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Abstract The cancellable American options, also known as game options, are financial instru-
ments that give a canceling right to the option’s writer in addition to the existing such holder’s
right. The writer owes some penalty above the usual option payoff for using this right. We
assume that this penalty consists of three parts — a proportion of the usual payoff, some number
of shares of the underlying asset, and a fixed amount. It turns out that a cancellable option can be
of one of the following three types — a regular American option, an American-style derivative
that expires either at the maturity or when the underlying asset reaches the strike, or a real
cancellable option. In this paper, the impact of the penalty on the option’s type is investigated.
The perpetual case is only explored having in mind that it determines the kind of the finite
maturity instruments in some sense.

Keywords Cancellable American options, game options, optimal boundaries, optimal
strategies, impact of the penalty
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1 Introduction

The financial derivatives are one of the most important financial instruments against
the market risk. By their very nature, they are a major indicator of the investor
expectations for the future market behavior. On the other hand, the options are one of
the most traded derivatives. They preserve their holder from the market fluctuations
when he wants to buy (calls) or sell (puts) some asset at a price no larger (calls) or
lower (puts) than a predefined level known as the strike price or simply the strike.
Thus the options can be viewed as an insurance instrument. Furthermore, the price
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2 T. Zaevski

structure they generate w.r.t. the strike is very informative for the investors beliefs.
On the other hand, two main types — European and American — can be distinguished
depending on when the contracts expire. For the European style options, the exercise
can be done only at a predefined maturity date. Alternatively, the American options
give to their owner the right to chose the moment for exercising. There are further
modifications known as exotic options — barrier, Asian, look-back, digital, straddle,
strangle, and many others. Although the options exhibit such variety, the American
ones have a largest segment amongst all traded options namely due to the property
of early exercising preferred by investors. However, there is some difference between
the holder and the writer of these options since the writer has only obligations. To
overcome this, a new class of financial instruments has been designed, known as the
cancellable American options. The main feature distinguishing these derivatives from
the regular American options is the writer’s right to cancel the contract prematurely
paying some penalty above the usual payoff — a traditional assumption is that it is fixed
during the option’s life, but we shall examine more complicated cases.

These derivatives are first introduced in the scientific literature by Kifer (2000)
under the name game options. Later, the term Israeli is also used, see Kifer (2013).
Regardless of the penalty structure, these financial instruments fall in the field of the so-
called Dynkin stochastic games (see Dynkin (1969)). Thus their pricing problem turns
into finding of the optimal strategies (if they exist) for both of option’s writer and holder.
In the stochastic terms, these strategies have to form a saddle point in the field of the
stopping times w.r.t. the natural filtration. Some existence results for the models based
on diffusion processes can be found in Friedman (1973), Bensoussan and Friedman
(1974), Bensoussan and Friedman (1977), Ekstrom (2006), Karatzas and Sudderth
(2006), Ekstrom and Villeneuve (2006), Gapeev and Lerche (2011). The results for sig-
nificantly larger classes of process are derived in Ekstrom and Peskir (2008) and Peskir
(2009) — it turns out that the right continuity leads to the Stackelberg equilibrium,
whereas a left continuity w.r.t. the stopping times (quasi-left continuity) is necessary
for the Nash equilibrium. Note that some of the most applied stochastic processes in fi-
nancial modeling exhibit both of these requirements, for example, the Lévy processes,
the stochastic differential equations they generate, particularly the diffusuions, etc.

Several important works devoted to the game options are published after Kifer
(2000). The call style instruments are examined first in Kunita and Seko (2004).
These results are refined later by Emmerling (2012) and Yam et al. (2014). The put
style options are explored in Kyprianou (2004), Ekstrom (2006), Suzuki and Sawaki
(2007), and Kiihn and Kyprianou (2007). Some exotic game options are investigated in
Kyprianou (2004) (Russian), Baurdoux and Kyprianou (2004) (integral options, related
to the Asian ones), Gapeev (2005) (spread options), Ekstrom (2006) (capped options),
Guo et al. (2014) (look-back), Guo et al. (2020) (Asian). The cancellable options under
some generalized assumptions are examined in Kallsen and Kiihn (2004), Hamadéne
(2006), Kiihn et al. (2007), Dumitrescu et al. (2017), Guo and Rutkowski (2017), Guo
(2020), Dolinsky (2020), and Palmowski and Stgpniak (2023).

We position the present study in the framework by Black and Scholes (1973) — the
underlying asset is driven by a log-normal process. In addition to the usual assumption
for a fixed penalty, we consider a three-component structure — a proportion of the
usual payoff, shares of the underlying asset, and a fixed amount. These instruments
are investigated with and without maturity constraints in Zaevski (2023, 2025b), see
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also Ekstrom and Villeneuve (2006) and Zaevski (2020a) for cancellable options with
proportional penalties. Regardless of the penalty structure, it turns out that these
instruments may exhibit three different behaviors. In all of them, the holder’s exercise
set contains all points below/above some boundary for the put/call style options. The
distinction comes from the shape of the writer’s optimal set. For some large enough
penalties, the premature cancellation is never optimal — the canceling price is larger
than the expected losses. In such a way, the option is regular American. On the other
hand, the relatively middle values make the first hitting to the strike the unique writer’s
optimal strategy. In this case, the option is rather American than game, since it can
be viewed as a derivative that gives an early exercise right to its holder and expires at
the maturity or when the underlying asset hits the strike — in the last case the holder
receives a predefined amount. If it is L, then we shall entitle the option L-American.
Finally, the canceling right has a real impact for the small enough penalties — we shall
use the name real game or real cancellable in this case. The writer’s optimal set is
an interval with the strike for the right/left endpoint for the puts/calls. The options
without maturity horizon determine which of these three cases holds in the sense that
they contain the whole information. First, if the perpetual option is regular American,
then all finite maturity options are regular American too. Second, if the option is of
the L-American kind, then there exists a critical value for the time to maturity above
which the option is L-American too, but it is regular American for the lower maturities.
Third, if the perpetual option is real cancellable, then there exist two critical values
for the time to maturity where the finite maturity option changes its behavior. This
importance of the perpetual case motivates the present research. For a survey of such
instruments, we refer to Kyprianou (2004), Kunita and Seko (2004), Ekstrom (2006),
Suzuki and Sawaki (2007), Emmerling (2012), Yam et al. (2014), Zaevski (2020a,b,c,
2023), and Gapeev et al. (2021).

The main results of this paper are in the recognition which values of the penalty
triple (proportion, shares, and fixed amount) to which case lead. We derive the critical
values that distinguish the three possible types. It is interessting to be mentioned
that the first component (the proportion of the usual payoff) does not influence the
transition between the regular American and L-American type. On the other hand,
if the payoff taken at the strike (it depends only on the penalty components related
to the number of shares and the fixed amount) is less than the price of the at-the-
money regular American option (the initial asset price is the strike), then the option
is either L-American or real cancellable. Here appears the impact of the first penalty
component. Next we derive iteratively all critical values in this order: proportion of
the payoff, number of shares, and finally, the fixed amount. Based on these results, we
provide an algorithm for recognizing the option’s type. These relations are examined
in detail for the put options, whereas the calls are examined through some symmetry
arguments. Several numerical experiments are provided to illustrate and validate the
theoretical findings.

It is worth to mention that along with this, we investigate the optimal sets of the
L-American options as well as their pricing rules.

The paper is organized as follows. The base we use later is given in Section 2. The
L-American options are discussed in Section 3. The results for the put options are
obtained in Section 4, whereas the calls are investigated in Section 5. Some numerical
examples are provided in Section 6.
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2 Preliminaries
Let the underlying asset be driven by the geometric Brownian motion

dS; =rS;dt + oS;dB; 1)

under the filtered probability space (2, F, F;, Q). We shall use a superscript to mark
the initial value, i.e. E*** means the expectation under the assumption S; = x. Also,
if # = 0, we shall mark only the dependence on x. On the other hand, somewhere it is
more appropriate if we mark the dependence directly in the process, i.e. S} notates the
process if So = x. The measure Q is risk-neutral w.r.t. to the risk-free rate r. We assume
that it is a constant during the option’s life — note that it can take negative values. We
introduce an extra discount factor with rate A, assuming A > 0 and r + 2 > 0. Let the
option’s strike price be denoted by K. The holder of a regular American option (put
or call) receives the amount of

Ny (t,x) =e M (K -x)", put,

2
Ni(t,x) =e ¥ (x-K)*, call, )

if he exercises in a moment ¢ at the spot price S; = x. Additionally, the cancellable
American option gives its writer the right to cancel prematurely paying some amount
above the usual payoff. We assume that it consists of three parts: 77; > 1 being
proportion of the payoff, 17, > 0 shares of the underlying asset, and a fixed amount of
n3 > 0. Thus the holder owes the total amount of

N (t,x) = e [n1 (K —x)" +mx +13], put, &
No (t,x) = e M [m (x=K)" +mx+ 773] , call,

if he cancels the option. As a consequence, we have a stochastic game (see Dynkin
(1969)) between two players — the option’s holder and writer.
Let us denote by n; (x) and n; (x) the respective undiscounted payoffs, i.e.

ni (x) = (K -x)",

. 4
ny (x) =m1 (K —x)" +mx + 13

for the puts and

ni (x) = (x - K)",

N (%)
ny (x) =m1 (x = K)" +mox + 13

for the calls.

Remark 1. The discount factor A can be viewed as a dividend rate due to Proposition
2.2 from Zaevski (2025a). It says that if there are dividends payable at rate ¢, then this
model is equivalent to a nondividend one with parameters 7 = —§ and 1 = 1 + 6 in
the sense that both models lead to equal option prices. This parametrization, used in
McKean (1965) and Shiryaev et al. (1995), allows some computational facilities. We
shall refer to that change of parameters when the use of the classical parametrization
with the dividend rate is necessary. We shall distinguish both approaches using the
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name discount parametrization when the model is defined by asset (1) and payoffs
(2)—(3). Alternatively, we shall use the name dividend parametrization when the
asset’s drift is compensated by the dividend rate (from r ro r — §), but the payoffs are
undiscounted as in formulas (4)—(5).

We assume now that ¢ = 0 since the model is time-homogeneous in the perpetual
case. Suppose that the buyer’s (holder’s) strategy is to exercise in the stopping time
72 and the seller’s (writer’s) one is another stopping time 7*. The financial result of
these strategies at the point x is

M (x;‘rh,‘rs)

) (6)
=B [e_”bN] (t7,S:6) Ipars + €77 Ny (2%, S1s) 17s<,b] .

