𝑢0, 0) ∪ (0, 𝑢0]);

(iii) There exists 𝐶0 such that

∣𝑚′(𝑢)∣ ≤ 𝐶0|𝑢|−1𝑚(𝑢), ∣𝑚″(𝑢)∣ ≤ 𝐶0𝑢−2𝑚(𝑢), |𝑢| ∈ (0, 𝑢0];

(iv)

(log 1
𝜀

)
−1

𝜇({𝑢 ∶ |𝑢| ≥ 𝜀}) → ∞, 𝜀 → 0.

One particularly important class of Lévy processes satisfying H consists of tempered
𝛼-stable processes (see [21]), that arise naturally in models of turbulence [20], eco-
nomical models of stochastic volatility [3], etc.

Denote by 𝐶u�,u�(ℝ × 𝛩), 𝑘, 𝑚 ≥ 0 the class of functions 𝑓 ∶ ℝ × 𝛩 → ℝ that have
continuous derivatives,

𝜕u�

𝜕𝑥u�
𝜕u�

𝜕 𝜃u� 𝑓 , 𝑖 ≤ 𝑘, 𝑗 ≤ 𝑚.

We assume the coefficient 𝑎u�(𝑥) in Eq. (1) to satisfy the following.
A. (i) 𝑎 ∈ 𝐶3,2(ℝ×𝛩) has bounded derivatives 𝜕u�𝑎, 𝜕2

u�u�𝑎, 𝜕2
u�u�𝑎, 𝜕3

u�u�u�𝑎, 𝜕3
u�u�u�𝑎,

𝜕3
u�u�u�𝑎, 𝜕4

u�u�u�u�𝑎 and

∣𝑎u�(𝑥)∣ + ∣𝜕u�𝑎u�(𝑥)∣ + ∣𝜕2
u�u�𝑎u�(𝑥)∣ ≤ 𝐶(1 + |𝑥|), 𝜃 ∈ 𝛩, 𝑥 ∈ ℝ. (10)

(ii) For a given 𝜃0 ∈ 𝛩, there exists a neighbourhood (𝜃−, 𝜃+) ⊂ 𝛩 of 𝜃0
such that

lim sup
|u�|→∞

𝑎u�(𝑥)
𝑥

< 0 uniformly in 𝜃 ∈ (𝜃−, 𝜃+).
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It is proved in [11] that under conditions A(i) and H, the following properties hold:
• the Markov process 𝑋 given by (1) has a transition probability density 𝑝u�

u� w.r.t.
the Lebesgue measure;

• this density has a derivative 𝜕u�𝑝u�
u� (𝑥, 𝑦), and the statistical experiment (2) is

regular;
• the function 𝑔u�

u� , given by (5) satisfies (6).
Hence all the pre-requisites for Theorem 1, given in Section 2.1, are true with 𝜆(𝑑𝑥) =
𝑑𝑥 (the Lebesgue measure).

Furthermore, under conditions A and H, for 𝜃 = 𝜃0 the corresponding Markov
process 𝑋 is ergodic, i.e. there exists the unique invariant probability measure 𝜘u�0

u�u�u�
for 𝑋. One can verify this easily, using conditions sufficient for ergodicity of solutions
to Lévy driven SDE’s, given in [19] and [14]. Denote by {𝑋u�u�,u�0

u� , 𝑡 ∈ ℝ} the cor-
responding stationary version of 𝑋; that is, a Markov process, defined on whole ℝ,
which has the same transition probabilities as 𝑋 and one-dimensional distributions
equal to 𝜘u�0

u�u�u�. Clearly, the existence of such a process, on a proper probability space,
is guaranteed by the Kolmogorov consistency theorem. Denote

𝜎2(𝜃0) = 𝖤(𝑔ℎ(𝜃0; 𝑋u�u�,u�0
0 , 𝑋u�u�,u�0

ℎ ))2

= ∫
ℝ

∫
ℝ

(𝑔ℎ(𝜃0; 𝑥, 𝑦))2𝑝ℎ(𝜃0; 𝑥, 𝑦) 𝑑𝑦𝜘u�0
u�u�u�(𝑑𝑥). (11)

The following theorem performs the main result of this paper. Its proof is given in
Section 4 below.

