Modern Stochastics: Theory and Applications 13 (1) (2026) 57-82
https://doi.org/10.15559/25-VMSTA285

A new confidence interval based on the theory of
U-statistics for the area under the curve

Jiirgen Kampf*, Lukas H. Vogel, Iryna Dykun, Tienush Rassaf,
Amir A. Mahabadi

West German Heart and Vascular Center Essen, Department of Cardiology and
Vascular Medicine, University Hospital Essen, Hufelandstrafse 55, 45147 Essen,
Germany

juergen.kampf@uk-essen.de (J. Kampf), lukas.vogel @uk-essen.de (L. Vogel),
iryna.dykun@uk-essen.de (I. Dykun), tienush.rassaf@uk-essen.de (T. Rassaf),
amir-abbas.mahabadi@uk-essen.de (A. Mahabadi)

Received: 8 April 2025, Revised: 12 September 2025, Accepted: 22 September 2025,
Published online: 9 October 2025

Abstract The area under the receiver operating characteristic curve (AUC) is a suitable mea-
sure for the quality of classification algorithms. Here we use the theory of U-statistics in order

to derive new confidence intervals for it. The new confidence intervals take into account that
only the total sample size used to calculate the AUC can be controlled, while the number of

members of the case group and the number of members of the control group are random. We
show that the new confidence intervals can not only be used in order to evaluate the quality of
the fitted model, but also to judge the quality of the classification algorithm itself. We would
like to take this opportunity to show that two popular confidence intervals for the AUC, namely
DeLong’s interval and the Mann—Whitney intervals due to Sen, coincide.
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1 Introduction

In medicine and other branches of science one frequently faces binarization prob-
lems, i.e. one wants to predict to which of two classes an item belongs based on
characteristics or data of an individual item. To solve this kind of problems, a lot
of competing algorithms—Iike neural nets, random forests or estimators for logistic
regression models—are available. Despite all differences in details, the general ap-
proach of these algorithms is similar. First, a classification model is fit using some
training data for which the true classification is known. Then this model can be used to
classify new data for which the true classification is unknown. In order to evaluate the
quality of a classification model, it is subsequently often applied to some test dataset
for which the true classification is known and the true classification is compared with
the prediction of the model. A frequently used method to quantify the result of this
comparison is the area under the curve (AUC) that we are going to introduce in detail
in Section 2.

There are several competing confidence intervals for the AUC. Most of them, like
the popular DeLong algorithm [4], also those by Kottas, Kuss & Zapf [6], LeDell,
Petersen & v. d. Laan [8], and all intervals compared in Qin & Hotilovac [12], assume
that the number of members of the case and control groups are deterministic. However,
in practice often only the total number of members of the test group can be controlled,
while the assignment to the case and control groups is random. Using the theory of
U-statistics we propose new confidence intervals that take this into account.

Moreover, the confidence intervals cited above are designed for the evaluation of
the (fitted) classification model. It is assumed that this model is perfectly true and the
randomness just comes from the fact that the test set is a random sample. This is alright,
if one wants to assess the quality of the fitted model. However, often the real question
is whether an algorithm is suitable for a certain kind of data. Then the uncertainty that
arises due to the fitting of the model parameters based on a finite training set has to
be considered as well. We will examine this for the logistic regression model. We will
see in a simulation study that this uncertainty is of practical relevance and ignoring
it can lead to a seriously too low coverage probability of the confidence intervals.
On the theoretical side, however, we will see that this uncertainty is asymptotically
neglectable.

A related question is, what happens, when all observations are used both for
training and for testing. This situation was considered in [10].

We will take this opportunity to show that two well-known confidence intervals
for the AUC, namely DeLong’s intervals [4] and the Mann—Whitney intervals due to
Sen [13], coincide. In the literature they are usually quoted under either name without
noticing that they are the same, and in Qin & Hotilovac [12] they are even compared
against each other.

This paper is organized as follows. In Section 2 we introduce the AUC and the
logistic regression model in full detail. In Section 3 we derive the form of the confidence
intervals from central limit theorems for the AUC. Section 4 is devoted to a simulation
study and in Section 5 we apply the new confidence intervals to electrocardiogram
(ECG) data. Finally, in Section 6 we discuss our results and point out directions for
future research. The proofs of the theoretical results will be postponed to the Appendix.
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2 Preliminaries

In this section we introduce the preliminaries we need on logistic regression models
and the AUC.

A logistic regression model is a family of probability distributions on R” x {0, 1}
indexed by a parameter in R”. The random vectors (X, ) of a logistic regression
model fulfill

exp{fTX} _
exp{BTX}+1

We assume that the observations (Xi,1,/1,1), ..., (Xi,m, [1,,) form an independent,
identically distributed (i.i.d.) sample in which each member follows the logistic re-
gression model. So we do not assume that the design points X1 i, . .., X1, are aligned
on a grid, but we suppose that they are irregularly scattered. These data points form
the training set. Logistic regression models are well studied in the literature; in par-
ticular the maximum-likelihood estimator ﬁ for B is known (see, e.g., [5]). It holds
that 3 — B8 — N(0, F~'(B)) in distribution as m — oo, where F(f) is the Fisher
information matrix. A consistent estimator for F () is given by

P(I = 1]X) =

H(B) = > XuX] (87 X10) - (1= 7 (87 X1.1))
i=1

with () = 1/(exp{t} + 1) (see [5, pp. 200-203]).

Once the model is fit, i.e. the parameter § is estimated, the probability Y, ; :=
P(l; =1 X2:),i=1,...,n, can be estimated for new data points X5 1,..., X2 »
that form the test set. In order to get a prediction for the class I, ; one can choose a
threshold ¢ € (0, 1) and put IAz,,- =11 (f’z,,-).

Notice that the behavior we saw above for the logistic regression model is typical for
classification algorithms. At first, some [0, 1]-valued score function Y5 ; is derived—
for logistic regression models this is the probability that {I,; = 1}, for neural nets
it is the value of the nodes in the output layer and for random forests it is the ratio
of all trees predicting {/; = 1}. Then the predicted classification is obtained by
thresholding Y- ;.

Now the prediction quality of the logistic regression model—or any other classifi-
cation algorithm that works as indicated in the last paragraph—can be assessed using
the area under the receiver operating curve (AUC). The empirical AUC is

n

i=1 2j=1 Lty <9y p Vihi=0y Ln =13 A 2itt 2ot Yy = p M=oy L =13
(Z?:l 1{12,i=0}) ’ (Z;'lzl 1{12,/':1}) 2 (Z?:l 1{12,i=0}) ’ (27:1 1{12,1':1})

A=
Its theoretical counterpart is

1
AZP(Yl <Y2|11=0,12=1)+E'P(Y1=Y2|11=0,12=1).

The name of the AUC comes from the fact that it equals a certain area; see Figure 1.
For further information on the AUC, see [11].
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Fig. 1. Interpretation of the AUC as an area. If the ROC curve (see [11]) is the thick black line,
then the AUC is the area of the gray polygon

3 Theoretical results

In this section, we present the mathematical theorems that are needed in order to
establish the new confidence intervals.
We consider two models.