The option’s holder/writer has to maximize/minimize the value of (6) w.r.t. all stopping
times. Based on Theorem 2.1 from Ekstrom and Peskir (2008), it is proven in Zaevski
(2023) that this stochastic game exhibits a Nash equilibrium (see also Peskir (2009)).
We shall denote its value function by

V(x) = inf_ sup M (x;‘rb,‘rs) = supinsfM ()C;Tb,TS), @)

€T et o T
where 7 is the set of all stopping times. Hence, n; (x) < V (x) < n; (x). The following
lemma gives the time-relations for the price function.
Lemma 2.1. If the price function at the point (t,x) is V (1,x), then V (t,x) =
e~V (x).

Proof. Let us denote by M (r,x; 7%, 7%) the financial result of the strategies 7% > ¢
and 7° > ¢ under the assumption S, = x. The lemma holds since

M (Z‘,X;Tb,TS)
=E~ [e"(fb“)zvl (t7.8:0) Lipcrs + €T TONy (25, S 70) 1,s<,b] ®)
= e VE |:e_(r+/l)(Tb_t)n1 (Sy0) Lipgps + e~ T D0, (84) IT,.<,I,] .

O

Having in mind Lemma 2.1, we define the holder’s and writer’s optimal sets as
the points (¢, x) for which V (x) = n; (x) or V (x) = ny (x), respectively. Thus the
optimal strategies 72 and 7° can be defined as

™ =inf{r: V(S;) =ni (S},

! ©
™ =inf{¢r: V(S;) =ny(S;)}.

We shall denote the optimal sets by Y? and Y*. The boundaries of these sets are known
as early exercise or optimal boundaries. We shall discuss in detail the particular form

IThese conditions are equivalent to V (¢, x) = Nj (t,x) or V (t,x) = N> (¢, x).
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of the optimal sets and their boundaries in the corresponding sections devoted to the
put and call options.

The existence of two optimal boundaries (holder’s and writer’s) leads to a problem
for the first exit from a strip of the underlying asset or, equivalently, of a Brownian
motion. We need the following well-known result for diffusion processes — for the
proof see Darling and Siegert (1953) or Lehoczky (1977).

Lemma 2.2. Let the diffusion process X; be defined as

for some Lipschitz functions u () and o (-). Let the initial value be between a and
b, a < Xy < b. Let * and t° be the first hitting moments of X, to the values a and
b, respectively. Let the pair { f1 (u), f> (u)} consist of any two fundamental (linearly
independent) solutions of the ordinary differential equation (ODE)

] 17 !
307 ) f7 () + p () f7 () =y f () = 0. (1)
Under these assumptions, the following relations hold for a positive constant y:

fi (Xo) f2(D) = fi (b) f2 (Xo)
fi(a) fo(b) - f1(b) fa(a) ~
B [e—y‘rhl ., ] _ fi(a) o (Xo) = /1 (Xo) fo (a).
o fi(a) f2(D) = fi (D) f2(a)

If diffusion (10) is a Brownian motion with drift, then the functions u (-) and o (-)
are constants, and the last one is equal to one. Thus ODE (11) turns into

f7 () +2uf" (u) =2y f (u) =0. (13)

E [e_yTuITu<Tb:| =
12)

It is characterized by the quadratic equation
u? +2uu -2y =0 (14)

the solutions of which are
upp = —p £ Vu?+2y. (15)

Note that they are real since y > 0. Thus a pair of fundamental solutions is fi 2 (1) =
e"12%, Therefore, the Laplace transforms (12) can be written as

w e (D=Xo)Vi2+2y _ ,=(b=Xo)Vu?+2y
E[e™™ Lap] = et@X0) ,
e(b=a)Vi+2y _ o=(b=a)Vu?+2y
eXo—a)VpP+2y _ ,—(Xo-a)Vu*+2y
e(b-aVi42y _ p=(b-a)/i+2y
Suppose that the underlying asset starts from the point Sy = x. Note that the first exit

of process (1) from a strip 0 < A < Sg < B is equivalent to the exit of a Brownian
motion with drift

(16)

B [ 1] = 0

r g
== — 17
p=_-3 17
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from the strip (a, ), where a = % In % and b =

(16) taken at the point of the total discount rate

>y
q
E [e_(r”)TulTa«b] = (é) BP —xP

%r In % Thus the Laplace transforms

r + A, turn into

x) BP—AP’ (18)
q
E [e—(r+/1)7b[ b a] - E u
<7 X Bp _Ap’
where the constants p and g are expressed in roots (15) as
2
r 1 r+4
=uj -y =1l —=-=) +2——,
renmenf(5 1) o
(19)

_ _ r 12+2r+/l+ r 1
1="= oz 2 o2 o2 2/

We have p > g+ 1 and the equality holds only when A = 0. We can derive the Laplace
transforms of the one-sided hits taking B = co and A = 0, respectively:

a A\
E |ie*(r+/l)T [‘r“<oo:| — <_) ,
X

bea (20)
(re)7b X\P~
2l = ()
We need the following relations between the constants p and gq.
Lemma 2.3. r < Oifandonlyifp > 2q + 1.
Lemma 2.4. The following statements related to the sign of r hold:
1. Ifr <O, then
1
*° 1<y, Q1)
P—q
where |
—a-1 pP—q- +1 prP—q
= (&) (q ) . 22)
q pP—q
2. Ifr > 0, then
qg+1
>1>1. (23)
pP—q
3. Ifr =0, then
1
(=91 (24)
P—q

Proof. The first part of inequality (21) follows from Lemma 2.3. If we consider the
term (22) as a function of p, say [ (p), then its derivative is

(p—q—l)(q+1)) >0
q(p-q) '

I'(p)=1(p)In ( (25)
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Therefore, ! (p) is an increasing function. Having in mind p > 2¢ + 1 (due to Lemma
2.3),weobtainl (p) >1(2qg+1)=1.

Inequalities (23) can be proven in the same manner using the inequality p < 2g+1
that holds when r > 0. Finally, if r = 0, then Lemma 2.3 leads to p = 2g + 1 which
proves the third statement. O

3 L-American options

Let us define a new American-style financial instrument — we name it an L-American
option.

Definition 3.1. Let L be a positive constant. An L-American option with strike K
expires when the underlying asset hits the strike paying amount of e~*7L, where 7
is just this hitting moment. Furthermore, the holder may exercise the option at every
moment ¢ receiving the amount of Nj (7, S;).

We can view the L-American options as financial instruments with stochastic
maturity (the moment when the asset reaches the strike) with final payout L. In this
light, the payoff Ny (¢, x) that the holder can receive is continuous whereas the payout
at this stochastic maturity is a specification of the option contract. Note that the points
not below (not above) the strike are never optimal for the puts (calls) since the payoff
is zero-valued in this region.

We shall denote the price of an L-American option by Vp (+). Thus, if we denote
by 7% the first hitting moment of an asset starting at y to the value x, then

E [e"“e_” (K - S§)+IT<TX,K]

Vi (x) = su . . (26)
t Teg' +LE [e_’h Kot ’KITx.kST]
Let 3 be the differential operator
’ 0-2 2 1
(Bf) =rxf (x) + -2 f7(x) = (r+ ) f (x). 27

We need the following well-known result for the optimal stopping problems — see for
example van Moerbeke (1973) or Jacka (1992).

Lemma 3.2. If a point x is optimal, then (Bny) (x) < 0, where the function ny (-) is
given in (4) for the puts and in (5) for the calls. In the put case, this is equivalent to
Ax — (r+A) K < 0 when x is below the strike. The inverse inequality holds for the
calls when x is above the strike.

We shall prove a proposition that characterizes the optimal sets of L-American
options.

Proposition 3.3. Ifa point x is optimal for an L-American put option, then all points
0 <y < x are optimal too.

Proof. First, note that x < K since it is optimal. Suppose that the point y is not
optimal. Therefore, there exists a stopping time 7 such that

K-y<E [e_(rM)T (K - S¥)+IT<Ty.K] +LE [e_“M)Ty’KITy,KgT] . (28)
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If T = 7 A 7%, then inequality (28) holds for T too, since the point x is optimal.
Therefore, using the Dynkin formula, we derive

0<E [e—“”)? (K -$2)* I7<m<] +LE [e-(*”)”’KI,y,Kg} “K+y

=B [T (K- )| -K+y

-
=E //lSZ—(r+/l)Kdu <0.
0

(29)

The last inequality is true because Lemma 3.2 shows that 1S,,—(r + 1) K < 0 whenever
S, < x. The contradiction finishes the proof. O

Proposition 3.3 means that the optimal set of an L-American put option contains
all points below some boundary. Furthermore, this boundary is a constant during the
time, since there are no maturity constraints. Under the dividend parametrization, the
optimal boundary of a put style L-American option as well as its price are discussed
in Theorem 2 of Kyprianou (2004), in Section 3.1 of Ekstrém (2006), and in Theorem
3.1 of Suzuki and Sawaki (2007); for the calls, see formulas (3.1) from Emmerling
(2012) and (2.12) from Yam et al. (2014). We need the following lemma prior to
providing the related results under the discount parametrization.

Lemma 3.4. Let the function h (a; &) be defined as
h(a;é)=-aP" (p—q—-1)+a’ (p-q)—a’ Ipé—a(q+1)+q. (30)

Its behavior in the interval (0,1) is as follows: it starts from the positive value
h(0; &) = q, decreases having a unique root after which stays always negative.

Proof. The proof can be found in Appendix B.2 of Zaevski (2020c) (for k = 1). O

Proposition 3.5. For ¢ = % let a* € (0, 1) be the unique root of function (30) in the
interval (0, 1). The holder’s optimal boundary is A* = Ka*. The price is given by

K—-x, x<A"
Vi(x)={ (K- A)(%)qlgfjﬁ,+L(§)q;§',%ﬁ, x € (A%, K), 31
L(x), x> K.

Proof. As we mentioned above, Proposition 3.3 shows that the optimal points are
below some flat boundary. Let the initial asset value x be large enough but below the
strike. Supposing that the optimal boundary is A and using formulas (18), we obtain
the price as a function of A as

~ A\? KP —xP K\? xP — AP
A)=(K-A)|—) ——+L|— ) ———. 2
7 (4) = ( )(x) K- (x) oA 32)
Normalizing by & = % y=%.anda= I‘?, we transform price (32) into
~ K(l-a)a?(1-y?)+ P —aP
T K U=@at (=) +£(P —a) o)
y4 1-aP
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Its derivative is K 1_vp
V(@)= ——>—a""h(a;¢). (34)
Y4 (1-aPp)

Lemma 3.4 shows that function (30) has a unique root in the interval (0, 1). Further-
more, it leads to the maximum of the price function. Once we derive the optimal
boundary A*, we obtain the prices in (31) through formulas (18) and (20). |

Some symmetrical arguments lead to the result for the call style L-American
options.