Theorem 2. Let conditions A and H hold true and

𝜎2(𝜃0) > 0.

Then the family {𝖯u�
u�,u�, 𝜃 ∈ 𝛩} possesses the LAN property at the point 𝜃 = 𝜃0.

3 Proof of Theorem 1

The method of proof goes back to LeCam’s proof of the LAN property for i.i.d. sam-
ples, see e.g. Theorem II.1.1 and Theorem II.3.1 in [8]. In the Markov setting, the
dependence in the observations leads to some additional technicalities (see e.g. (19)).
The possible ways to overcome these additional difficulties can be found, in a slightly
different setting, in the proof of [5, Theorem 13]. In order to keep the exposition trans-
parent and self-contained, we prefer to give a complete proof of Theorem 1 rather than
to give a chain of partly relevant references.

We divide the proof into several lemmas; in all the lemmas in this section we
assume the conditions of Theorem 1 to be fulfilled. Values 𝑥, 𝜃0 and 𝑢 are fixed; we
assume that 𝑛 is large enough, so that 𝜃0 +𝑟(𝑛)𝑢 ∈ 𝛩. In order to simplify the notation
below we write 𝜃 instead of 𝜃0.

Denote

𝜁u�
u�u�(𝑢) = ((

𝑝ℎ(𝜃 + 𝑟(𝑛)𝑢; 𝑋ℎ(u�−1), 𝑋ℎu�)
𝑝ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�)

)
1/2

− 1)𝐼{𝑝ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�) ≠ 0}.



LAN property for discretely observed solutions to SDE’s 39

Lemma 1. One has

lim sup
u�→∞

u�

∑
u�=1

𝖤u�
u� (𝜁u�

u�u�(𝑢))2 ≤ 1
4

𝑢2 (12)

and

lim
u�→∞

u�

∑
u�=1

𝖤u�
u� (𝜁u�

u�u�(𝑢) − 1
2

𝑟(𝑛)𝑢𝑔ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�))
2

= 0. (13)

Proof. By the regularity of ℰ1 and the Cauchy inequality we have

𝖤u�
u� (𝜁u�

u�u�(𝑢) − 1
2

𝑟(𝑛)𝑢𝑔ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�))
2

= 𝖤u�
u� ∫

{u�∶u�u�
ℎ(u�,u�)≠0}

(√𝑝ℎ(𝜃 + 𝑟(𝑛)𝑢; 𝑋ℎ(u�−1), 𝑦)

− √𝑝ℎ(𝜃; 𝑋ℎ(u�−1), 𝑦) − 𝑟(𝑛)𝑢𝑞ℎ(𝜃; 𝑋ℎ(u�−1), 𝑦))2𝜆(𝑑𝑦)

≤ (𝑟(𝑛)𝑢)2𝖤u�
u� ∫

ℝ
(∫

1

0
𝑞ℎ(𝜃 + 𝑟(𝑛)𝑢𝑣, 𝑋ℎ(u�−1), 𝑦) − 𝑞ℎ(𝜃; 𝑋ℎ(u�−1), 𝑦)𝑑𝑣)

2
𝜆(𝑑𝑦)

≤ (𝑟(𝑛)𝑢)2𝖤u�
u� ∫

ℝ
𝜆(𝑑𝑦) ∫

1

0
(𝑞ℎ(𝜃 + 𝑟(𝑛)𝑢𝑣; 𝑋ℎ(u�−1), 𝑦) − 𝑞ℎ(𝜃; 𝑋ℎ(u�−1), 𝑦))2𝑑𝑣.

This inequality and (9) yield (13). To deduce (12) from (13) recall an elementary
inequality

|𝐴𝐵| ≤ 𝛼
2

𝐴2 + 1
2𝛼

𝐵2, 𝛼 > 0, (14)

and write

𝜁u�
u�u�(𝑢) = 1

2
𝑟(𝑛)𝑢𝑔ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�)+(𝜁u�

u�u�(𝑢)− 1
2

𝑟(𝑛)𝑢𝑔ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�)) =∶ 𝐴+𝐵.

Then

𝖤u�
u� (𝜁u�

u�u�(𝑢))2 ≤ (1 + 𝛼)1
4

𝑢2𝑟2(𝑛)𝖤u�
u� (𝑔ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�))2

+ (1 + 1
2𝛼

)𝖤u�
u� (𝜁u�

u�u�(𝑢) − 1
2

𝑟(𝑛)𝑢𝑔ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�))
2
.