Model 1. Let (?2,,-, Li)=(2,,5,;),i=1,...,n beaniid. sample of a real-valued
variable Y and a binary variable /.

Model 2. Let Yz,i, i =1,...,n, be the fitted values of a logistic regression model
(see Section 2) with true parameter Sy € R”, applied to i.i.d. data points X3 ;, i =
1,...,n, and let I ;, 1,...,n, be the known true classification. We shall assume
that the distribution of the points X, ;, i = 1,...,n, is absolutely continuous with
the Lebesgue density g. For two points X>; and X, ;, j # i, the distribution of
(X2,i = X2,7)/11X2,; — X, ;|| has a bounded density with respect to the (p — 1)-dimen-
sional Hausdorff measure on the unit sphere. Moreover, the cardinality m of the
training set and the cardinality n of the test set should fulfill

liminf 2 >0,  limsup = < co. )

n—eo 1 noco N

Model 1 is the classical model used most frequently in the literature so far (see
DeLong et al. [4], Kottas et al. [6], Qin & Hotilovac [12] and Sen [13]). The idea is that
Y2, i=1,...,n, are fitted values obtained by applying a completely known model
to an i.i.d. sample of data points. As a consequence of this simplification f’z,i and Y5 ;
always coincide under Model 1 and the “real” value of Y» ; is ignored. Notice that the
first index 2 of the observations is not necessary if one only considers Model 1, since
then there are no training observations (X ;, I; ;). We just add this index in order to
be able to treat Model 1 and Model 2 jointly.

Model 2 takes the more realistic point of view that the classification model is
disturbed by random effects that arose in the model fitting procedure. However, under
Model 2 we require that the used classification model is the logistic regression model,
while under Model 1 we make no assumptions on the classification model.

We put
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where X is the asymptotic covariance matrix of

Zit 2o Yy <o 3 1 =03 Lt =13 +1 ie1 21 Yo y=vs 3y L =0y L =13
2imi 1{12.,-:0}
2o Yn =1y
and where

1
P(1,=0)-P(I,=1)
_ | BP0, 4=0,b=1) _ 1  PM=Y,1;=0,h=1)
V= TRG=02EL=) T 2T B(h=0)2B(h=) |
P <V,[,=0,b=1) 1  PW=N.I=0,h=1)

P(1=0)B(L=1)2 ~ 2 "B(L=0)B(L=1)7
with (Y1, 11, Y,, I) having the same distribution as (Y2 ;, I ;, Y2 j-12.;), J #i.Inthe
Appendix, we Wlll show that 0' is the asymptotic variance of A. Let S2 be the plug-in
estimator for o2 4 where all probablhtles involved in the definition of v are estimated
by their corresponding relative frequencies and where

1 n aij

£= D0 Vim0 + it 0y
n-(n—1)-(n-2) S \Ly oty + gy o1y

X (aik 1{12,:7=0} + 1{12,k=0} 1{12,i=1} + 1{12,k=1})
aij
1¢p, =03 + 1{n ;=0
n- (n_l)lZ] 1{2 }+1{2 }
{L,;=1} {L,j=1}

1
m%}l aij V=03 + L =0y L=ty + 1 =13)
with

1
aij =Ly b 3 - M=oy - Lny=13 + 5 - Lpy o9, 3 M=oy - L=y

1
+ 1{?2.j<Y2,i} ’ 1{12,j=0} L=y + 7 I{Yz,F?z,i} ) 1{12,/‘:0} L =1y

is the estimator for X. The consistency of Si will be established in the course of the
proof of Theorem 1. We remark that the calculation of £ is indeed not O(n?), but

0(n?), because
n aij
Z 1{12,1'20} + 1{12,j=0} (aik 1{12,i=0} + 1{12J<=0} 1{12"':1} + 1{12"‘:1})
k=t \Ln =13 + Ly =13y

n al-j
Wi = Z Lin =03 + 141 ;=03
7=0 \ Mgy =13 + Ly =13
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Theorem 1. Under Model 1 or under Model 2, with the notation introduced above,

Vi -

in distribution as n — oo.
The proof of this theorem will be given in Appendix A.

Corollary 1. Assume Model 1 or Model 2 with the notation introduced above. Let
g :(0,1) = R be a C'-function with g’ (x) # 0 for all x € (0, 1). Then

— N(0,1)

in distribution as n — oo.

The proof of this corollary will be given in Appendix A.
Let z, be the a-quantile of the N/ (0, 1)-distribution.

Corollary 2. Under Model 1 or under Model 2, with the notation introduced above,

the interval
. /Sz . /SZ
(A+Za/2' _A,A+Zlfa/2' —A>
n n

has asymptotically the coverage probability 1 — a for A.
This corollary is immediate from the theorem.
Corollary 3. Assume Model 1 or Model 2 with the notation introduced above. Let

g : (0,1) — R be a bijective C'-function with g’ (x) > 0 for all x € (0, 1). Then the
interval

A~ N S2 R R SZ
(8_1 (g(A) +2ap2-8'(A) - f) g (g(A) +21-a2-8'(A) 7"))

has asymptotically the coverage probability 1 — a for A.

This corollary is immediate from Corollary 1.
For practice, we recommand to let g be the logit-function,

g(x) = log(lex), x € (0,1).

4 Simulations

In this section, we compare the performance of the new proposed confidence intervals
from Corollary 2 and Corollary 3 with the logit-function as g to DeLong’s interval
[4, 13] and the Modified Wald interval [6] based on simulations. We consider two
different scenarios, namely the binormal model which is classical for the investigation
of the AUC and the fitting of a logistic regression model.

In the binormal model the procedure of fitting the model is ignored and it is
assumed that the fitted values of the control observations and the fitted values of the
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Table 1. Estimated coverage probabilities in the binormal model. In the first row we give the
number n of observations and in the second row we give the expected value y; of the fitted
values of the case observations

20 200 2000 20 200 2000
1 1 1 2 2 2
Corollary 2 0.6154 0.9359 0.9494 0.0038 0.8772  0.9462
Corollary 3 0.5999  0.9389  0.9494  0.0000 0.8864  0.9463
DeLong 0.9026  0.9446 0.9505 0.7910 0.9369  0.9499

Modified Wald 09225 0.9543 09590 0.8577 0.9709 0.9797

Table 2. Mean value of the interval lengths in the binormal model. The further details are the
same as for Table 1

20 200 2000 20 200 2000
1 1 1 2 2 2
Corollary 2 0.1911  0.1261  0.0412 0.0126 0.0602  0.0225
Corollary 3 0.1859  0.1258 0.0412  0.0125 0.0612  0.0225
DeLong 0.4280 0.1315 0.0414 0.2208 0.0721  0.0228

Modified Wald ~ 0.4251  0.1365 0.0432  0.2496  0.0858  0.0272

case observations are normally distributed with different means. We assume that the
fitted values of the case observations follow the N(0, 1)-distribution and the fitted
values of the control observations follow the A (u;, 1)-distribution for p; = 1 or
= 2. We use n = 20,200,2000 observations in the test set of which one half
belongs to the case group and the other half belongs to the control group. For each
parameter combination we determined the coverage probability and the mean length
of the confidence intervals based on 10,000 simulation runs. The true AUC needed to
calculate the coverage probability was determined analytically. The results are reported
in Table 1 and Table 2.