Proposition 3.6. If 1 = O, then the early exercise is never optimal for the holder of
an L-American call. Its price is

()", x=K.

VL(X)z{ L(g)q, x> K. (35)
If A > 0, then the holder’s optimal set consists of all points above some boundary
A*. It can be presented as A* = Ka*, where a* is the unique root, larger than one, of

function (30) taken for & = —%. The option price is given by

L(£)", x<K,
VL (x)=q L(R)TA7=20 4+ (A" - K) (&) 2585 xe (K A%,  (36)

x—K, x>A"

Proof. We shall consider only the case A = 0. We can proceed analogously to Propo-
sition 3.5 when A > 0. Note that if 1 = 0, then » > 0 since r + 4 > 0. Also, functions
N1 (+) and n; (+) coincide in this case. Suppose that a point x is optimal for the holder.
Obviously x > K. Using the martingality of e™"*S,, we obtain for a finite stopping
time {:

E e (S3) Lezron + e ™" Ll ]

<mkx)=x-K

=E e"(“TX'K)SZfATx.K] -K

—E[er¢ S}QSTM] +E [e*’T*‘Kij,K ITX,K<§] -K 37)

<E [e-’é“ (s;; - K) Ipcper 47" (8%, = K) Lpexe _(]

= E _€_r§ (S? — K) I{STX’K:I
<E e (S3) Learon + €™ Ll

The contradiction finishes the proof. O

Remark 2. Note that the holder’s stopping region can be empty for a call L-American
option (when A4 = 0) whereas this is impossible for the puts. The difference comes
from the fact that function (30) taken for & = % always has a root in the interval (0, 1),
whereas if it is taken for & = — %, then the larger than one root exists only when A > 0.
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The absence of roots when 4 = 0 can be interpreted as an infinitely large holder’s
optimal boundary.

We need the following definition for further distinction.

Definition 3.7. We shall say that the option is real cancellable if the writer’s optimal
region is neither the empty set nor the singleton {K}.

Remark 3. We have n; (x) = ny (x) for the put-styled options only when {r; = 0,
n3 = 0,x > K}. In this case, the respective points are both optimal for the writer and
holder due to the mathematical definition. To avoid the embarrassing circumstance
that the holder would exercise without receiving anything, we shall exclude these
points from the holder’s optimal set. This may lead to an open holder’s optimal set.
This case is studied in Ekstrém (2006) and Zaevski (2020a). The optimal sets are
Y$ = [K,) and Y? = (0,K) when r > 0. On the other hand, the option can be
viewed as L-American since the immediate exercise and the first hit to the strike give
a zero-result for the writer when the initial asset price is above the strike. Otherwise,
if < 0, then we have a real cancellable option. Some symmetrical arguments lead to
analogous results for the calls when {n; = 0,773 = 0,x < K}. We shall exclude these
cases hereafter.

4 Put options

For our further purposes, we need the price of the regular American options under the
perpetual assumptions. The optimal boundary and the price can be obtained in a closed
form since the boundary is time independent. Under the dividend parametrization, this
is made in many studies, for example, see formula (52) from Merton (1973), formulas
(9) and (15) from Kim (1990), Proposition 2.3 from Jacka (1991), Theorem 7.2 from
Karatzas and Shreve (1998), or formula (5.1.10) from Kwok (2008). Under the discount
parametrization, these results can be found in Theorems 1 and 2 from Shiryaev et al.
(1995) and in Theorems 6.1 and 6.2 of Zaevski (2021). If we denote by V, (-) the
price function, we can write for a put-styled option

w=(5)" )

Particularly, for x = K, we define the important value 7,

7:=V,(K)= k— (39)
(g +1)7"!

4.1 The main results

As we mentioned above, the holder’s optimal set is an interval (0, A) for some con-
stant A not above the strike, A < K. The possible form of the writer’s one is more
complicated — it may be the empty set, the singleton {K}, or an interval [B, K],
0 < A < B < K. These results for the put options with fixed penalties and without
dividends are obtained in Kyprianou (2004), and under the dividend parametrization
in Ekstréom (2006) and Suzuki and Sawaki (2007). On the other hand, the three-
component penalties are considered under the discount parametrization in Zaevski
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(2023). We are interested in which values of the penalty coefficients r7; (proportion),
12 (shares of underlying), and n3 (fixed amount) lead to which case.
Let us define the constants &1, &>, and L as

& =11 —m,
§2:n2+%3 (40)

L =&EK =mK +13.

The constant L plays an outstanding role in this study. Defined in that way, it is the
amount that the writer owes if he cancels the option at the strike. This strategy is very
important as far as the strike belongs to the writer’s optimal set if it is not empty. In this
light, the option type can be recognized through two criteria: (A) whether the strike is
writer-optimal, and (B) whether all points below the strike are not. Criterion (A) is met
when the price of a regular perpetual American option under the assumption Sy = K
is higher than the financial result of the immediate canceling, i.e. L. It turns out that
criterion (B) is related to the left derivative of the price function of the L-American
option taken in the strike.

Note that &1 +&, > 1sincen; > 1.Itis proven in Proposition 4.2 of Zaevski (2023)
that canceling is never optimal for the writer if 17, > 1. Thus we assume &; > 0,
hereafter. We shall prove a stronger condition.

Proposition 4.1. The cancellation is never optimal for the writer if and only if L > 7.

Proof. First, suppose that the writer’s optimal set is empty, i.e doing nothing is
the best writer’s strategy. Hence V (x) = V, (x). Particularly, for x = K, we have
ny (K) >V (K) =V, (K). Formulas (39) and (40) lead to the desired result.

Suppose now that L > 7 or equivalently V, (K) < ny (K). We shall prove that
canceling is never optimal applying an approach similar to the one used in Lemma 3.1
of Suzuki and Sawaki (2007). Let the function U (x) be defined as

U (x) =Vq(x) —nz(x). 41)
Having in mind that the optimal boundary of the regular American options is %K ,
we derive the derivative of function (41):
)’]1—1]2—1, ifoquK,
q K\ q
U (x) = 7]1"72‘(@; , ifxe (WK’K)’ (42)
g+1 .
—nz—(%g) , ifx>K.
First, note that U’ (x) < 0 whenever x > K. Furthermore, if
K g+l
m<m+(JL—) : 43)
qg+1x

then U’ (x) is always negative. On the other hand, if the relation opposite to (43) holds,
then U’ (x) has a unique root less than K. Furthermore, U’ (x) is negative before it
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and positive after. In all cases, the function U’ (x) achieves its maximum either for
x = 0or for x = K. Having in mind that

U0) == -1)K-ns,

(44)
U(K) =Va (K) —n2 (K),

we conclude that U (x) < 0 for every x > 0 and thus V (x) <V, (x) < ny (x). Thus
we conclude that the writer’s optimal set is empty. O

>§Icl

Remark 4. The inequality &; < O is stronger than L > 77 since; > 1 >

Remark 5. Having in mind that the strategy of the first hit to the strike is possible for
the writer and the payoff at the strike is namely L, we can conclude that V (x) < Vi (x).
Furthermore, a cancellable option is of L-American style if and only if V (x) = V, (x).

We assume L < 7, hereafter. We shall provide now a theorem which characterizes
the penalty values for which the writer’s optimal set is an interval instead of the
singleton {K}. Thus the option turns from L-American into real cancellable.

Theorem 4.2. The option is real cancellable if and only if
Vi (K7) < —é1. (45)

Proof. Suppose first that the inequality (45) holds. Having in mind %nz (K™) = =&1,
we conclude that the function

f(x) =VL(x) —na (x) (46)

is left-decreasing at the point K and f (K) = 0. Therefore, there exists an interval
(k1, K) such that

Ve (x) >ny(x) 2V (x). 47)

Combining inequality (47) with Remark 5, we conclude that the option is real can-
cellable since it cannot be regular American when L < 7.

Suppose now that the inequality (45) does not hold. Hence, ' (K~) > 0 and
therefore function (46) is left-increasing in the point K. Having in mind that f (K) = 0,
we conclude that there exists an interval (k;, K) in which f (K) < 0 and thus

Vi (x) <np (x) Vx € (k1,K). (48)

Suppose that there exists a writer’s optimal point k € (k;, K). Therefore, all points
y € (kp, K) are writer’s optimal too. Combining inequality (48) with Remark 5, we
conclude

V() <V (y) <m(y)=V(y) (49)

for y € (k;, K) and therefore V;, (y) = ny (y) in this interval. However, we can easily
check that this is impossible due to formula (31). This finishes the proof. |



14 T. Zaevski

4.2 Necessary and sufficient conditions

Suppose that the option is not regular American, i.e. L < 7. We shall obtain now some
necessary and sufficient conditions for the coefficients 7y, 772, and 73 that recognize
the type of the option — L-American or real cancellable. We shall work under the
following scheme:

1. We obtain a condition alternative to (45) for the option to be real cancellable. It
says that a suitable function g (-) taken at the point a* is positive, where a* is the
root of function (30) and it determines the optimal boundary of an L-American
option; the function g () is defined in (51) (Propositions 4.3 and 4.4).

2. We prove that the option can be real cancellable only when r < 0 (Proposition
4.6, see also Remark 7).

3. We investigate the possible behaviors of the function g (-) (Lemma 4.5 and
Proposition 4.7).

4. Furthermore, we determine the critical values for £; and &, below which the
positive domain of the function g (-) (i.e. the set of the inputs that lead to positive
function values) is not empty. Note that the critical value for & depends on &
(Corollary 4.8, Propositions 4.9, and 4.10).

5. This step is very important. We prove that if the function g () has a positive
domain, then the point a* belongs to it. Thus the condition for the option to be
real cancellable turns to checking when the function g (-) has positive values
somewhere in the interval (0, 1] (Proposition 4.11).

6. We prove several auxiliary results that give some relations between the triples
leading to real cancellable options (Propositions 4.13, 4.14, and Lemma 4.15).

7. We summarize all these results in a theorem that categorizes all possible cases
(Theorem 4.16).

Suppose that the holder’s optimal boundary of an L-American option is A* and
A* < §g = x < K. The following proposition determines the boundary through the
value of the amount payable at the strike.

Proposition 4.3. Let the constant & be defined by (40), the function h (-;-) by (30),
and a* (&) = %*. Note that the dependence of a* (+) on & comes from A*. We have

h(a* (&),€&) =0. (50)

Proof. Based on Proposition 3.5, we conclude that for a fixed &;, condition (50) is
necessary and sufficient for the optimal boundary of the L-American option to be
Ka* (.’;:2) O

Let the function g (a; &1, &) be defined as
glarééy) =aP (&1 -q&) —a ' p+alp-(E+&£(p-q). 6D

Based on Theorem 4.2, we can obtain the following condition for an option to be real
cancellable.
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Proposition 4.4. The option is real cancellable if and only if g (a* (&) ;&1,&2) > 0.