Recall that u�

∑
u�=1

𝖤u�
u� (𝑔ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�))2 = 𝐼u�(𝜃) = 𝑟−2(𝑛), (15)

hence the above inequality and (13) lead to the bound

lim sup
u�→∞

u�

∑
u�=1

𝖤u�
u� (𝜁u�

u�u�(𝑢))2 ≤ 1 + 𝛼
4

𝑢2.

Since 𝛼 > 0 is arbitrary, this completes the proof.

Lemma 2. One has u�

∑
u�=1

(𝜁u�
u�u�(𝑢))2 → 𝑢2

4
, 𝑛 → ∞ (16)

in 𝖯u�
u� -probability.



40 D. Ivanenko, A. Kulik

Proof. By the Chebyshev inequality,

𝖯u�
u� {∣

u�

∑
u�=1

(𝜁u�
u�u�(𝑢))2 − 1

4
𝑟2(𝑛)𝑢2

u�

∑
u�=1

(𝑔ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�))2∣ > 𝜀}

≤ 1
𝜀

u�

∑
u�=1

𝖤u�
u� ∣(𝜁u�

u�u�(𝑢))2 − 1
4

𝑟2(𝑛)𝑢2(𝑔ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�))2∣

= 1
𝜀

u�

∑
u�=1

𝖤u�
u� ∣𝜁u�

u�u�(𝑢) − 1
2

𝑟(𝑛)𝑢𝑔ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�)∣

× ∣𝜁u�
u�u�(𝑢) + 1

2
𝑟(𝑛)𝑢𝑔ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�)∣

which by (14), for a given 𝛼 > 0, is dominated by

1
2𝛼𝜀

u�

∑
u�=1

𝖤u�
u� (𝜁u�

u�u�(𝑢) − 1
2

𝑟(𝑛)𝑢𝑔ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�))
2

+ 𝛼
2𝜀

u�

∑
u�=1

𝖤u�
u� (𝜁u�

u�u�(𝑢) + 1
2

𝑟(𝑛)𝑢𝑔ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�))
2
.

By (13) the first item of this expression tends to zero as 𝑛 → ∞. Furthermore, the
Cauchy inequality together with (12) and (15) implies that for the second one the
upper limit does not exceed

lim sup
u�→∞

(𝛼
𝜀

u�

∑
u�=1

𝖤u�
u� (𝜁u�

u�u�(𝑢))2 + 𝛼𝑢2

2𝜀
𝑟2(𝑛)

u�

∑
u�=1

𝖤u�
u� (𝑔ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�))2) ≤ 3𝛼𝑢2

2𝜀
.

Since 𝛼 > 0 is arbitrary, this proves that the difference
u�

∑
u�=1

(𝜁u�
u�u�(𝑢))2 − 1

4
𝑟2(𝑛)𝑢2

u�

∑
u�=1

(𝑔ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�))2

tends to 0 in 𝖯u�
u� -probability. Combined with the condition 3 of Theorem 1, this gives

the required statement.

Lemma 3. One has
max
1≤u�≤u�

∣𝜁u�
u�u�(𝑢)∣ → 0, 𝑛 → ∞ (17)

in 𝖯u�
u� -probability.

Proof. We have

𝖯u�
u� { max

1≤u�≤u�
∣𝜁u�

u�u�(𝑢)∣ > 𝜀} ≤
u�

∑
u�=1

𝖯u�
u� {∣𝜁u�

u�u�(𝑢)∣ > 𝜀}

≤
u�

∑
u�=1

𝖯u�
u� {∣𝜁u�

u�u�(𝑢) − 1
2

𝑟(𝑛)𝑢𝑔ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�)∣ > 𝜀
2

}

+
u�

∑
u�=1

𝖯u�
u� {∣𝑔ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�)∣ > 𝜀

4𝑟(𝑛)|𝑢|
}.
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The first sum in the r.h.s. of this inequality vanishes as 𝑛 → ∞ because of (13), the
second sum vanishes because of the condition 4 of Theorem 1.