All confidence intervals have a too low coverage probability at small sample size.
Not surprisingly, this gets better as the number of observation grows. We see that for
a small sample size, the new confidence intervals are shorter than the ones reported
in the literature at the price of having a lower coverage probability. For a large sample
size there is hardly a difference between the new confidence intervals and Del.ong’s
confidence intervals.

Now we consider the AUC from fitting a logistic regression model. For these
simulations we assumed that m + n = 100, 1000, 10000 independent design points
are drawn from a multivariate standard normal distribution in R” for p = 10, 100.
However, we dropped the combination m + n = 100 and p = 100, since then we
have more parameters than observations. We let 80% of the observations be training
data and 20% be test data; so n = 20,200, 2000 observations are used for testing and
the results are comparable to the results for the binormal model. We considered two
models for the true class: a logistic regression model with the first unit vector as true
parameter and a logistic regression model whose true parameter satisfies

o _
<,30,€j)=—J p/ j=1,...,p.

JEL G- p/2?

It is easily seen that the (absolute) probability that an observation is assigned to the
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case class is one half—however, unlike for the binormal model, now the choice is
made independently for each observation. For determining the coverage probability
one has to decide what should be the target parameter. The approach considered in
the literature so far takes

1
A =PB"Xi <" X |1 =0, =1) A+§-P(ﬂTX1 =p"X | 1=0,b=1)

1B=B 1B=p"

which is alright if you are interested in the quality of the fitted model. If you are
interested in the quality of the classification algorithm, it makes more sense to consider

1
Ay =P(B{Xi <BiXo |11 =01, = 1)+5 P(BIX1 =B X2 | [ =0, =1),

where 3y is the true parameter. For each parameter combination we determined the
coverage probability for Aj, the coverage probability for A, and the mean length of the
confidence intervals based on 10,000 simulation runs. For simulating the true value
of A, we generated a sample of 10% observations and for simulating the true value of
Ay we generated in each simulation run a sample of 10° observations. The results are
reported in Tables 3-8.

We obtain essentially the same results as for the binormal model. All confidence
intervals have a too low coverage probability at small sample size, but this gets better
as the number of observation grows. At small sample size the new confidence intervals
have a lower coverage probability and a shorter length than DelL.ong’s intervals or the
modified Wald intervals, while at a large sample size there is not much difference
between the intervals. Moreover, we see that when A; is the target, we have a curse of
dimensionality, i.e. the coverage probability drops at high dimensions. In particular,
it is seriously too low for p = 100 and m + n = 1000 and a bit too low for p = 100
and m + n = 10,000. The results for the first unit vector as Sy are quite similar to the
results for the “skew” vector By. This is not surprising, since the first unit vector is

Table 3. Estimated coverage probabilities for A in the logistic regression model with the first
unit vector as true parameter. In the first row we give the dimension p and in the second row
we present the number m + n of observations

10 10 10 100 100

100 1000 10000 1000 10000
Corollary 2 0.727 0937 0948 0939 0.951
Corollary 3 0.737 0943 0948 0946  0.951
DeLong 0915 0946 0949 0946  0.952

Modified Wald 0912 0953 0955 0951 0.960

Table 4. Estimated coverage probabilities for A, in the logistic regression model with the first
unit vector as true parameter. The further details are the same as in Table 3

10 10 10 100 100

100 1000 10000 1000 10000
Corollary 2 0.718 0936 0949 0.665 0.903
Corollary 3 0.691 0935 0950 0.616  0.894
DeLong 0919 0946 0950 0.684  0.904

Modified Wald 0909 0950 0.957 0.689 0915
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Table 5. Mean value of the interval length for the logistic regression model with the first unit
vector as true parameter. The further details are the same as in Table 3

10 10 10 100 100

100 1000 10000 1000 10000
Corollary 2 0.2926  0.1329  0.0428  0.1428  0.0432
Corollary 3 0.2806  0.1325 0.0428  0.1421  0.0432
DeLong 0.4921  0.1379  0.0429 0.1473  0.0434

Modified Wald ~ 0.4646  0.1415 0.0445  0.1490  0.0448

Table 6. Coverage probability of A; for the logistic regression model with the “skew” true
parameter. The further details are the same as in Table 3

10 10 10 100 100

100 1000 10000 1000 10000
Corollary 2 0.724 0937 0948 0939 0.948
Corollary 3 0.734 0944 0949 0945 0.950
DeLong 0907 0947 0949 0947 0.950

Modified Wald 0905 0955 0957 0951 0.957

Table 7. Coverage probability of A for the logistic regression model with the “skew” true
parameter. The further details are the same as in Table 3

10 10 10 100 100

100 1000 10000 1000 10000
Corollary 2 0.716 0940 0949 0.661 0.897
Corollary 3 0.686 0.938 0949 0.616 0.890
DeLong 0912 0948 0950 0.681 0.898

Modified Wald 0903 0953 0958  0.687 0.910

Table 8. Mean length for the logistic regression model with the “skew” true parameter. The
further details are the same as in Table 3

10 10 10 100 100

100 1000 10000 1000 10000
Corollary 2 0.2918  0.1329  0.0428  0.1428  0.0432
Corollary 3 0.2800  0.1324  0.0428  0.1420  0.0432
DeLong 0.4903  0.1379  0.0429 0.1472  0.0434

Modified Wald ~ 0.4638  0.1415 0.0445 0.1490  0.0448

mapped by a rotation on the “skew” vector and both the logistic regression model and
the distribution of the design points are invariant under rotations.