Proof. Theorem 4.2 requires checking of inequality (45). The left derivative of the
price function (the second statement of formula (31)) in the point K is

A*P &y + A pKP=41 — A*pKP=I + KPE (p — q)

V) (K) = P AP

(52)

We finish the proof by several simple calculations having in mind A* = Ka* (&;). O

Propositions 4.3 and 4.4 show that we need the behavior of functions % (a; -, -)
and g (a;-,-) in the interval a € (0, 1]. More precisely, we need to find the positive
domain of function (51) in this interval. The derivative of function g (a;-,-) can be
presented as

ga(a:é1,6) = pa?™'m(a;6,6), (53)

where m (+;-, ) is
m(a;&1,6) = a1 (&1 —qé&2) —a(g+1) +q. (54

The possible behavior of function g (a; &1, &;) is provided in the following lemma.

Lemma 4.5. The endpoints of the function g (a; &1, &) are negative:

g(0;é,.6)=-(&1+&(p-9),

55
g (1;€1,6) = —pé. (55)

The function exhibits one of the following three behaviors in the interval a € (0,1]:
(A) Increasing negative function.
(B) Inverted U-shaped function — first increases and then decreases.

(C) In addition to the second case, the function has a local negative minimum after
the maximum.

Proof. The proof is provided in Appendix A. O

The following proposition shows that the option can be real cancellable only when
r <O0.

Proposition 4.6. Ifr > 0, then g (a;&1,&2) < 0 for every a € (0, 1].
Proof. The proof is provided in Appendix A. O

Assume now that » < 0 or equivalently p > 2¢ + 1. Having in mind Lemma 4.5,
we conclude that the option can be real cancellable only when one of the cases (B)
and (C) holds — note that this condition is only necessary. Below we discuss when this
happens.

Proposition 4.7. One of the cases (B) and (C) holds if and only if the inequality

&1 —qb < (56)

holds, where the constant | is defined by formula (22).
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Proof. The proof is provided in Appendix A. O

We need to strengthen condition (56) in a way that would allow later to derive the
critical value for £; as a root of a decreasing function in a certain interval.

Corollary 4.8. If the positive domain of the function g (a; &1, &) is not empty, then
&1 < 1, where l is defined by formula (22).

Proof. Suppose that &, > [. Note that £; > 1 due to Lemma 2.4. Therefore, the
triple {£1,0, 0} leads to the case (A) due to Proposition 4.7 — note that condition (56)
tuns namely into &; < [. Thus the function g (a; &1, 0) is negative. But g (a; &1, &)
decreases w.r.t. &, and hence it is always negative. Therefore, its positive domain is
empty. O

We continue our investigation on the positive domain of the function g (a; &1, &)
that gives possibilities for a real cancellable feature of the option. Remind that one of the
cases (B) or (C) holds. We need some additional notations. Let the function g (a; &1, &)
achieves its maximum at the point a; (£, &;) and its possible minimum at a, (¢1, &). If
this minimum does not exist, then we set a; (&£1,&) = 1. If g (a1 (£1, &) ;€1,&2) > 0
then the function g (a; &, &) has two roots — we denote them by a; (£1,&;) and
ay (&1, &2). We shall prove now that the positive domain of the function g (a; &1, &)
is not empty for small enough values of &) and &, i.e. g (a; (&1,&2);¢1,&2) > 0.
Furthermore, we shall show that g (a* (&) ; &1, &2) > 0 for these values of &) and &;.
This statement is of outstanding importance. It says that if the positive domain of g (-) is
nonempty, then the optimal point a* (£;) is always in it, i.e. the option is real cancellable
only when g (a; (&1,&2) ;¢&1,&2) > 0. As a consequence, a* (&) = a; (&1, &) when
g (a1 (§1,62):6,8) =0.

Proposition 4.9. The function g (a (£1,0) ;&1,0) is decreasing w.r.t. &, € (0,1) and
changes its sign in the interval (1,1), where | > 1 is defined by formula (22). Thus if £}
is the solution of g (ay (£1,0);£1,0) = 0, then &} € (1,1) and g (ay (£1,0):€1,0) >0
Jorevery £ < &7.

Proof. The proof is provided in Appendix A. O

Proposition 4.10. If¢| < &, then the function g (ay (&1,&2) s €1,&2) decreases w.r.t.

&> and changes its sign in the interval (O, Ez), where Ez is

qq
(g DT

&= (57)

==l

Thus, if & (&1) is the solution of g (ay (§1,&2):€1,62) = 0, then &5 (&1) € (O,Ez)
and g (ay (§1,&2) 61, &2) > 0 for every & < &5 (§1).

Proof. The proof is provided in Appendix A. O

Proposition4.11. If¢) and &, are suchthat g (ay (&2;€1);€1,&2) > 0,theng (a* (&) ;
&1,6) > 0.

Proof. The proof is provided in Appendix A. O
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Next we shall establish a result which gives that if an option is real cancellable
then all options with lower in some sense penalties are real cancellable too. To do this,
we use the traditional definition for vector ordering.

Definition 4.12. A triple of reals is less than another if all its elements are not higher
than the corresponding ones of the second triple and at least one is lower.

Proposition 4.13. If a triple {ni,n2,1n3} leads to a real cancellable option, then all
triples less than it lead again to real cancellable options.

Proof. We can rewrite function (51) as

gla;é,&)=-m (1 —-a’)—m[a’ (g+1)+p—-q—1]

58
—n—ls(—a"q+p—q)—aq”p+aqp- o9

Therefore, function (58) decreases w.r.t i1, 772, and 773. Propositions 4.4 and 4.11 show
that the positive domain of function (58) is not empty and thus the positive domains
for all triples less than {5, 72,73} are not empty too. The same propositions prove
the desired result. |

We continue by characterizing the set of triples {7,72,73} that lead to real
cancellable options.

Proposition 4.14. If a triple {n1,n2,1m3} leads to a real cancellable option, then
n1 < &), where &} is defined in Proposition 4.9.

Proof. Suppose that the triple {7, 72,73} leads to a real cancellable option. Propo-
sition 4.13 shows that the triple {r;,0,0} leads to a real cancellable option too.
Proposition 4.9 shows that n; < £7. O

Before to establish the main result for the put options, we need the following
lemma.

Lemmad4.15. Letn, € [1, 51‘) and the function f (-) be defined in the interval (O,EZ)
as

fx) =& (m —x)—x. (59
Note that & (1 — x) means the function &} (-) taken in the point 1y — x. Under these
assumptions, f (x) is a decreasing function, f (0) > 0, and f (Ez) < 0. Thus the

equation f (x) = 0 has a unique root in the interval (O, 32> below which f (-) is
positive. We shall denote this root by n;; (11).

Proof. The proof is provided in Appendix A. O

We can summarize the derived results: the large enough penalties lead to regular
American options (Proposition 4.1); the low enough penalties lead to real cancellable
options equivalently to a nonempty positive domain of the function g (a; &1, &>); and
the middle values lead to L-American options. The precise results are given in the
following theorem.

Theorem 4.16. Let a cancellable American put option has the penalty structure
{n1,n2,n3}. The following statements characterize it:
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1. If r = 0 then the option is L-American for L < 7 and regular American
otherwise.

2. Suppose that r < 0. Let the pair (m , f’l‘) be the solution of the system

g (a;€1,0) =0,

m (a361,0) = 0, (60)

where the functions g (-) and m (-) are defined by formulas (51) and (54). The
solution exists, it is unique, @y < 1, and 1 < &7 < I If &, < &7, then the system

g (a;gl,&) =0,

m (a;gl,fz) =0 ©

has at most two solutions — we denote by (az (El) &5 (El)) the lower one

w.r.t. the variable a. We have a; (31) <land0 < & (El) < g Hence:

(a) The option is real cancellable when
{m <&m<mm),m <K[&m=-m)-m]}. (62

Note that L < 7 since &5 (1 —m2) < &,, see Proposition 4.10.

(b) It is L-American if L < 71 and at least one of the requirements (62) does
not hold.

(c) Itis regular American for L > 1.

Note that & (171 —n2) > 12 when ma < 5 (171) due to Lemma 4.15.

Proof. System (60) means that the function g (-; 3 0) has an extremum at the point
a7 and its value is zero. Note that this extremum is the maximum. If we suppose that
it is the minimum in the case (C) of Lemma 4.5, then g (1; 51*, O) has to be positive,
which is impossible. Having in mind Propositions 4.9 and 4.11, we conclude that
the positive domain of the function g (+;&1,0) is not empty if and only if &1 < &].
Furthermore, g (a* (0) ;£1,0) > 0. Also, 1 < €&} < I due to Proposition 4.9.
Analogously, system (61) shows that the function g (-;El,fz (E])) has a maxi-
mum at the point @, and its value is zero. Propositions 4.10 and 4.11 show that the

positive domain of the function g (‘; &, -fz) is not empty if and only if & < &; (El)

Furthermore, g (a* (&) ;El,fz) > 0. Note that 0 < £ (g_fl) < }% due to Proposition
4.10. O

Some calculations lead to the following method for deriving the critical values.
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Corollary 4.17. Let the functions F (a, &), H (a), and G (a, &) be defined as

aP™ ¢ —a(g+1)+
Fag =St olar)rd

H(a)=-a"" (p-—g-1)+a? (p-q)—a(qg+1)+q, (63)
G (a,é1) =~aP*'q(p—q—1)+aPq(p-q) —a""Ipé
ta(p-q)(g+1)—q(p—q).

We have
& =-F (a1,0),
€ (64)
& (El) = @,

where ay and a; are the solutions of the equations H (a) = 0 and G (a,a) =0,
respectively. In addition, we have to impose the condition

my (28165 (1)) <0 (65)

to avoid the possible minimum of the function g (a, El &5 (El)) if the case (C) holds.
Not that this is not necessary for a since the case (B) holds when &, = 0.

Proof. System (60) can be rewritten as

_a(g+l)—gq
§1——p_q ,
“l_a (66)
— q
fl_pa l—ap’

which proves the first result. The second one holds due to the following presentation
of system (61):

_aP g —a(g+ 1) +q

& ,
- pP—q
_ _ (67)
P —a®'p+aip - &
27 p-q+qa? '
O

Remark 6. Let us discuss the mechanism for recognizing the option’s type. The option
is regular American if L > 7. If the opposite relation holds, then we derive the critical
value for £1, namely £7. Based on it, for every &, < &}, we derive the critical value for
&, namely &5 (El) If §1 < & and & < &5 (£1), then the option is real cancellable. If
one of these inequalities does not hold, then we have an L-American option.