Corollary 1. By Lemma 3 and Lemma 2, we have
u�

∑
u�=1

∣𝜁u�
u�u�(𝑢)∣3 → 0, 𝑛 → ∞ (18)

in 𝖯u�
u� -probability.

Because of the Markov structure of the sample, in addition to Lemma 2 we will
need the following statement. Denote

ℱu� = 𝜎(𝑋ℎu�, 𝑖 ≤ 𝑗), 𝖤u�
u�,u� = 𝖤u�

u� [⋅|ℱu�].

Lemma 4. One has
u�

∑
u�=1

𝖤u�
u�,u�−1(𝜁u�

u�u�(𝑢))2 → 𝑢2

4
, 𝑛 → ∞ (19)

in 𝖯u�
u� -probability.

Proof. Denote

𝜒u�u� = (𝜁u�
u�u�(𝑢))2 − 𝖤u�

u�,u�−1(𝜁u�
u�u�(𝑢))2, 𝑆u� =

u�

∑
u�=1

𝜒u�u�,

then by (16) it us enough to prove that 𝑆u� → 0 in 𝖯u�
u� -probability. Fix 𝜀 > 0, and put

𝜒u�
u�u� = (𝜁u�

u�u�(𝑢))21|u�u�
u�u�(u�)|≤u� − 𝖤u�

u�,u�−1((𝜁u�
u�u�(𝑢))21|u�u�

u�u�(u�)|≤u�), 𝑆u�
u� =

u�

∑
u�=1

𝜒u�
u�u�.

By construction, {𝜒u�
u� , 𝑗 = 1, … , 𝑛} is a martingale difference, hence

𝖤u�
u� (𝑆u�

u� )2 =
u�

∑
u�=1

𝖤u�
u� (𝜒u�

u�u�)2 ≤
u�

∑
u�=1

𝖤u�
u� (𝜁u�

u�u�(𝑢))41|u�u�
u�u�(u�)|≤u� ≤ 𝜀2𝖤u�

u�

u�

∑
u�=1

(𝜁u�
u�u�(𝑢))2.

Hence by (12) and the Cauchy inequality,

lim sup
u�→∞

𝖤u�
u� ∣𝑆u�

u� ∣ ≤ 𝜀|𝑢|
2

(20)

Now, let us estimate the difference 𝑆u� − 𝑆u�
u� . Note that, using the first statement in

Lemma 1, one can improve the statement of Lemma 2 and show that the convergence
(16) holds true in 𝐿1(𝖯u�

u� ); see e.g. Theorem A.I.4 in [8]. In particular, this means that
the sequence

u�

∑
u�=1

(𝜁u�
u�u�(𝑢))2, 𝑛 ≥ 1
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is uniformly integrable. Hence, because by Lemma 3 the probabilities of the sets

𝛺u�
u� = {max

u�≤u�
|𝜁u�u�| > 𝜀} (21)

tend to zero as 𝑛 → ∞, we have

𝖤u�
u� (1u�u�

u�

u�

∑
u�=1

(𝜁u�
u�u�(𝑢))2) → 0.

One has

𝜒u�u� − 𝜒u�
u�u� = (𝜁u�

u�u�(𝑢))21|u�u�
u�u�(u�)|>u� − 𝖤u�

u�,u�(𝜁u�
u�u�(𝑢))21|u�u�

u�u�(u�)|>u�,

hence

𝖤u�
u� ∣𝑆u� − 𝑆u�

u� ∣ ≤ 2
u�

∑
u�=1

𝖤u�
u� (𝜁u�

u�u�(𝑢))21|u�u�
u�u�(u�)|>u� ≤ 2𝖤u�

u� (1u�u�
u�

u�

∑
u�=1

(𝜁u�
u�u�(𝑢))2) → 0.

Together with (20) this gives

lim sup
u�→∞

𝖤u�
u� |𝑆u�| ≤ 𝜀|𝑢|

2
,

which completes the proof because 𝜀 > 0 is arbitrary.

The final preparatory result we require is the following.

Lemma 5. One has

2
u�

∑
u�=1

𝜁u�
u�u�(𝑢) − 𝑟(𝑛)𝑢

u�

∑
u�=1

𝑔ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�) → −𝑢2

4
, 𝑛 → ∞ (22)

in 𝖯u�
u� -probability.