What can be done against the curse of dimensionality? Dimension reduction
techniques like LASSO have the potential to mitigate the problem. In Tables 9-14 we
report the results of LASSO logistic regression with A = 0.05. The logistic regresssion
with LASSO is no longer rotation invariant. Indeed, when the true parameter Sy is the
first unit vector, LASSO can be expected to work quite well, since we have one quite
large entry and many zero entries. Under this easy parameter setting, LASSO provides
a satisfactory solution. For the “skew” true parameter, LASSO can be expected to have
problems, since there are many entries which are close to zero, but nonzero. Under
this difficult parameter setting, the result with LASSO are even worse than the results

without LASSO.
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Table 9. Coverage probability for A; for LASSO logistic regression with the first unit vector as
true parameter

100 100

1000 10000
Corollary 2 0935 0.953
Corollary 3 0.943  0.953
DeLong 0.945 0954

Modified Wald 0954  0.961

Table 10. Coverage probability for A, for LASSO logistic regression with the first unit vector
as true parameter

100 100

1000 10000
Corollary 2 0935 0.953
Corollary 3 0.943  0.954
DeLong 0.945 0954

Modified Wald 0953  0.961

Table 11. Mean interval length for LASSO logistic regression with the first unit vector as true
parameter

100 100

1000 10000
Corollary 2 0.1315  0.0427
Corollary 3 0.1311  0.0427
DeLong 0.1366  0.0429

Modified Wald ~ 0.1404  0.0444

Table 12. Coverage probability for A| for LASSO logistic regression with “skew” true parameter

100 100

1000 10000
Corollary 2 0.9379  0.0227
Corollary 3 0.9423  0.0228
DeLong 0.9437  0.0228

Modified Wald ~ 0.9432  0.0228

Table 13. Coverage probability for A, for LASSO logistic regression with “skew” true parameter

100 100

1000 10000
Corollary 2 0.0055  0.0000
Corollary 3 0.0032  0.0000
DeLong 0.0067  0.0000

Modified Wald ~ 0.0068  0.0000

Table 14. Mean interval length for LASSO logistic regression with “skew” true parameter

100 100

1000 10000
Corollary 2 0.15580  0.00124
Corollary 3 0.15458  0.00124
DeLong 0.15938  0.00124

Modified Wald ~ 0.15881  0.05062
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Table 15. Bias and standard deviation of the AUC in the binormal model

20 200 2000 20 200 2000
1 1 1 2 2 2
bias 6.11e-04  9.10e-05 1.27e-04  2.09e-04  7.36e-05  5.69e-05

standard deviation ~ 0.10805 0.03341 0.01050  0.06137 0.01853 0.00578

Table 16. Bias and standard deviation of the AUC in the logistic regression model

10 10 10 100 100

100 1000 10000 1000 10000
mean of A 0.690 0.733 0.739 0.682 0.732
Al 0.684 0.733 0.739 0.682 0.732
A2 0.74 0.74 0.74 0.74 0.74

bias to target Al 6.22e-03  5.29¢-05 1.57e-05 1.15e-04  7.12e-05
bias to target A2 0.049483  0.006789  0.000745  0.057935  0.007481
standard deviation ~ 0.1171 0.0352 0.0110 0.0385 0.0110

It is a natural question, whether these confidence intervals can be further improved
by bias reduction. In order to assess that, we investigated the bias and the standard
deviation under the model assumptions explained above. The results are reported in
Table 15 and Table 16. We see that, while the bias in the binormal model and the bias
to the target A; in the logistic regression model are neglectable, there is a considerable
bias to A; in the logistic regression model.

5 Real data application

In this section we apply the confidence intervals to medical data.

We want to predict the presence of an obstructive coronary artery disease from
ECGs and from seven risk factors (age, sex, systolic blood pressure, LDL, diabetes,
smoking status, family history). Of the ECGs we extracted 648 features using the
MUSE(TM) (General Electrics, Boston, US) algorithm yielding 648 explanatory vari-
ables. The seven risk factors lead eight explanatory variables, since we decided to split
the family history in two variables (“present vs. absent or unknown” and “unknown vs.
present or absent”). Notice that four of these risk factors are binary and thus, strictly
speaking, the assumptions of Model 2 are not fulfilled.

We had data from 283,897 ECGs conducted at the University Hospital of Essen.
Since we need to know the true classification, we combined this data with the ECAD
registry containing the results of 33,865 coronary angiographies. We found a matching
coronary angiography for 13,538 ECGs. The patients, to which these ECGs belong,
were assigned to the training group with probability 0.6 and to the test group with
probability 0.4 independently of each other. This resulted in 8136 coronary angiogra-
phies being assigned to the training group and 5402 coronary angiographies being
assigned to the test group.

We fitted a logistic regression model based on the training group and we calcu-
lated the AUC together with 95%-confidence intervals to predict obstructive coronary
artery disease as detected in subsequently preformed coronary angiography proce-
dures. When the prediction was based on the ECGs, the AUC for the training group
was 0.709 and the AUC for the test group was 0.578. We got an AUC for the training
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Table 17. A comparison of different confidence intervals for the AUC for the diagnosis of
an obstructive CAD for the full data of 13,538 coronary angiographies via logistic regression
models

Method ECG ECG Risk factors Risk factors
(training data) (test data) (training data) (test data)
AUC 0.709 0.578 0.595 0.581
Corollary 2 (0.697;0.721)  (0.562;0.594)  (0.582;0.608)  (0.565; 0.597)
Corollary 3 (0.697;0.721)  (0.561;0.594)  (0.581; 0.608)  (0.565; 0.597)
DeLong (0.697;0.721)  (0.562;0.594)  (0.582;0.608)  (0.565; 0.597)

Modified Wald ~ (0.698; 0.721) ~ (0.563; 0.593)  (0.582;0.607)  (0.566; 0.596)

Table 18. A comparison of different confidence intervals for the AUC for the diagnosis of an
obstructive CAD for the reduced data of 100 coronary angiographies via logistic regression
models

Method ECG ECG Risk factors Risk factors
(training data) (test data) (training data) (test data)
AUC 1 0.378 0.751 0.543
Corollary 2 (1; 1) (0.229; 0.527)  (0.602; 0.901)  (0.346; 0.739)
Corollary 3 ;1) (0.244;0.534)  (0.576;0.870)  (0.350; 0.724)
DeLong (1; 1) (0.214;0.542)  (0.575;0.927)  (0.330; 0.755)
Modified Wald (1; 1) (0.225; 0.531)  (0.607; 0.896)  (0.386; 0.700)

group of 0.595 and for the test group of 0.581 for the prediction of an obstructive CAD
from seven risk factors.

The results are reported in Table 17. Though strictly speaking outside the scope
of this article, we added the results for the training group. In order to see how the con-
fidence intervals behave on a smaller sample, we applied our methods to a subsample
consisting of 100 coronary angiographies. The results are shown in Table 18.

For the whole sample all confidence intervals have approximately the same
length—the new intervals have the same length as the ones from the literature and
the intervals based on the ECGs have the same length as the ones based on the seven
risk factors. Not surprisingly, as we reduce the number of observations, the intervals
get longer. In particular, for all 13,538 coronary angiographies the logistic regression
model is significantly better than a pure random choice (i.e. an AUC of 0.5), which is
no longer true if we use only 100 coronary angiographies. For the subsample the new
confidence intervals are slightly narrower than the ones from the literature.