Based on Theorem 4.16 and Remark 6, we summarize how the option changes its
type when the penalty parameters are passing through their critical levels.
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1. If the second and third components are large enough, i.e. 7K + 173 > 77 (equiv-
alent to L > 7), then the option is regular American. Note that the component
11 does not influence this type.

2. Suppose that 7,K + 173 < 77. Now 71 has its impact. We calculate its critical
value £7.

(a) Ifp; = &}, then we have an L-American option.

(b) If 1 <5y < &7, then we obtain the critical value for 77, that depends on 7,
i.e. n5 ().

i. If mp is such that 3 (1) < m < 7E_]’ then we have an L-American

option. Note that n3 (171) < % when 1 <y < &} due to Lemma4.15.
ii. Ifny <15 (1), then we obtain the critical value for n3, itis n3 (71, 72) =
K [& (m —m2) —n2]. We have 0 (71,72) > 0 when ny < 5 (171)
due to Lemma 4.15.
A. If 03 (1,m2) < 3 <7 — 2K, then we have an L-American op-
tion. Note that Proposition 4.10 shows thatn3 (171,72) < 7-m2K.

B. If »3 < 13 (171,12), then we have a real cancellable option.

Remark 7. Let us discuss briefly why an option cannot be real cancellable when » > 0.
Suppose the opposite, i.e there exists a value k; < K such that it is writer’s optimal.
Hence, the interval [k, K| belongs to the writer’s optimal set Y*. Similar arguments
that stand behind Lemma 3.2 show that (Bn;) (x) > 0 in the interval (k, K), where
the function n; (+) is given in (4) and the operator B is defined by formula (27). We can
motivate this by the following intuitive construction. Let for an arbitrary time value s,
7 (s) be the lower of the first exit of the underlying asset from the strip (k;, K) and s.
For an arbitrary starting point x € (k1, K), this strategy would give a worse financial
result for the writer than the immediate canceling. Having in mind that the exercise is
not optimal for the holder in the strip (k1, K) and applying the Dynkin formula, we
conclude for the result of the strategy 7 (s):

7(s)
E* [e_(H’l)T(s)ng (ST(S))}znz(x)+Ex / (Bna) (Su) dut| > ma (x).  (68)
0

Taking the limit as s — 0, we convinced that indeed (Bn;) (x) > 0. In financial terms,
this means that if the immediate cancelling is preferable for the writer than keeping the
option alive for an infinitesimal period, then (Bny) (x) > 0. However, this inequality
is possible below the strike only when » < 0 since

(Bnp) (x) =20 —m2)x = (r+2) (mK +n3),

(69)
(Bno) (K) = =K (rmy + Anp) — (r + ) 3.

Note that this construction is impossible if the writer’s optimal set is the singleton
{K}, because the differentiability of the function n; (-) is broken in the strike.



On the impact of the penalty on the cancellable American options 21
5 Call options

We consider now the cancellable call options through some symmetrical arguments.
Some proofs will be omitted since they are similar to the put versions. The shape
of the optimal sets for the calls is symmetric w.r.t. the strike to those for the puts.
The respective results for the fixed penalties under the dividend parametrization are
obtained in Kunita and Seko (2004), Ekstrom and Villeneuve (2006), Emmerling
(2012), and Yam et al. (2014) whereas proportional to the usual payoff penalties are
considered in Ekstrom and Villeneuve (2006). The options with three-component
penalties are examined in Zaevski (2023). Note that the case 4 = 0 is special — the
early exercise is never optimal for the option’s holder. All necessary results in this case
are obtained in Theorem 3.9 from the same work.

Suppose now that A > 0 or equivalently p > g + 1. Note that we have to consider
the related functions in the interval (1, co) instead of (0, 1) since the possible exercise
boundaries are above the strike. The price of the perpetual American call option when
So=Kisnq:= Kg_fz, where

_ | Cg—1\"1
&= (p q ) . (70)
p-a\ p-gq

The holder’s optimal set is an interval (A, co) for some constant A not below the
strike. The writer’s one can be the empty set, the singleton {K}, or an interval [K, B],
K < B < A. The constants &1 and &; are defined now as

&1 :=m1 +m,
3 (71)

=1+ =,

&= X

Note that the constant L keeps its value. It is proven in Proposition 3.2 of Zaevski
(2023) that canceling is never optimal for the writer if 73 > 1, K. Thus we consider
only the values of &1 and &, such that &; > &;. The restriction presented in Proposition
4.1 also holds but with the actual value of 7. Furthermore, the analogue of Theorem
4.2 gives the criteria for the option to be real cancellable. We summarize these results
in the following theorem.

Theorem 5.1. If L > 7, then the option is regular American. On the contrary, if
L < 7, then it is real cancellable if

v, (K*) > &, (72)
and L-American otherwise.
Proof. See the proofs of Proposition 4.1 and Theorem 4.2. O

Having in mind that the function /4 (-) is taken for & = —%, we see that Proposition

4.3 still holds. Theorem 5.1 shows that we have to find the right derivative of the price
function (36) at the strike:

_a*pq§2 + a*q+l

p—a*qp—fz(p—q)_

v; (K*) = L (73)
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We shall proceed further using the method presented in the beginning of Section 4.2.
Proposition 4.4 is true for the function

g(@;61,6) =—aP (&1 +q&) +a®' p—alp+& -6 (p-q). (74)

We need to know when the function g (-) has a positive domain larger than one, i.e.
when inputs larger than one make the function positive. The function related to its
derivative m (a; &1, &,) now takes the form

m(a;é1,&) =—al 1 (& +qé&) +a(qg+1) —q. (75)

Its endpoints are always negative except in the limiting case since & > 1 and &, > 0.
The behavior of function (74) is similar to the put case considered in Lemma 4.5 — we
can recognize the following three cases:

(A) Decreasing negative function.
(B) Inverted U-shaped function — first increase and then decrease.

(C) Inaddition to the second case, the function has a local negative minimum before
the maximum.

The sign of the risk free rate is again important. The analogue of Proposition 4.6
is as follows.

Proposition 5.2. Ifr < 0, then g (a;&1,&2) < 0 for every a > 1. Thus the option is
L-American when L < 77 and regular American when L > 7.

Proof. The proof is provided in Appendix A. O

In addition to this proposition, we can provide financial arguments similar to those
in Remark 7 why the option cannot be real cancellable when r < 0. The important
term (Bny) (K) now is (Bny) (K) = K (rg; — An2) — (r + ) n3 and it can be positive
only when r > 0.

Suppose now that » > 0 or equivalently p < 2¢g + 1. The condition obtained in
Proposition 4.7 can be rewritten as follows.

Proposition 5.3. The necessary and sufficient condition for one of the cases (B) or
(C) to hold is the inequality &) + q&> < I, where the constant | is defined by formula
(22).

Proof. The proof is provided in Appendix A. O

The next step is to prove that if the function g (-) has a positive domain, then the
point a* belongs to it. Let us keep the meaning of a; (£1,&2) > as (&1,&2), i.e. the
function g (a; &1, &) achieves its maximum and minimum at these points, respectively.
If g (a; (&1,&);&1,&) > 0, then the function g (a; &1, &) has two roots: aj (£1,&>)
and aj (£1,&,). The analogues of Propositions 4.9 and 4.10 and their proofs are
identical to the original ones and we omit them. The important Proposition 4.11 still
holds — the unique difference in the proof is in the presentation (98) of the function
h(a;&). In the call case, it is

p

~1
h(a;6r) = —aP™g (a:61,6) + —— 84 (4:61,62) - (76)

a
pa
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Thus we reach the corresponding results for the call options.

Theorem 5.4. 1. If r < 0, then the game option is L-American for L < 7 and
regular American otherwise.

2. Suppose that r > 0. The solution of system (60), (al,fi‘), exists, a; > 1, and
1 < & < L. The functions g (-) and m (-) are defined by formulas (74) and

(75). Let &, € [1,5;‘]. The solution of system (61), (0’2 (El) &5 (El)) exists,
@ > 1,and 0 < & (El) < % Letn; € [1,5’1") and the analogue of function

(59) be defined as
) =& (m+x) —x. a7

We shall denote by n; (111) its solution in the interval (O, min {f]‘ -1, Ez}) 2

Note that 1 + 15 (1) < &]. The following statements describe the option’s
essence:

(a) The option is real cancellable when
{m <&m<nsm).m <K[Em+m)-m]}. (78

(b) It is L-American if L < 7 and at least one of the requirements (78) does
not hold.

(c) It is regular American for L > 7.

Let the functions F (a, &), H (a), and G (a, &1) be defined by formulas (63), a;
and ay be the roots of the equations H (a) = 0 and G (a,gl) = 0 in the interval

a € (1, 00). Note that they exist. The critical values can be derived as £} = —F (a1,0)

« (Z F(QZ’EI) . . .. ..
and & (§ 1) =——0 We impose in addition condition (65).