Proof. We have the equality

(𝜁u�
u�u�(𝑢))2 =

𝑝ℎ(𝜃 + 𝑟(𝑛)𝑢; 𝑋ℎ(u�−1), 𝑋ℎu�)
𝑝ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�)

− 1 − 2𝜁u�
u�u�(𝑢)

valid 𝖯u�
u� -a.s. Note that by the Markov property of 𝑋 one has

𝖤u�
u�,u�−1

𝑝ℎ(𝜃 + 𝑟(𝑛)𝑢; 𝑋ℎ(u�−1), 𝑋ℎu�)
𝑝ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�)

= ∫
𝕏

𝑝ℎ(𝜃 + 𝑟(𝑛)𝑢; 𝑋ℎ(u�−1), 𝑦)
𝑝ℎ(𝜃; 𝑋ℎ(u�−1), 𝑦)

𝑝ℎ(𝜃; 𝑋ℎ(u�−1), 𝑦)𝜆(𝑑𝑦) = 1;

hence by Lemma 4 one has that
u�

∑
u�=1

𝖤u�
u�,u�−1𝜁u�

u�u�(𝑢) → −𝑢2

8
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in 𝖯u�
u� -probability. Therefore, what we have to prove in fact is that

𝑉u� ∶= 2
u�

∑
u�=1

(𝜁u�
u�u�(𝑢) − 𝖤u�

u�,u�−1𝜁u�
u�u�(𝑢)) − 𝑟(𝑛)𝑢

u�

∑
u�=1

𝑔ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�) → 0

in 𝖯u�
u� -probability. By (6) the sequence

𝜁u�
u�u�(𝑢) − 𝖤u�

u�,u�−1𝜁u�
u�u�(𝑢) − 1

2
𝑟(𝑛)𝑢𝑔ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�), 𝑗 = 1, … , 𝑛

is a martingale difference, hence

𝖤u�
u� 𝑉2

u� ≤ 4
u�

∑
u�=1

𝖤u�
u� (𝜁u�

u�u�(𝑢) − 1
2

𝑟(𝑛)𝑢𝑔ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�))
2
,

which tends to zero as 𝑛 → ∞ by (13).

Now, we can finalize the proof of Theorem 1. Fix 𝜀 ∈ (0, 1) and consider the sets
𝛺u�

u� defined by (21); by Lemma 3 we have 𝖯u�
u� (𝛺u�

u�) → 0. Using the Taylor expansion for
the function log(1 + 𝑥), we obtain that there exist a constant 𝐶u� and random variables
𝛼u�u� such that |𝛼u�u�| < 𝐶u�, for which the following identity holds true outside of the
set 𝛺u�

u� :
u�

∑
u�=1

log
𝑝ℎ(𝜃 + 𝑟(𝑛)𝑢; 𝑋ℎ(u�−1), 𝑋ℎu�)

𝑝ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�)
= 2

u�

∑
u�=1

𝜁u�
u�u�(𝑢) −

u�

∑
u�=1

(𝜁u�
u�u�(𝑢))2 +

u�

∑
u�=1

𝛼u�u�|𝜁u�
u�u�(𝑢)|3.

Then by Lemma 2, Lemma 5, and Corollary 1 we have

log 𝑍u�,u�(𝑢) =
u�

∑
u�=1

log
𝑝ℎ(𝜃 + 𝑟(𝑛)𝑢; 𝑋ℎ(u�−1), 𝑋ℎu�)

𝑝ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�)

= 𝑟(𝑛)𝑢
u�

∑
u�=1

𝑔ℎ(𝜃; 𝑋ℎ(u�−1), 𝑋ℎu�) − 𝑢2

4
− 𝑢2

4
+ 𝛹u�,

where 𝛹u� → 0 in 𝖯u�
u� -probability. By the asymptotic normality condition 2, this com-

pletes the proof.

4 Proof of Theorem 2

To prove Theorem 2 we verify the conditions of Theorem 1. While doing that, we use
the constructions and results from our recent papers [11, 10].

The regularity property, required in condition 1 of Theorem 1, is already proved
in [11]. To prove other claims, involved into the conditions of Theorem 1, we will use
the following auxiliary result several times.