In Tables 19-21 we look what happens, when one uses neural nets, random
forests or support vector machines instead of logistic regression models. We see that

Table 19. Neural nets. The further details are the same as in Table 17

Method ECG ECG Risk factors Risk factors
(training data)  (test data) (training data)  (test data)
AUC 0.725 0.587 0.635 0.622
Corollary 2 (0.713;0.737)  (0.571;0.604)  (0.622;0.648)  (0.606; 0.637)
Corollary 3 (0.713;0.737)  (0.571;0.604)  (0.622;0.648)  (0.606; 0.637)
DeLong (0.713;0.737)  (0.571;0.604)  (0.622;0.648)  (0.606; 0.637)

Modified Wald ~ (0.714;0.736)  (0.572;0.602)  (0.623;0.647)  (0.607; 0.636)
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Table 20. Random forests. The further details are the same as in Table 17

Method ECG ECG Risk factors Risk factors
(training data)  (test data) (training data)  (test data)
AUC 0.999 0.599 1 0.572
Corollary 2 (0.999;0.999)  (0.583;0.615) (1; 1) (0.556; 0.588)
Corollary 3 (0.999;0.999) (0.582;0.615) (1;1) (0.556; 0.588)
DeLong (0.999;0.999)  (0.583;0.615) (1; 1) (0.556; 0.588)
Modified Wald ~ (0.999; 1) (0.584;0.614) (15 1) (0.557; 0.587)

Table 21. Support vector machines. The further details are the same as in Table 17

Method ECG ECG Risk factors Risk factors
(training data)  (test data) (training data)  (test data)
AUC 0.997 0.571 0.618 0.608
Corollary 2 (0.996; 0.998)  (0.555;0.588)  (0.605;0.631)  (0.592; 0.624)
Corollary 3 (0.996; 0.998)  (0.555;0.588)  (0.605;0.631)  (0.592; 0.624)
DeLong (0.996; 0.998)  (0.555;0.588)  (0.605;0.631)  (0.592; 0.624)

Modified Wald ~ (0.996; 0.999)  (0.556; 0.586)  (0.606; 0.63) (0.593; 0.623)

the confidence intervals are slightly shifted due to the different values of the point
estimates, but that they all have approximately the same length as the confidence
intervals of the logistic regression model.

In order to evaluate the computation times for the confidence intervals, observe
that their computation is a two-step procedure. First, the chosen model estimator
is used to calculate the fitted values f’z,i, i =1,...,n, and in the second step the
confidence intervals are calculated from these numbers. So the total computation
time of a confidence interval is the sum of one component which does depend on the
model estimator, but not on the confidence interval method, and one component which
does depend on the confidence interval method, but not on the model estimator. The
computation times are reported in Table 22 and Table 23. We see that the computation
times for the new intervals are longer than for those from the literature, but that also
the computation of the new confidence intervals is feasible. In particular, for random
forests and support vector machines the difference between the new computation times
and the old ones is neglectable compared to the time needed for the calculation of the
fitted values IA/QJ, i=1,...,n, anyway.

Table 22. Computation time (in seconds) for the whole sample (13,538 patients)

Method ECG ECG Risk factors  Risk factors

(training data)  (test data)  (training data) (test data)
logistic regression 26.23 26.13 0.56 0.49
neural net 4.50 4.68 2.52 2.09
random forest 164.74 165.06 3.78 3.84
support vector machines 856.41 857.25 181.66 177.82
AUC 0.01 0.00 0.01 0.01
Corollary 2 71.00 34.50 74.28 38.77
Corollary 3 73.74 35.30 81.97 38.60
DeLong 0.42 0.26 0.51 0.27

Modified Wald 0.01 0.00 0.01 0.00
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Table 23. Computation time (in seconds) for the subsample of 100 patients

Method ECG ECG Risk factors  Risk factors

(training data)  (testdata)  (training data) (test data)
logistic regression 0.44 0.42 0.01 0.02
AUC 0.00 0.00 0.00 0.00
Corollary 2 0.13 0.01 0.01 0.01
Corollary 3 0.16 0.01 0.01 0.02
DeLong 0.04 0.00 0.00 0.00
Modified Wald 0.01 0.00 0.00 0.00

6 Discussion and outlook

In this paper we have taken into account two facts that are usually ignored in the
study of confidence intervals for the AUC. First, only the total size of the test cohort
can be controlled, while its splitting into the case and control groups is random.
Second, the fitted binarization model is itself subjected to random effects. The first
fact brought new confidence intervals that are narrower than the ones in the literature,
but have a too low coverage probability at a small sample size. The second fact did not
bring new confidence intervals, since we saw that the confidence intervals we got from
considering the first fact still had asymptotically the correct coverage probability under
Model 2. All what we changed was that we had to add additional parts to the proofs (the
ones that we have only for Model 2 and not for Model 1). It can be expected that in a
similar manner the confidence intervals proposed in the literature have asymptotically
the correct coverage probability under Model 2.

Can it be expected for other binarization algorithms as well that the old confidence
intervals still have asymptotically the correct coverage probability when the model
uncertainty is taken into account? The estimators in linear discriminant analysis and
in quadratic discriminant analysis are combinations of standard estimators. Hence cen-
tral limit theorems for these estimators are easily established and from there on it is
straightforward to generalize the results of the present article. For quadratic discrimi-
nant analysis a certain challenge will be that the set of all test points (X1, X2) € RP xRP
for which Y} < Y», but ¥; > ¥, will be more complicated than for logistic regression
models or for linear discriminant analysis. For algorithms from machine learning,
like neural nets, random forests and support vector machines, a first problem already
occurs in the definition of the theoretical AUC. Since there is only an algorithm and no
underlying probability model, we cannot define the theoretical AUC as a probability
like we have done for logistic regression models. One could define the theoretical AUC
as the average of many independent realizations of the empirical AUC or as the limit
of the empirical AUC as the sample size tends to infinity (provided one can show that
this limit exists). Still with either of these definitions, the proof will be much harder.
The set of all test points (X}, X;) € RP x R? for which ¥} < Y,, but P > ¥y, will
be much more complicated for a machine learning algorithm than it was in our proof.
Moreover, we used a central limit theorem for the estimator in a logistic regression
model, and central limit theorems are unknown for machine learning algorithms.

While the theoretical results tell that asymptotically the old confidence intervals
work under Model 2 as well, our simulation results tell that at small sample size these
confidence intervals may have a seriously too low coverage probability—recall in
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particular the results in Table 4 for p = 100. Hence the construction of new confidence
intervals is desirable. A tempting idea is to use the §-method in the same way as we
use it in the proof. However, the derivative in Lemma 3 is zero and hence one will end
up with the old confidence intervals when using this approach. A solution would be
to use the second-order 5-method (see, e.g., [1, Lemma 5]). However, this may appear
to be inelegant. The second-order §-method yields that the limiting distribution of the
AUC is a sum of squares of Gaussian random variables, but since not all Gaussian
random variables involved in that sum have the same variance, this sum will not be )(2—
distributed in general. It is not clear whether a closed-form expression for the variances
of these Gaussian random variables can be derived even in the ideal situation when
the design points are multivariate-normally distributed or distributed uniformly on the
ball. In the realistic situation, when the distribution of the design points is unknown
and has to be estimated, it will even be a challenge to propose an algorithm that gives
a reasonable approximation for these variances in acceptable time. The results for
the LASSO logistic regression ranged from providing a satisfactory solution to being
even worse than the pure logistic regression depending on the unknown true model
parameter. Bootstrap [3] is known to have good finite-sample properties in many
instances and hence would be another approach worth trying. Finally, our simulations
in Table 16 show that the estimator A is seriously biased for A». Hence one can think
of constructing an estimator for the bias of A for A, and then applying bias reduction.