6 Some examples

We present now some examples. Let us consider first put style options with parameters
r=-0.02,1=0.03, 0 =0.3, K = 1. We chose these values because r + 1 > 0 and
r < 0, see point one from Theorem 4.16. The value one for the strike is chosen this
way to ignore its impact since it can be viewed as a scaling parameter. The results are
visualized in Figure 1a. Theorem 4.16 shows that the triples {r, 72,73} that lead to
real cancellable options are in the pyramid formed by the green points and the point
(1,0,0). The green points are obtained as follows:

1. Point (£7,0,0): the value of £; is obtained via Proposition 4.9 and it is & =
1.1744 for the current parameters.

2Note that function (77) decreases due to presentation (102) of the derivative (52* (x)),. The inequality
f(0) > 0 is obvious, whereas f (g,* - m) < 0 because & (§I*) = 0and 171 < &/. The inequality
f (Ez) < 0 holds due to the call-analogue of Proposition 4.10.
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(a) put

(b) call

108 _’,,K,,_,-’T’/"T; 05
X,,-/"v” 03 :

0.2
11
0 0.1

Fig. 1. Restrictions

2. Point (1, n; (1), 0): the value of 13 (1) is obtained via Lemma 4.15 and it is
15 (1) = 0.2575.

3. Point (1,0, K¢&; (1)): the value of & (1) is obtained via Proposition 4.10 and it
is f; (1) =0.1030.

The value for L = n;K + n3 that distinguishes the L-American options from the
regular ones is given by formula (39). Its value is 0.6537, see the yellow points. Thus
the triples {n, 72, 73} that lead to an L-American option are in the prism between the
plains {n; = 1}, {n, = 0}, {3 = 0}, and the blue one, cut by the above-mentioned
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Table 1. Put options

r=-0.02,1=0.03, & = 1.1744, 77 = 0.6537

() m=ny(n) m=3ns0n) m=in3Gn) m=0

m =1 0.2575 0 0.0341 0.0685 0.1030
13 =1.05 0.1819 0 0.0243 0.0487 0.0733
m=1.1 0.1075 0 0.0145 0.0291 0.0437

3 =1.1744 0 0 0 0 0

r=-0.01,2=0.03, & = 1.0336, 77 = 0.5004

m =1 0.0281 0 0.0049 0.0098 0.0148
3 =1.01 0.0189 0 0.0034 0.0068 0.0102
3 =1.02 0.0104 0 0.0019 0.0038 0.0058

3 = 1.0336 0 0 0 0 0

r=-0.01,2=0.23, & = 1.0566, 77 = 0.6270

m=1 0.0851 0 0.0107 0.0217 0.0329
3 =1.02 0.0527 0 0.0069 0.0139 0.0211
3 =1.04 0.0226 0 0.0031 0.0063 0.0094

3 = 1.0566 0 0 0 0 0

pyramid for the real cancellable options (the red plain). The triples that lead to the
regular American options are above the blue plain — they are

qq

mK+n3 > K

Let us consider the call style options. We use the same parameters except the
risk-free rate — we assume now that » = 0.02 due to the first point of Theorem 5.4. The
results are presented in Figure 1b. The critical values that form the pyramid for the real
cancellable options are ¢} = 1.0843, n3 (1) = 0.0374, and &7 (1) = 0.0698. Critical
value (70) for L = 1, K + i3 above which the option is real cancellable is 0.4510.

Some particular values are presented for put and call options in Tables 1 and 2,
respectively. We give the critical value £} for the coefficient 77y in the head of the
tables. Above this level, the option turns from real cancellable into L-American. The
critical values for 77, given 177 are presented in a separate column. The rest of the tables
contain the critical values for 13 given n; and 7,. The value for L above which the
option is regular American, 7, is given again in the head of the tables.

A Some proofs

Proof of Lemma 4.5. The derivative of function m (a; &1, &3) is

mg (a;é1,6) =aP™ 1 (p—q) (61 - gé2) —q — 1. (80)

Hence, it can be always negative in the interval a € (0, 1] or first negative and then
positive — note that it is monotone nonetheless increasing or decreasing.

Let us consider the first case. We have that the function m (a; &1, &) is decreasing
with a positive right endpoint and thus it is always positive. Hence, the case (A) holds.
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Table 2. Call options

r =0.02,1=0.03, £ =1.0843, 77 = 0.4510

() m=ny(n) m=3ns0n) m=in3Gn) m=0

m =1 0.0374 0 0.0231 0.0463 0.0698
13 =1.03 0.0238 0 0.0145 0.0290 0.0437
13 =1.06 0.0105 0 0.0063 0.0126 0.0189

173 =1.0843 0 0 0 0 0

r=0.01,1=0.03, & =1.0239, 77 = 0.4281

m =1 0.0084 0 0.0045 0.0091 0.0137
3 =1.01 0.0048 0 0.0025 0.0050 0.0075
3 =1.02 0.0013 0 0.0006 0.0013 0.0019

n3 = 1.0239 0 0 0 0 0

r=0.01,2=0.2, & =1.0336, 77 = 0.5004

m=1 0.0148 0 0.0092 0.0186 0.0281
3 =1.01 0.0102 0 0.0062 0.0125 0.0189
3 =1.02 0.0058 0 0.0034 0.0069 0.0104

3 = 1.0336 0 0 0 0 0

The alternative behavior leads to a U-shape for m (a; &1, £2). Having in mind that
m (0;&1,&) = g > 0, we conclude that all of the cases (A), (B), and (C) are possible
and which is the actual one is determined by the position of this U-shaped curve w.r.t.
the abscissa. |

Proof of Proposition 4.6. Lemma 2.3 shows that the inequality » > 0 is equivalent
to p < 2q + 1. We shall prove that the function g (a; &1, &) is negative at its extrema.
Suppose that @ € (0, 1] is such an extremum and therefore m (a; &1, £2) = 0. Hence,
function (51) can be presented in the point & as

g(a;é1,6) = g1 (a:é1,62) (81)
for
gi(a;é,&)=a’[~a(p-q-1)+p-ql-(&1+é&(p—q). (82)
Its derivative
gl (@éné)=a" [~alg+ 1) (p-qg-1)+q(p-q)] (83)

is positive since g; (151, &) =2g + 1 - p > 0. Hence,

g(a;§1?§2)=gl (a;§1’§2)
< g1 (1;€1,6) (84)
=l-(&1+&(p-q) <1-(&1+&) <0.

Having in mind the inequalities g (0;&1,&2) < 0 and g (1;&;,&2) < 0, we conclude
that the function g (a; &1, &>) is always negative. O
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Proof of Proposition 4.7. Suppose that m, (1; &1, &) > 0 and therefore the zero of
the derivative m, (a; &1, &2), say d, is less than one and it is

3 qg+1 P
- i 85
¢ ((p—q)(fl—qu)) 8

Hence, the function m (a; &1, &>) is U-shaped. Therefore, the triple {n, 72,73} leads
to the case (B) or (C) if and only if m (a; &1, &) < 0. We can easily check that this is
equivalent to inequality (56).

Suppose now that m, (1; &, &) < 0. Having in mind formula (80), we see that
mg (a;&1,&) < 0 forall a € (0, 1]. In addition, the inequality m, (1;£1,&2) < 0is
equivalent to

1
& —qér < L (86)
P—9q

We can easily check that this leads to m (1; &1, &) < 0. This inequality, together with
m (0; &1, &) > 0, shows that the case (B) holds. Also, Lemma 2.4 leads to

1
f-ger <1 < 87)

Thus we see that if a triple {7;,72,73} leads to one of the cases (B) or (C), then
inequality (56) holds. The inverse direction is true, because if inequality (56) holds,
then one of the cases (B) or (C) is actual because:

1. If mq (1;&1, &) > 0, then inequality (56) leads to this conclusion.

2. If mg (15 €1, &) < 0, then the triple {1, 72,73} leads always to the case (B) or
©).

O

Lemma A.1. If¢) > 1 and & = 0, then the function g (a; &1, 0) exhibits the behavior
(C). Also, if ¢; = 1 and &, = 0, then the function g (a; 1,0) exhibits the behavior (B).

Proof. Let us remind that the function m () is related to the derivative of g (-) through
equation (53). If £, > 1 and & = 0, then m, (0;£1,0) < 0 and m, (1;£1,0) > 0.
Hence, the function m (a; &1, 0) is U-shaped since the derivative m,, (a; &1, 0), given
by formula (80), is monotone. The inequalities m (0;&1,0) > 0 and m (1;£1,0) > 0
prove the first statement. The second one holds since the inequality m (1;£;,0) > 0
turns into equality when &) = 1. O

Lemma A.2. Let &, be defined by formula (57). Then the following inequality holds:
é1-q620. (88)
Proof. Using Proposition 4.1, we derive

qq

L 89
(g+ 1) ®

m <& <
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Therefore,
_ q q+1
&1—q&=m-—m-— (m)
q q+1
sp-—21 (A4 (90)
(g +1)7%! q+1
q
q
=m-(—2=) >0
m (q + 1) B
since 7y > 1. O

Lemma A.3. The function f (a) = a? — a?*" achieves its maximum in the interval

(0,1] for

(12#. (91)

Proof. The lemma holds since f’ (a) =a? ' [g—a (g +1)]. O

Proof of Proposition 4.9. The function g (a; (£1,0);&1,0) is decreasing because,
for &1 < €12,

g (@ (£1,1,0):61,1,0) > g (a1 (£12,0):€1,1,0) > g (@1 (£12,0):612,0) . (92)

The first inequality holds since a (51,1, 0) maximizes g (-;51,1, 0). The second
one is true because g (a; &1, 0) decreases w.r.t. £, whena < 1.
We have g (a; (1,0);1,0) > 0 due to Lemma A.1 and the equality g (1;1,0) = 0.
Let us consider the case £ — [. Suppose that fliml g (ay (£1,0);£1,0) > 0. We have
S1—

éimlﬁl (1,0) <, 93)
S1—

1
+ 1\ pal
= (%)

because vy is just the root of m, (a;&,0) = 0 when ¢, — [. Having in mind that

v < 1 due to r < 0, we conclude that there exists some constant b < vy such that

;imlg (b;&1,0) = 0. On the other hand, this is impossible because the function
14)

where

g (+;1,0) exhibits behavior (A) due to Proposition 4.7. O

Proof of Proposition 4.10. The function g (a; (¢1,&2) ; &1, &) decreases w.r.t. &, be-
cause, for (’;:2,1 < fz’z,

g(ar (é1.621):61.600) > g (a1 (£1.&2) :61.62.1) > g (a1 (61.622) 3 61.622) -
95)
The first inequality holds since a (§1,§2,1) maximizes g (';51,52,]), whereas the
second one is true because g (a; &1, &) decreases w.r.t. &;.
Also, g (a; (¢1,0);&1,0) > 0 since the positive domain of the function g (a; &1, 0)
is not empty.
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Let us consider now the case &, = &,. Using the presentation
q q+1
q q
e=(—) - (-5 (96)
g+1 g+1
and Lemmas A.2 and A.3, we derive

g (a;fl,szz) =al (& —q&) +p (a? —a?) - (& + & (p—q))

<aP (51 —qu) +p ((ﬁ)q—(#)w)—(a +&, (p—q))
=aP (51 - qu) +&p - (fl +& (p- Q))
=-(1-a") (& - 4&,) <0.

o7

Particularly, g (El (51, Ez) €1, Ez) < 0. Hence, the value of &, that changes the sign
of g (a) (£1,&2) ; €1, &) belongs to the interval (0, 32) ]

Proof of Proposition 4.11. Note that the following relation holds:

1-a

p
h(a;&) =aP™ g (a;:61,62) + ——8a (a:61,62) - (98)

pad

We know that the function £ (a; &;) starts from a positive value and has only one root,
see Lemma 3.4. Equation (98) taken in the points a = a1 » (£, &2) states that

h(a (§1,62);6) >0,
h(a (&§1,62);62) <0
because g, (El,z (&1,8) ;51,52) = 0 since both points are extrema of the function

g (a; &1, &). Note that we need the inequality 4 (1;&;) = —pér < 0ifayp (£1,&) = 1.
Having in mind Lemma 3.4 and Proposition 4.3, we conclude

ay (&1,6) <a” (&) <ax(é1,86). (100)