Lemma 6. Under conditions A and H for every 𝑝 ∈ (2, 4 + 𝛽) there exists a constant
𝐶 such that for all 𝑥 ∈ ℝ, 𝜃 ∈ (𝜃−, 𝜃+) and 𝑡 ≥ 0

𝖤u�
u� ∣𝑔ℎ(𝜃; 𝑥, 𝑋ℎ)∣u� ≤ 𝐶(1 + |𝑥|)u�, 𝖤u�

u� |𝑋u� |u� ≤ 𝐶(1 + |𝑥|u�). (23)
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Proof. The first inequality is proved in Lemma 1 [11]. One can prove the second
inequality, using a standard argument based on the Lyapunov condition for the function
𝑉(𝑥) = |𝑥|u�; e.g. Proposition 4.1 [14].

Let us outline briefly the subsequent argument. To prove conditions 2 and 3 of The-
orem 1, we need in fact to prove a CLT and a LLN for the sums ∑u�

u�=1 𝑔ℎ(𝜃0; 𝑋ℎ(u�−1),
𝑋ℎu�). The way to do this is quite standard: one should prove first such limit theorems
for the stationary version of the process 𝑋, and then derive the limit behaviour of these
sums under 𝑃u�0

u� . In this last step, the ergodic rates for the process 𝑋, and therefore the
assumption A(ii), are essential. In the first step, which concerns the stationary version
of the process 𝑋, we will need the following moment bounds for the invariant measure
𝜘u�0

u�u�u� for the process 𝑋 with 𝜃 = 𝜃0.
Recall (e.g. [14], Section 3.2) that one standard way to construct 𝜘u�0

u�u�u� is to take a
weak limit point (as 𝑇 → ∞) for the family of Khas’minskii’s averages

𝜘u�0
u� (𝑑𝑦) = 1

𝑇
∫

u�

0
𝖯u�0

u� (𝑋u� ∈ 𝑑𝑦) 𝑑𝑡.

Then, by the Fatou lemma, the second relation in (23) implies the following moment
bounds for 𝜘u�0

u�u�u�.

Corollary 2. For every 𝑝 ∈ (2, 4 + 𝛽),

∫
ℝ

|𝑦|u�𝜘u�0
u�u�u�(𝑑𝑦) < ∞. (24)

Everywhere below we assume conditions of Theorem 2 to hold true.

Lemma 7. The sequence

1
√𝑛

u�

∑
u�=1

𝑔ℎ(𝜃0; 𝑋ℎ(u�−1), 𝑋ℎu�), 𝑛 ≥ 1

is asymptotically normal w.r.t. 𝑃u�0
u� with parameters (0, 𝜎2(𝜃0)), where 𝜎2(𝜃0) is de-

fined in (11).

Proof. The idea of the proof is similar to the one of the proof of Theorem 3.3 [16].
Denote

𝑄u�(𝜃0, 𝑋) = 1
√𝑛

u�

∑
u�=1

𝑔ℎ(𝜃0; 𝑋ℎ(u�−1), 𝑋ℎu�).

By Theorem 2.2 [19] (see also Theorem 1.2 [14]), the 𝛼-mixing coefficient 𝛼(𝑡) for
the stationary version 𝑋u�u� of the process 𝑋 does not exceed 𝐶3𝑒−u�4u�, where 𝐶3, 𝐶4 are
some positive constants. Then by CLT for stationary sequences (Theorem 18.5.3 [9]),
the first relation in (23), and (24) we have

𝑄u�(𝜃0, 𝑋u�u�,u�0) ⇒ 𝒩(0, �̃�2(𝜃0)), 𝑛 → ∞

with

�̃�2(𝜃0) =
+∞

∑
u�=−∞

𝖤(𝑔ℎ(𝜃0; 𝑋u�u�,u�0
0 , 𝑋u�u�,u�0

ℎ )𝑔ℎ(𝜃; 𝑋u�u�,u�0
ℎ(u�−1), 𝑋

u�u�,u�0
ℎu� )).
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Furthermore, under conditions of Theorem 2 there exists an exponential coupling for
the process 𝑋; that is, a two-component process 𝑌 = (𝑌1, 𝑌2), possibly defined on
another probability space, such that 𝑌1 has the distribution 𝖯u�0

u� , 𝑌2 has the same
distribution with 𝑋u�u�,u�0, and for all 𝑡 > 0

𝖯(𝑌1
u� ≠ 𝑌2

u� ) ≤ 𝐶1𝑒−u�2u� (25)

with some constants 𝐶1, 𝐶2. The proof of this fact can be found in [15] (Theorem 2.2).
Then for any Lipschitz continuous function 𝑓 ∶ ℝ → ℝ we have