7 The equality of the Mann—Whitney intervals and DeLong’s intervals

Here we prove that the Mann—Whitney intervals due to Sen [13] coincide with De-
Long’s intervals [4]. For any real-valued sample ay,as,...,an, let agy,aeo),. ..,
a(n) denote the ordered sample, i.e. the sample containing the same elements (with
the same multiplicity), such that a(;y < ap) < -+ < avy. Welet ng := [{i €
{1,...,n} | I; = 0}| denote the number of observations in the control group and n; :=
[{i € {1,...,n} | I; = 1}| the number of observations in the case group. Since Sen
[13] and DeLong et al. [4] do not consider the training group, it is needless to say that we
only mean observations of the test group here. We let X;,i = 1, ..., ng, be the observa-
tions of the control group—not to be confused with the design points of the logistic re-
gression model, for which we used the same symbol—and Y;, j = 1,.. ., n, the obser-
vations of the case group. The Mann—Whitney intervals are defined as follows. We let

R; = |{k e{l,....no} | Xx < X(,')}|+’{j e{l,....,m}|Y; < X(i)}|,

i=1,...,n9,
S; :=|{i€ {1,...,n0} | X; SY(j)}|+|{k€ {1,....,m} | Yk SY(j)H’
j= 1,...,}11,

denote the rank of X(; or Y respectively within the joint sample of control and case
observations. Put
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n 2

- n+1
Z(s e (s— a ))
ny - 3, +no - Sg;

no - np

Let z, be the a-quantile of the standard normal distribution for @ € (0, 1). Then

(A +Zap A0 A+ Ziiap - V@@)

is the Mann—Whitney confidence interval. In order to define Del.ong’s intervals, put

ny

1 1
Vio(y) = ol Z(l{y<YJ} +5 Ly )

~.
=||

1 0 1
Vor(y) = — - (I{Xi<y} + ) ) I{Xi_y})’

oI
52 —;i(v (X-)—A)H;i(v (¥)) - A)°
D= T o= 1) 2 10(X; 1) 01 (Y .

Then DeLong’s interval is

(A +2Za/2- 6‘12),14 +Zi—a/2 - \/(’5’%’).

Theorem 2. For any real-valued sample (Xi,...,Xu,,Y1,...,Yy,) that does not
contain ties, it holds that

A2 _ A2
Oy =0p

and, in particular, the Mann—Whitney interval and DeLong’s interval coincide.

This theorem will be proven in Appendix B.

A Proofs for Section 3

Corollary 2 is immediate from Theorem 1 and Corollary 3 is immediate from Corol-
lary 1.

We start with the proof of Corollary 1 (taking Theorem 1 for granted) and then
prove Theorem 1.

In order to prove Corollary 1, we need the following slight extension of the J-
method.

Lemma 1. Let X,,,n € N, be a sequence of R4 -valued random vectors, C,,n € N, be
a sequence of random numbers with C,, — o0 as n — oo in probability, u € R? and
X be an R%-valued random vector such that

Co(Xn—p) > X



A new confidence interval based on the theory of U-statistics for the area under the curve 73
in distribution as n — oo. Let g : R? — RP be a C'-function. Then

Cn- (8(Xn) —g(w) — &' (WX.

Proof of Corollary 1. By Theorem 1 the assumptions of Lemma 1 are fulfilled with

Cy = {Jn/S% and X ~ N(0, 1). Hence

i g(d) —g(4) NO.1)
(A5}

in distribution as n — oo, which is the desired result except that we have g’ (A) instead
of g’ (A) in the denominator. However, Theorem 1 in particular implies

. 52 .
A—A:\/—A~ Z(A-4)—0-X=0
n SA

in probability as n — co. So g’(A) — g’(A) in probability as n — oo by the
continuous mapping theorem and Slutzky’s theorem gives

i g(A) -g(A) _g'(4) -~ g(A)-g(4)
A5 EA T s

Proof of Lemma 1. By the definition of differentiability there is a function r : R —
RP with lim, _,, r(x)/||x — u|| = O such that

g(x) —g(u) = &' () (x — p) +r(x).

Hence
Cy - (g(Xn) _g(,u)) = gl(ﬂ)(cn (X —,Lt)) +Cp - r(Xn).

Now the definition of convergence in probability implies 1/C,, — 0 as n — oo and
therefore Slutzky’s theorem yields

1
Xn=C—~Cn-(Xn—/1)+ﬂ—>0-X+/1=u

in probability as n — co. By a sharp version of the continuous mapping theorem [2,

Theorem 2.7] we get
r(X,)

1 Xn = wll
in probability as n — oo. So
r(Xn)

Ch-r(Xn)=Cpn- || X —ull - m
n

- [1X]|-0=0

in probability as n — oo and Slutzky’s theorem implies

Cn- (8(Xn) —g(w) — &' (WX. O
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Now then Corollary 1 is proven, we turn to the proof of Theorem 1. We start with
the proof of two lemmata.

Let H/ denote the j-dimensional Hausdorff measure. Intuitively, !(A) is the
length of a 1-dimensional set A € R?, #?(A) is the area of a two-dimensional set
A C R4, and so on. See [9] for a rigorous introduction.

Lemma 2. Let By, 81 € R?, By # 0, and put

D:={xes" | plx<0,px>0}u{xes!!|plx>0px<0}.

Then
Hd—l(D) < a)d_Z‘miIl{ﬂ' ”ﬁ] ﬁOH’ﬂ.}’
llBoll
where (d-1)2
_ _ 2rte-
2 =HHST?) =
(%)

Proof of Lemma 2. If 8 is anonnegative multiple of 3y, then D = () and the assertion
is fulfilled. If By is a negative multiple of By, then ||81 — Boll/l|Boll > 1 and hence the
assertion is fulfilled. Otherwise, put

- . Bo
B: = cos(t) - Po_, sin(t) - Fi~ 1. Fo) ”/30”2
1Bl 181 = B1. o) - Il

Then
Dc U {xes¥ | plx=0}.

ref0.arccos(¢ gt oy )]

Hence the area formula ([9, Theorem 3.7]) yields

arccoS(<ugﬁ’Hgﬁ>)
He (D) S/ HI2({xe s | plx=0})ar
0

_ B B\,
‘m"s« 161 ||,30||>> w2

Now )
cos(x) < 1- - X%, xel0,n],
T
yields
<< B Bo >) n? ( < B Bo >>
arccos < 1=, —) .
181" llBoll 18111 1lBoll
Further

_<ﬂ &>
18111 11Boll

5 (Jal -

(L o))
18111 11Boll

H lIBoll
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1 ‘i_ﬂ Sg.(uﬁl Boll ”ﬁ1”.|||ﬁ0||—||,31|||)2
2 B ol lIBoll 811 - 1 Boll
B = Boll*
R
Hence
sz—](D)Swd_z_min{ 181 - ,30||’7r}. g
1Bl

Lemma 3. Put
2B) =P(B"X; < f'Xo. [y =0, = 1).