Therefore g, (a* (£2) ; &1, &2) < Obecause the function g (a; &1, &,) decreases between
the points a; (£1,&>) and a3 (&1, &2). Thus equation (98) taken for a = a* (&;) leads
to g (a* (&) ;&1,&2) > Osince h (a* (&) ;&2) = 0 due to Proposition 4.3. |

Proof of Lemma 4.15. Proposition 4.10 shows that g (El (x,fg (x)) X, &5 (x)) =0
in the whole interval (0, 4_52) and therefore

99)

dg (a1 (v, & (¥) 35,8 ()
dx

=0. (101)

This is equivalent to

ga (@ (v W) ixE W)
gs (@ (x.& ) :x.& ()

(& () = (102)
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because

ga (@1 (v, (%)) :x,6 (x)) =0 (103)

since a| (x, & (x)) is the maximum of the function g (a; -, -). Thus

_ &4 (@1 (x.& (%) :x,& (1))
8s (@1 (x,& () :1x.& (0)

1 (x) -1<0. (104)

because g (a;-,-) is decreasing both in & and &, and g¢, (-,-,-) > g¢ (-,-,+) when
r < 0. Therefore, f (x) is a decreasing function. The inequality f (0) > 0 is obvious,

whereas f (g_fz < 0 due to Proposition 4.10. O

Proof of Proposition 5.2. The derivative of the function m (a; &1, &),

mg (a;€1,6) = —aP ™17 (p— q) (&1 +9&) +q + 1, (105)

is always negative because m, (1;£1,&2) < Osince & > 1, & > 0, and p > 2q +
1. Therefore, m (a; &1, &7) is a decreasing negative function because m (1;&1,&,) =
— (&1 — 1+ g&>). Hence, the function g (a; &1, &>) exhibits the behavior (A). O

Proof of Proposition 5.3. The triple {51, 72,73} leads to one of the cases (B) or (C)
if and only if m, (1;&1,&) > 0 and m (a; &1, &) > 0, where d is the larger than one
root of m, (a; &1,&) =0:

B qg+1 P-;-l
= . 106
¢ ((p—q) (§1+q§z)) (100

Using statement (23), we can check that the desired inequalities hold if and only if
E1+qgér < L. m|

Acknowledgement

The author would like to express sincere gratitude to the editor Prof. Yuliya Mishura
and to the anonymous reviewers for the helpful and constructive comments which
substantially improve the quality of this paper.

Funding

This study is financed by the European Union-NextGenerationEU, through the Na-
tional Recovery and Resilience Plan of the Republic of Bulgaria, project No BG-RRP-
2.004-0008.

References
Baurdoux, E.J., Kyprianou, A.E.: Further calculations for Israeli options. Stoch. Int. J.

Probab. Stoch. Process. 76(6), 549-569 (2004). MR2100021. https://doi.org/10.1080/
10451120412331313438


http://www.ams.org/mathscinet-getitem?mr=2100021
https://doi.org/10.1080/10451120412331313438
https://doi.org/10.1080/10451120412331313438

On the impact of the penalty on the cancellable American options 31

Bensoussan, A., Friedman, A.: Nonlinear variational inequalities and differential games with
stopping times. J. Funct. Anal. 16(3), 305-352 (1974). https://www.sciencedirect.com/
science/article/pii/0022123674900767. ISSN 0022-1236. MR0354049. https://doi.org/10.
1016/0022-1236(74)90076-7

Bensoussan, A., Friedman, A.: Nonzero-sum stochastic differential games with stopping times
and free boundary problems. Trans. Am. Math. Soc. 231(2), 275-327 (1977). http://www.
jstor.org/stable/1997905. ISSN 0002-9947. MR0453082. https://doi.org/10.2307/1997905

Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3),
637-654 (1973). MR3363443. https://doi.org/10.1086/260062

Darling, D.A., Siegert, A.J.F.: The first passage problem for a continuous Markov process. Ann.
Math. Stat. 624-639 (1953). MR0058908. https://doi.org/10.1214/aoms/1177728918

Dolinsky, Y.: On shortfall risk minimization for game options. Mod. Stoch. Theory Appl. 7(4),
379-394 (2020). ISSN 2351-6046. MR4195642. https://doi.org/10.15559/20-VMSTA 164

Dumitrescu, R., Quenez, M.-C., Sulem, A.: Game options in an imperfect market with de-
fault. SIAM J. Financ. Math. 8(1), 532-559 (2017). MR3679314. https://doi.org/10.1137/
16M1109102

Dynkin, E.B.: A game-theoretic version of an optimal stopping problem. Dokl. Akad. Nauk
SSSR 185(1), 16-19 (1969). in Russian. MR0241121

Ekstrom, E.: Properties of game options. Math. Methods Oper. Res. 63(2), 221-238 (2006).
ISSN 1432-5217. MR2264747. https://doi.org/10.1007/s00186-005-0027-3

Ekstrom, E., Peskir, G.: Optimal stopping games for Markov processes. SIAM J. Control Optim.
47(2), 684-702 (2008). MR2385859. https://doi.org/10.1137/060673916

Ekstrom, E., Villeneuve, S.: On the value of optimal stopping games. Ann. Appl. Probab. 16(3),
1576-1596 (2006). MR2260074. https://doi.org/10.1214/105051606000000204

Emmerling, T.J.: Perpetual cancellable American call option. Math. Finance 22(4), 645-666
(2012). MR2968279. https://doi.org/10.1111/j.1467-9965.2011.00479.x

Friedman, A.: Stochastic games and variational inequalities. Arch. Ration. Mech. Anal. 51(5),
321-346 (1973). MR0351571. https://doi.org/10.1007/BF00263039

Gapeev, P.V., Lerche, H.R.: On the structure of discounted optimal stopping problems for
one-dimensional diffusions. Stoch. Int. J. Probab. Stoch. Process. 83(4-6), 537-554 (2011).
MR2842594. https://doi.org/10.1080/17442508.2010.532874

Gapeev, P.V.: The spread option optimal stopping game. In: Exotic Option Pricing and Advanced
Lévy Models. pp. 293-305. (2005). MR2343219

Gapeev, P.V,, Li, L., Wu, Z.: Perpetual American cancellable standard options in models
with last passage times. Algorithms 14(1), (2021). https://www.mdpi.com/1999-4893/14/
1/3. ISSN 1999-4893. MR4213424. https://doi.org/10.3390/a14010003

Guo, 1., Rutkowski, M.: Arbitrage-free pricing of multi-person game claims in discrete time.
Finance Stoch. 21(1), 111-155 (2017). MR3590704. https://doi.org/10.1007/s00780-016-
0315-1

Guo, P.: Pricing of the quanto game option with Asian feature. J. Finance Account. 8(3), 143
(2020). https://doi.org/10.11648/j.jfa.20200803.15

Guo, P., Chen, Q., Guo, X., Fang, Y.: Path-dependent game options: a lookback case. Rev.
Deriv. Res. 17(1), 113-124 (2014). https://doi.org/10.1007/s11147-013-9092-6

Guo, P., Zhang, J., Wang, Q.: Path-dependent game options with Asian features. Chaos Solitons
Fractals 141, 110412 (2020). MR4171636. https://doi.org/10.1016/j.chaos.2020.110412

Hamadéne, S.: Mixed zero-sum stochastic differential game and American game options.
SIAM J. Control Optim. 45(2), 496-518 (2006). MR2246087. https://doi.org/10.1137/
S036301290444280X


https://www.sciencedirect.com/science/article/pii/0022123674900767
https://www.sciencedirect.com/science/article/pii/0022123674900767
http://www.ams.org/mathscinet-getitem?mr=0354049
https://doi.org/10.1016/0022-1236(74)90076-7
https://doi.org/10.1016/0022-1236(74)90076-7
http://www.jstor.org/stable/1997905
http://www.jstor.org/stable/1997905
http://www.ams.org/mathscinet-getitem?mr=0453082
https://doi.org/10.2307/1997905
http://www.ams.org/mathscinet-getitem?mr=3363443
https://doi.org/10.1086/260062
http://www.ams.org/mathscinet-getitem?mr=0058908
https://doi.org/10.1214/aoms/1177728918
http://www.ams.org/mathscinet-getitem?mr=4195642
https://doi.org/10.15559/20-VMSTA164
http://www.ams.org/mathscinet-getitem?mr=3679314
https://doi.org/10.1137/16M1109102
https://doi.org/10.1137/16M1109102
http://www.ams.org/mathscinet-getitem?mr=0241121
http://www.ams.org/mathscinet-getitem?mr=2264747
https://doi.org/10.1007/s00186-005-0027-3
http://www.ams.org/mathscinet-getitem?mr=2385859
https://doi.org/10.1137/060673916
http://www.ams.org/mathscinet-getitem?mr=2260074
https://doi.org/10.1214/105051606000000204
http://www.ams.org/mathscinet-getitem?mr=2968279
https://doi.org/10.1111/j.1467-9965.2011.00479.x
http://www.ams.org/mathscinet-getitem?mr=0351571
https://doi.org/10.1007/BF00263039
http://www.ams.org/mathscinet-getitem?mr=2842594
https://doi.org/10.1080/17442508.2010.532874
http://www.ams.org/mathscinet-getitem?mr=2343219
https://www.mdpi.com/1999-4893/14/1/3
https://www.mdpi.com/1999-4893/14/1/3
http://www.ams.org/mathscinet-getitem?mr=4213424
https://doi.org/10.3390/a14010003
http://www.ams.org/mathscinet-getitem?mr=3590704
https://doi.org/10.1007/s00780-016-0315-1
https://doi.org/10.1007/s00780-016-0315-1
https://doi.org/10.11648/j.jfa.20200803.15
https://doi.org/10.1007/s11147-013-9092-6
http://www.ams.org/mathscinet-getitem?mr=4171636
https://doi.org/10.1016/j.chaos.2020.110412
http://www.ams.org/mathscinet-getitem?mr=2246087
https://doi.org/10.1137/S036301290444280X
https://doi.org/10.1137/S036301290444280X

32 T. Zaevski

Jacka, S.D.: Optimal stopping and the American put. Math. Finance 1(2), 1-14 (1991). http://
dx.doi.org/10.1111/j.1467-9965.1991.tb00007.x.ISSN 1467-9965. https://doi.org/10.1111/
j.1467-9965.1991.tb00007.x

Jacka, S.D.: Finite-horizon optimal stopping, obstacle problems and the shape of the continua-
tion region. Stoch. Int. J. Probab. Stoch. Process. 39(1), 25-42 (1992). MR1293300. https://
doi.org/10.1080/17442509208833761