∣𝖤u�
u� 𝑓 (𝑄u�(𝜃0, 𝑋)) − 𝖤𝑓 (𝑄u�(𝜃0, 𝑋u�u�,u�0))∣

= ∣𝖤𝑓 (𝑄u�(𝜃0, 𝑌1)) − 𝖤𝑓 (𝑄u�(𝜃0, 𝑌2))∣

≤ Lip(𝑓 )𝖤∣𝑄u�(𝜃0, 𝑌1) − 𝑄u�(𝜃0, 𝑌2)∣

≤
Lip(𝑓 )

√𝑛

u�

∑
u�=1

𝖤∣𝑔ℎ(𝜃0; 𝑌1
ℎ(u�−1), 𝑌

1
ℎu�)

− 𝑔ℎ(𝜃0; 𝑌2
ℎ(u�−1), 𝑌

2
ℎu�)∣1(u�1

ℎ(u�−1),u�
1
ℎu�)≠(u�2

ℎ(u�−1),u�
2
ℎu�)

≤
2Lip(𝑓 )

√𝑛

u�

∑
u�=1

(𝖤∣𝑔ℎ(𝜃0; 𝑌1
ℎ(u�−1), 𝑌

1
ℎu�)∣u� + 𝖤∣𝑔ℎ(𝜃0; 𝑌2

ℎ(u�−1), 𝑌
2
ℎu�)∣u�)1/u�

× (𝑃(𝑌1
ℎ(u�−1) ≠ 𝑌2

ℎ(u�−1)) + 𝑃(𝑌1
ℎu� ≠ 𝑌2

ℎu�))1/u�, (26)

where 𝑝, 𝑞 > 1 are such that 1/𝑝 + 1/𝑞 = 1. Since 𝑌1 has the distribution 𝖯u�0
u� , by (23)

we have for 𝑝 ∈ 𝑛(2, 4 + 𝛽)

𝖤∣𝑔ℎ(𝜃0; 𝑌1
ℎ(u�−1), 𝑌

1
ℎu�)∣u� = 𝖤u�0

u� ∣𝑔ℎ(𝜃0; 𝑋ℎ(u�−1), 𝑋ℎu�)∣u�

≤ 𝐶𝖤u�0
u� (1 + |𝑋ℎ(u�−1)|u�)) ≤ 𝐶 + 𝐶2(1 + |𝑥|u�). (27)

Similarly,

𝖤∣𝑔ℎ(𝜃0; 𝑌2
ℎ(u�−1), 𝑌

2
ℎu�)∣u� = 𝖤∣𝑔ℎ(𝜃0; 𝑋u�u�,u�0

ℎ(u�−1), 𝑋
u�u�,u�0
ℎu� )∣u�

≤ 𝐶𝖤(1 + |𝑋u�u�,u�0
ℎ(u�−1)|

u�)) = 𝐶 + 𝐶 ∫
ℝ

|𝑦|u�𝜘u�0
u�u�u�(𝑑𝑦), (28)

and the constant in the right hand side is finite by Corollary 2. Hence (25) and (26)
yield that

𝖤u�
u� 𝑓 (𝑄u�(𝜃0, 𝑋)) → 𝖤𝑓 (𝜉), 𝑛 → ∞, 𝜉 ∼ 𝒩(0, �̃�2(𝜃0))

for every Lipschitz continuous function 𝑓 ∶ ℝ → ℝ. This means that the sequence
𝑄u�(𝜃0, 𝑋), 𝑛 ≥ 1 is asymptotically normal w.r.t. 𝑃u�0

u� with parameters (0, �̃�2(𝜃0)).
To conclude the proof, it remains to show that �̃�2(𝜃0) = 𝜎2(𝜃0). This follows

easily from (6) because, by the Markov property of 𝑋u�u�,u�0,

�̃�2(𝜃0) = 𝜎2(𝜃0) + 2
∞

∑
u�=1

𝖤(𝑔ℎ(𝜃0; 𝑋u�u�,u�0
0 , 𝑋u�u�,u�0

ℎ )𝑔ℎ(𝜃; 𝑋u�u�,u�0
ℎ(u�−1), 𝑋

u�u�,u�0
ℎu� ))