Then, under Model 2, 7 is differentiable on RP \ {0} with

d
%Z(ﬂ)|ﬁ=ﬁo =0.

Proof of Lemma 3. Recall that ¢ is the Lebesgue density of a design point X; and
that 7(t) = 1/(exp{t} + 1). For any 8 € RP it holds that

2B =P(B" X1 < X2, 1 =0, = 1)
:/ / Loapr (a-xy 7 (Box1) - a (o) - (1= 7(Bgx2)) - q(x2) dxy dxs
RP JRP
= /Rp Lio<pryy /Rp ﬂ(ﬂgw) -q(w) - (1 - ﬂ(ﬁg(v + w))) q(v+w)dwdy.

Now consider 8; = B+tu withu € SP~Vand ¢ > 0.If u = +8/||8||, then z(B;) = z(B)
for |¢t| < 1/]|B||- So assume that u and B are linearly independent now. Put

_wp)
A 11
u

B _ up)
e - LBy

Let M be an orthogonal matrix mapping 3/||8|| to the first unit vector and u’ to the
second unit vector. Then

‘/RP 1{0<i8tTV} ‘/RP n(ﬁgw) ~q(w) - (1 —ﬂ(ﬁg(v+w))) ~q(v+w)dwdv
=/ 1{0<||/3||'X1+t'<u»u’>'x2}/ 7 (Bow) - a(w)
RP RP

. (1 - n(ﬁg(Mx + w))) -q(Mx +w) dw dx.
Now the fundamental theorem of calculus implies
d T
= | Lo<iplasetuay oy [ 7w (Byw) - q(w)
RP RP

. (l —ﬂ(ﬁg(Mx+w))) ~q(Mx +w) dw dx)=

) /Rm % /Rp m(Bow) - a(w) - (1 == (BF (M(0,x") +w)))
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q (M (O,x’) + w) dw dx’

:/{ - <|‘|’aﬁ’r|> RPQ(W) ﬂ(ﬁgw) q(v+w) - (1 _ﬂ'(ﬂg(v+w)))dw v,

because (u,u’) - (v,u’) = (v, u). Since this expression is continuous in 3, we conclude
that z is differentiable with

—Z(ﬂ) q(w)-m /J’O ) (v+w)-(1—7r(ﬁg(v+w))) dwdv.

ag werr|grv=0y 18Il /

Since for v with 87v = 0 it holds that
/RP q(w) -n(ﬁgw) q(v+w) - (1 - ﬂ(ﬁOT(V + w))) dw
= /Rp q(w) 'n(ﬁoTw) cq(=v+w)- (1 - n(ﬁOT(—v +W))) dw

we conclude that d/dp z(8)|=p, = 0. |

Proof of Theorem 1. We start by proving Theorem | under Model 1.
Put

(L <yoy + %1{y1=yz}) (1=iy) iz
g(Oni), (v2,12)) = 1 -4 ,
i
1 1
h(()’lail)» (y27i2)) = E : g(()’l»il), ()727i2)) + 5 : g((yZ»iZ)’ ()’I,il))

and
U= Z Z (Y20, 12,0), (Y2, 12, ).
n- (n_]) i=1 j=i+l
Now [7, Section 5.1.1, Theorem 1] implies

V- (U-6) = N(0,%)
in distribution as n — oo, where

P(Y) <Y2,[1 =0, b=1)+1-P(Y, =Y5,[; =0, 1, = 1)
0= P(I, = 0)
P(I, = 1)

is the expected value vector and where X denotes the covariance matrix of E[ A( (Y1, I}),
(Y2, 2))|Y1, I1]—recall that (Yy,1;,Y>,12) has the same distribution as (Y2, I2;,
Y2, 12,]') fori # j.

Put

FiRP SR, (x1,x2,x3) al

X2 - X3

sothat A =n/(n—1) - f(U). Now the 5-method implies
Vi (A-A) - N(0,03),
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where
o= (O (0) =vzy.

It follows from [7, pp. 163, 164] that £ (defined on page 61) is a consistent estimator
for . Hence we get that Si is a consistent estimator for 0'3‘. So Slutzky’s theorem
implies the assertion.

Now we turn to Model 2. Put

W, (B) :=Vn - (Zn(ﬁ) -P(B"X1 < B Xy |11 =0, =1)

1
-3 P X =BT [ =0, = 1)),

where
1 1
ie{l,....n} | b; =0} [{je{l,....n} | Lr;=1}]
n

Zn(ﬁ) =

> gty gt ot =13 + 12 g, o, o0, =13)-
i,j=1

Then Z, () is the empirical AUC. Put
2B) =P X <X | [1=0,b=1)+1/2-P(BTX1 = "Xz | [ =0, = 1)
and
R:=+n- (z(B) - z2(Bo)).
The aim is to derive a central limit theorem for
¥, (B) +R.

We treat the two summands separately. Put

(LT a, <pTrny + 5 ipTayprony) - (1 —i1) - 02
g((x],i])7 (xz,lz);ﬁ) = 1_l1 5

i

-g((x1,01), (x2,i2); B) + % -g((x2,12), (x1,11); B)

| =

(i), (x2,02): B) =
and

2 n n
Uup) = P — Z Z h((Xa,i, o,i), (X251, )3 B).

i=1 j=i+l

Now [7, Section 5.1.1, Theorem 1] implies
V- (U(Bo) —8) = N(0.%)
in distribution as n — oo, where

z(Bo)
0= | P =0)
P(I, = 1)
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is the expected value vector and X is the covariance matrix of E[h((Xy, 1),
(X2, 1); Bo) | X1, 11]. We would like to show that also

V- (U(B) - 6) = N(0,%), 2
where R
X z(B)
6=|Pru =0)
P(, = 1)

For this, by Slutzky’s theorem it suffices to show that

Vi - (U (B) —=E[U1(B)IB] - U1(Bo) + E[U1(Bo)]) — 0 A3)

in probability as n — co, where U; () denotes the first component of U (8)—notice
the second and third components do not depend on . At first, however, consider
V(Ui (B1) —E[U1(B1) — U1(Bo) +BU, (By)) for a deterministic point 8; € RP which
is not a multiple of SBy. For € > 0 we have by the Chebychev inequality that

P(Va-| (U1 (B1)~EUL (B1)) - (U1 (Bo)~EU: (Bo))| > €) < g-Var(Ul (B1)~U1(Bo)).