Kallsen, J., Kiihn, C.: Pricing derivatives of American and game type in incomplete mar-
kets. Finance Stoch. 8(2), 261-284 (2004). MR2048831. https://doi.org/10.1007/s00780-
003-0110-7

Karatzas, 1., Shreve, S.: Methods of Mathematical Finance. Springer, New York (1998).
MR1640352. https://doi.org/10.1007/b98840

Karatzas, 1., Sudderth, W.: Stochastic games of control and stopping for a linear diffusion. In:
Random Walk, Sequential Analysis And Related Topics: A Festschrift in Honor of Yuan-
Shih Chow, pp. 100-117. World Scientific, (2006). MR2367702. https://doi.org/10.1142/
9789812772558_0007

Kifer, Y.: Game options. Finance Stoch. 4(4), 443-463 (Aug. 2000). ISSN 0949-2984.
MR1779588. https://doi.org/10.1007/PL0O0013527

Kifer, Y.: Dynkin’s games and Israeli options. ISRN Probability and Statistics (2013, 2013)

Kim, I.J.: The analytic valuation of American options. Rev. Financ. Stud. 3(4), 547-572 (1990).
ISSN 08939454, 14657368. http://www.jstor.org/stable/2962115. https://doi.org/10.1093/
rfs/3.4.547

Kiihn, C., Kyprianou, A.E.: Callable puts as composite exotic options. Math. Finance 17(4),
487-502 (2007). MR2352903. https://doi.org/10.1111/j.1467-9965.2007.00313.x

Kiihn, C., Kyprianou, A.E., Van Schaik, K.: Pricing Israeli options: a pathwise approach. Stoch.
Int. J. Probab. Stoch. Process. 79(1-2), 117-137 (2007). MR2290401. https://doi.org/10.
1080/17442500600976442

Kunita, H., Seko, S.: Game call options and their exercise regions. Technical report, Nanzan
Academic Society, Mathematical Sciences and Information Engineering, (2004).

Kwok, Y.-K.: Mathematical Models of Financial Derivatives. Springer-Verlag, (2008).
MR2446710

Kyprianou, A.E.: Some calculations for Israeli options. Finance Stoch. 8(1), 73—86 (2004).
MR2022979. https://doi.org/10.1007/s00780-003-0104-5

Lehoczky, J.P.: Formulas for stopped diffusion processes with stopping times based on

the maximum. Ann. Probab. 601-607 (1977). MR0458570. https://doi.org/10.1214/aop/
1176995770

McKean, H.P.: A free boundary problem for the heat equation arising from a problem in
mathematical economics. Ind. Manag. Rev. 6(2), 32-39 (1965)

Merton, R.C.: Theory of rational option pricing. Bell J. Econ. Manag. Sci. 141-183 (1973).
MRO0496534. https://doi.org/10.2307/3003143

Palmowski, Z., Stepniak, P.: Last-passage American cancelable option in Lévy models. J. Risk
Financ. Manag. 16(2), 82 (2023). https://doi.org/10.3390/jrfm 16020082

Peskir, G.: Optimal stopping games and Nash equilibrium. Theory Probab. Appl. 53(3), 558-571
(2009). MR2759714. https://doi.org/10.1137/S0040585X97983821

Shiryaev, A.N., Kabanov, Y.M., Kramkov, D.O., Mel’nikov, A.V.: Toward the theory of pricing
of options of both European and American types. II. Continuous time. Theory Probab. Appl.
39(1), 61-102 (1995). MR1348191. https://doi.org/10.1137/1139003


http://dx.doi.org/10.1111/j.1467-9965.1991.tb00007.x. ISSN 1467-9965
http://dx.doi.org/10.1111/j.1467-9965.1991.tb00007.x. ISSN 1467-9965
https://doi.org/10.1111/j.1467-9965.1991.tb00007.x
https://doi.org/10.1111/j.1467-9965.1991.tb00007.x
http://www.ams.org/mathscinet-getitem?mr=1293300
https://doi.org/10.1080/17442509208833761
https://doi.org/10.1080/17442509208833761
http://www.ams.org/mathscinet-getitem?mr=2048831
https://doi.org/10.1007/s00780-003-0110-7
https://doi.org/10.1007/s00780-003-0110-7
http://www.ams.org/mathscinet-getitem?mr=1640352
https://doi.org/10.1007/b98840
http://www.ams.org/mathscinet-getitem?mr=2367702
https://doi.org/10.1142/9789812772558_0007
https://doi.org/10.1142/9789812772558_0007
http://www.ams.org/mathscinet-getitem?mr=1779588
https://doi.org/10.1007/PL00013527
http://www.jstor.org/stable/2962115
https://doi.org/10.1093/rfs/3.4.547
https://doi.org/10.1093/rfs/3.4.547
http://www.ams.org/mathscinet-getitem?mr=2352903
https://doi.org/10.1111/j.1467-9965.2007.00313.x
http://www.ams.org/mathscinet-getitem?mr=2290401
https://doi.org/10.1080/17442500600976442
https://doi.org/10.1080/17442500600976442
http://www.ams.org/mathscinet-getitem?mr=2446710
http://www.ams.org/mathscinet-getitem?mr=2022979
https://doi.org/10.1007/s00780-003-0104-5
http://www.ams.org/mathscinet-getitem?mr=0458570
https://doi.org/10.1214/aop/1176995770
https://doi.org/10.1214/aop/1176995770
http://www.ams.org/mathscinet-getitem?mr=0496534
https://doi.org/10.2307/3003143
https://doi.org/10.3390/jrfm16020082
http://www.ams.org/mathscinet-getitem?mr=2759714
https://doi.org/10.1137/S0040585X97983821
http://www.ams.org/mathscinet-getitem?mr=1348191
https://doi.org/10.1137/1139003

On the impact of the penalty on the cancellable American options 33

Suzuki, A., Sawaki, K.: The pricing of perpetual game put options and optimal boundaries. In:
Recent Advances in Stochastic Operations Research, pp. 175-188. World Scientific, River
Edge, NJ, USA (2007). MR2313198. https://doi.org/10.1142/9789812706683_0012

van Moerbeke, P.: On optimal stopping and free boundary problems. Adv. Appl. Probab. 5(1),
33-35 (1973). MR2940361. https://doi.org/10.2307/1425961

Yam, S.C.P,, Yung, S.P., Zhou, W.: Game call options revisited. Math. Finance 24(1), 173-206
(2014). MR3157693. https://doi.org/10.1111/mafi.12000

Zaevski, T.: Perpetual cancellable American options with convertible features. Mod. Stoch.
Theory Appl. 10(4), 367-395 (2023). ISSN 2351-6046 (print), 2351-6054 (online). https://
www.vmsta.org/journal/VMSTA/article/273/read. MR4655406. https://doi.org/10.15559/
23-VMSTA230

Zaevski, T.: On the e-optimality of American options. China Finance Review International,
ahead—of—print, (2025). https://doi.org/10.1108/CFRI-06-2024-0361

Zaevski, T.S.: Perpetual game options with a multiplied penalty. Commun. Nonlinear Sci.
Numer. Simul. 85, 105248 (2020). ISSN 1007-5704 (print), 1878-7274 (online). http://www.
sciencedirect.com/science/article/pii/S1007570420300812. MR4074142. https://doi.org/10.
1016/j.cnsns.2020.105248

Zaevski, T.S.: Discounted perpetual game call options. Chaos Solitons Fractals 131,
109503 (2020). ISSN 0960-0779 (print), 1873-2887 (online). http://www.sciencedirect.com/
science/article/pii/S0960077919304552. MR4065328. https://doi.org/10.1016/j.chaos.2019.
109503

Zaevski, T.S.: Discounted perpetual game put options. Chaos Solitons Fractals 137,
109858 (2020). ISSN 0960-0779 (print), 1873-2887 (online). http://www.sciencedirect.com/
science/article/pii/S0960077920302587. MR4099368. https://doi.org/10.1016/j.chaos.2020.
109858

Zaevski, T.S.: A new approach for pricing discounted American options. Commun. Nonlinear
Sci. Numer. Simul. 97, 105752 (2021). ISSN 1007-5704 (print), 1878-7274 (online). https://
www.sciencedirect.com/science/article/pii/S1007570421000630. MR4212896. https://doi.
org/10.1016/j.cnsns.2021.105752

Zaevski, T.S.: Pricing finite maturity game call options with convertible features. Commun.
Stat., Simul. Comput. 1-24 (2025). https://doi.org/10.1080/03610918.2025.2488972


http://www.ams.org/mathscinet-getitem?mr=2313198
https://doi.org/10.1142/9789812706683_0012
http://www.ams.org/mathscinet-getitem?mr=2940361
https://doi.org/10.2307/1425961
http://www.ams.org/mathscinet-getitem?mr=3157693
https://doi.org/10.1111/mafi.12000
https://www.vmsta.org/journal/VMSTA/article/273/read
https://www.vmsta.org/journal/VMSTA/article/273/read
http://www.ams.org/mathscinet-getitem?mr=4655406
https://doi.org/10.15559/23-VMSTA230
https://doi.org/10.15559/23-VMSTA230
https://doi.org/10.1108/CFRI-06-2024-0361
http://www.sciencedirect.com/science/article/pii/S1007570420300812
http://www.sciencedirect.com/science/article/pii/S1007570420300812
http://www.ams.org/mathscinet-getitem?mr=4074142
https://doi.org/10.1016/j.cnsns.2020.105248
https://doi.org/10.1016/j.cnsns.2020.105248
http://www.sciencedirect.com/science/article/pii/S0960077919304552
http://www.sciencedirect.com/science/article/pii/S0960077919304552
http://www.ams.org/mathscinet-getitem?mr=4065328
https://doi.org/10.1016/j.chaos.2019.109503
https://doi.org/10.1016/j.chaos.2019.109503
http://www.sciencedirect.com/science/article/pii/S0960077920302587
http://www.sciencedirect.com/science/article/pii/S0960077920302587
http://www.ams.org/mathscinet-getitem?mr=4099368
https://doi.org/10.1016/j.chaos.2020.109858
https://doi.org/10.1016/j.chaos.2020.109858
https://www.sciencedirect.com/science/article/pii/S1007570421000630
https://www.sciencedirect.com/science/article/pii/S1007570421000630
http://www.ams.org/mathscinet-getitem?mr=4212896
https://doi.org/10.1016/j.cnsns.2021.105752
https://doi.org/10.1016/j.cnsns.2021.105752
https://doi.org/10.1080/03610918.2025.2488972

	Introduction
	Preliminaries
	L-American options
	Put options
	The main results
	Necessary and sufficient conditions

	Call options
	Some examples
	Some proofs