= 𝜎2(𝜃0) + 2
∞

∑
u�=1

𝖤[𝑔ℎ(𝜃; 𝑋u�u�,u�0
0 , 𝑋u�u�,u�0

ℎ )(𝖤u�
u� 𝑔ℎ(𝜃0; 𝑥, 𝑋ℎ))u�=u�u�u�,u�0

ℎ(u�−1)
].
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Similarly, one can prove that

1
𝑛

u�

∑
u�=1

(𝑔ℎ(𝜃0; 𝑋ℎ(u�−1), 𝑋ℎu�))2 → 𝜎2(𝜃0), 𝑛 → ∞

in 𝐿1(𝖯u�0
u� ); the argument is completely the same, with the CLT for a stationary se-

quence replaced by the Birkhoff-Khinchin ergodic theorem (we omit the details).
Hence

𝐼u�(𝜃0) ∼ 𝑛𝜎2(𝜃0), 𝑟(𝑛) ∼ 1
√𝑛𝜎(𝜃0)

, 𝑛 → ∞. (29)

This proves that conditions 2–4 of Theorem 1 hold true. Condition 1 of Theorem 1
also holds true: regularity property is already proved in [11], and positivity of 𝐼u�(𝜃)
follows from (29).

Let us prove (9), which then would allow us to apply Theorem 1. It is proved in [10]
that, under the conditions of Theorem 2, the function 𝑞ℎ(𝜃, 𝑥, 𝑦) is 𝐿2-differentiable
w.r.t. 𝜃, and

𝜕u�𝑞ℎ = 1
2

(𝜕u�𝑔ℎ)√𝑝ℎ + 1
4

(𝑔ℎ)2√𝑝ℎ.

In addition, it is proved therein that for every 𝛾 ∈ [1, 2 + 𝛽/2)

𝖤u�
u� ∣𝜕u�𝑔ℎ(𝜃; 𝑥, 𝑋ℎ)∣u� ≤ 𝐶(1 + |𝑥|)u�. (30)

Then

𝖤u�
u� ∫

ℝ
(𝑞ℎ(𝜃 + 𝑟(𝑛)𝑣, 𝑋ℎ(u�−1), 𝑦) − 𝑞ℎ(𝜃, 𝑋ℎ(u�−1), 𝑦))2𝑑𝑦

≤ 𝑟(𝑛)𝑣𝖤u�
u� ∫

ℝ
𝑑𝑦 ∫

u�(u�)u�

0
(𝜕u�𝑞ℎ(𝜃 + 𝑠, 𝑋ℎ(u�−1), 𝑦))2𝑑𝑠

≤ 𝑟(𝑛)𝑣
4

𝖤u�
u� ∫

u�(u�)u�

0
𝑑𝑠 ∫

ℝ
(𝜕u�𝑔ℎ(𝜃 + 𝑠; 𝑋ℎ(u�−1), 𝑦) + 1

2
𝑔ℎ(𝜃 + 𝑠; 𝑋ℎ(u�−1), 𝑦)2)

2

× 𝑝u�
ℎ(𝑋ℎ(u�−1), 𝑦)𝑑𝑦

≤ 𝐶𝑟(𝑛)2𝑣2𝖤u�
u� (1 + (𝑋ℎ(u�−1))4);

in the last inequality we have used (30) and the first relation in (23). Using the second
relation in (23), we get then

sup
|u�|<u�

𝑟(𝑛)2𝖤u�
u�

u�

∑
u�=1

𝖤u�
u� ∫

ℝ
(𝑞ℎ(𝜃+𝑟(𝑛)𝑣, 𝑋ℎ(u�−1), 𝑦)−𝑞ℎ(𝜃, 𝑋ℎ(u�−1), 𝑦))2𝑑𝑦 ≤ 𝐶𝑁2𝑛𝑟(𝑛)4

with a constant 𝐶 that depends only on 𝑥. This relation together with (29) completes
the proof.
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