Similar to (3.71) in [7] one gets

8 1
Var(Uy(B1) - U1(Bo)) < pl Var((l{/g{xl<3(x2} + 51{51x1=ﬁ(x2}) Lin=0yln=13

1 8
- (1{50TX1 <BIX,} + El{ﬁ({xlzﬁgxz}) 1{11=0}1{12:1}> + ﬁ

Put
D:={xe st | flx <0 fyx>0}u{xes’" | plx>0p7x <0}

and denote by D the closure of D and by relbd D the boundary of D relative to SP~!
as surrounding topological space. Neglecting the event {X| = X, } which occurs with
probability 0, we have

1 |
Ligrxi<prxny * 3 Lisrxi=prxoy — Vgt xi<pixoy — 31T xi=pixay

e XX
ity €D
—_J 1 ¢ Xo-X
=495 if o-x] € relbd D .
e XX N
0 if gy €D

Hence
1
Var| | Ligrx,<prxpy + 3 Lisrxi=prxoy ) =03 in=13

1
- (1{5()Txl<ﬁ07x2} + 51{5({)(1:;3{)(2}) 1{11—0}1{12—1})
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X2 - Xy -1
<E|l15( —— <M -HP™ (D),
[D(||X2—X1||)] (P)

where HP~1(D) denotes the (p — 1)-dimensional Hausdorff measure of D and where
M is the upper bound of the density of (X, — X1)/||X> — X1|| with respect to the
(p — 1)-dimensional Hausdorff measure (recall that by the assumptions of Model 2
such a bound exists).

Therefore Lemma 2 implies

P(Vn-|U1(B1) = BUL (1) = U1 (Bo) + BU1 (Bo)| > €)

8 - 8
<= M- -wp 2 ~min{7r- 15 '30”,77} + 5
€ 1Boll n-e

P(Va - [U1(B) = EUL(B) — Ui (Bo) + EU (Bo)| > €)
E[P(Vn - |Ui(B) = E[U1(B)IB] — U1(Bo) +EUL(Bo)| > € | B)]

E§~M-wp_2-min{ﬂ~w,n}]+ 8 -0 @)

€2 llBoll n- e

as n — oo. So (3) holds, which concludes the proof of (2). Now the §-method implies

IA

¥, (B) - N(0,07%).

where o'f‘ is as in the proof for Model 1. Let us turn to R. Recall that by [5, p. 203] 3
obeys a central limit theorem as m — oo. Under Model 2 we have

P(B"X1 =B X|[1 =0,1Lb=1) =0
for all 8 € R? \ {0} and thus
B =PB" X1 <p" X | 1=0,L=1)+ % PB'X =p"X | [ =0, =1)
=P(B"Xi <B"X | I =0,1, = 1).
Hence the §-method together with Lemma 3 and assumption (1) gives
R=+n-(z(B) - z(Bo)) =0
in probability as n — oco. This shows
Vi (Zu(B) = 2(Bo)) — N (0, 7).
It remains to estimate a’i. A consistent pseudo-estimator for X is given by

1 n ﬁ,'j

£= O |t + Lm0
ne (=D 0=2) T \ Ly mty + Loy

X @ik Vp,=0y + Liny=0y  Vn,=1y + Ly, =13)



80 J. Kampf et al.

dij
L 1{12 :0} + 1{[2 :O}
- — 1 i sJ
n-(n ) Q=1 1{]2'[:1} + 1{12,1':1}
] n
n-(n—-1) (@ Vin=0y + Lny=0y  Lps=ny + g =13)
i,j=1
with
1
aij = l{ﬁIX2,<ﬁ %3 " Wn=0y - Lin =13 + 7 l{ﬁ’XQ, =83 X2, Lini=0y - Ln =13
1

+ l{ﬁ X0, j<BIXi} " 1{12,_,-:0} ’ 1{12,i=1} + 5 : 1{5 Xo, ;=BT X0} " 1{Iz,_,-=0} ’ 1{12,i=1}

(see [7, pp. 163, 164]). However, £ is only a pseudo-estimator, since it depends on 3y
which is unknown when working with real data. So we have to use the estimator £ in
which Sy is replaced with 3. By the Markov inequality we have for all € > 0 and all
coordinates r, s = 1, 2, 3 that

P(|irs - irsl > 5)

1 1 1 R
< - 'E[E [l{ﬁTxl <5733+ 3 Mprxi=pry ~ st xi<pixy ~ LT xi=pTx | ﬂ”

and hence
lim P(|irs -3 > 6) =0

n—oo

holds in the same way as (4). So % is a consistent estimator for X. Therefore Si — O’i

in probability, and Slutzky’s theorem implies

B Proof for Section 7

Proof of Theorem 2. It holds that

ni
Ri—i= Z Ly, <xy =11 —n - Vio(X))
=

and
no

i=1

Hence

np  np

R—n0+1 Z(R l)—_ZZI{Y,-in}znl_"l‘A

i=1 j=1
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and N n1+1 n; ng
S - Z(S —]) ZZI{X<Y}_nO
j=1i=
So

Py N N i(R‘—i)z—n (R0t ’
TR R = 2

no

! [Z(nl -n 'Vlo(X(i)))2

(no=1) - n} |

- 2(2(”1 —-n 'VIO(X(i)))> “(ny—ny-A)+ng- (ny —ny 'A)Z]

i=1

1 [Z((nl —n1 - Vio(X@)) = (m = ny -A))Z]

- (no—l)-n%

g

= 1_ 7 Z(VIO(Xi) - A)Z

i=1

o= T
and
1 < _ o +1\?
8= S~—'2—n-(S— )
01 (n1—1)~n(2) LZ;( =) 1 7
1 S 2
=— no - Vor (Y(;))
(nl_l)n% jz_]:( (]))
nj
-2- (no-V()l(Y(j)))-n0~A+n1~(n0~A)2]
j=1
1 d N2
= Vo (Y;) —A)".
ny — 1 j:I( 01t )
This yields
2 no‘S%1+n1 -S%O
M no - ny
1 ny R no >
= Vo1 (Y;) - A —_— V Xi .
n]-(nl—l);( 01(Y;) ) . (no—l)Z 10(X;) - ) D
In particular, the two confidence intervals are equal. O

Supplementary Material

The file AUC_CI.R contains all confidence intervals mentioned in this article—the
new ones proposed here and the ones used in the simulation study for comparison.
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The files Simulation_binormal.R, Simulation_logistic.R, Siumlation_logistic_2_
fast.R, Simulation_ LASSO.R, Simulation_LASSO_2 _fast.R, Simulation_binormal_
bias.R and Simulation_logistic_bias.R contain the source code for the simulations
reported in this article.
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