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1 Introduction

In medicine and other branches of science one frequently faces binarization prob
lems, i.e. one wants to predict to which of two classes an item belongs based on 
characteristics or data of an individual item. To solve this kind of problems, a lot 
of competing algorithms—like neural nets, random forests or estimators for logistic 
regression models—are available. Despite all differences in details, the general ap
proach of these algorithms is similar. First, a classification model is fit using some 
training data for which the true classification is known. Then this model can be used to 
classify new data for which the true classification is unknown. In order to evaluate the 
quality of a classification model, it is subsequently often applied to some test dataset 
for which the true classification is known and the true classification is compared with 
the prediction of the model. A frequently used method to quantify the result of this 
comparison is the area under the curve (AUC) that we are going to introduce in detail 
in Section 2.

There are several competing confidence intervals for the AUC. Most of them, like 
the popular DeLong algorithm [4], also those by Kottas, Kuss & Zapf [6], LeDell, 
Petersen & v. d. Laan [8], and all intervals compared in Qin & Hotilovac [12], assume 
that the number of members of the case and control groups are deterministic. However, 
in practice often only the total number of members of the test group can be controlled, 
while the assignment to the case and control groups is random. Using the theory of 
U-statistics we propose new confidence intervals that take this into account.

Moreover, the confidence intervals cited above are designed for the evaluation of 
the (fitted) classification model. It is assumed that this model is perfectly true and the 
randomness just comes from the fact that the test set is a random sample. This is alright, 
if one wants to assess the quality of the fitted model. However, often the real question 
is whether an algorithm is suitable for a certain kind of data. Then the uncertainty that 
arises due to the fitting of the model parameters based on a finite training set has to 
be considered as well. We will examine this for the logistic regression model. We will 
see in a simulation study that this uncertainty is of practical relevance and ignoring 
it can lead to a seriously too low coverage probability of the confidence intervals. 
On the theoretical side, however, we will see that this uncertainty is asymptotically 
neglectable.

A related question is, what happens, when all observations are used both for 
training and for testing. This situation was considered in [10].

We will take this opportunity to show that two well-known confidence intervals 
for the AUC, namely DeLong’s intervals [4] and the Mann–Whitney intervals due to 
Sen [13], coincide. In the literature they are usually quoted under either name without 
noticing that they are the same, and in Qin & Hotilovac [12] they are even compared 
against each other.

This paper is organized as follows. In Section 2 we introduce the AUC and the 
logistic regression model in full detail. In Section 3 we derive the form of the confidence 
intervals from central limit theorems for the AUC. Section 4 is devoted to a simulation 
study and in Section 5 we apply the new confidence intervals to electrocardiogram 
(ECG) data. Finally, in Section 6 we discuss our results and point out directions for 
future research. The proofs of the theoretical results will be postponed to the Appendix.
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2 Preliminaries

In this section we introduce the preliminaries we need on logistic regression models 
and the AUC.

A logistic regression model is a family of probability distributions on ℝ𝑝 × {0, 1}
indexed by a parameter in ℝ𝑝. The random vectors (𝑋, 𝐼) of a logistic regression 
model fulfill

ℙ(𝐼 = 1|𝑋) = exp{𝛽𝑇𝑋} 
exp{𝛽𝑇𝑋} + 1

=: 𝑌 .

We assume that the observations (𝑋1,1, 𝐼1,1), . . . , (𝑋1,𝑚, 𝐼1,𝑚) form an independent, 
identically distributed (i.i.d.) sample in which each member follows the logistic re
gression model. So we do not assume that the design points 𝑋1,1, . . . , 𝑋1,𝑚 are aligned 
on a grid, but we suppose that they are irregularly scattered. These data points form 
the training set. Logistic regression models are well studied in the literature; in par
ticular the maximum-likelihood estimator 𝛽 for 𝛽 is known (see, e.g., [5]). It holds 
that 𝛽 − 𝛽 → 𝒩 (0, 𝐹−1 (𝛽)) in distribution as 𝑚 → ∞, where 𝐹 (𝛽) is the Fisher 
information matrix. A consistent estimator for 𝐹 (𝛽) is given by

𝐻 (𝛽) :=
𝑚∑︂
𝑖=1 

𝑋1,𝑖𝑋
𝑇
1,𝑖𝜋

(︁
𝛽𝑇𝑋1,𝑖

)︁ · (︁1 − 𝜋
(︁
𝛽𝑇𝑋1,𝑖

)︁)︁

with 𝜋(𝑡) = 1/(exp{𝑡} + 1) (see [5, pp. 200--203]).
Once the model is fit, i.e. the parameter 𝛽 is estimated, the probability 𝑌2,𝑖 :=

ℙ(𝐼2,𝑖 = 1 | 𝑋2,𝑖), 𝑖 = 1, . . . , 𝑛, can be estimated for new data points 𝑋2,1, . . . , 𝑋2,𝑛
that form the test set. In order to get a prediction for the class 𝐼2,𝑖 one can choose a 
threshold 𝑐 ∈ (0, 1) and put 𝐼2,𝑖 := 1[𝑐,1] (𝑌̂2,𝑖).

Notice that the behavior we saw above for the logistic regression model is typical for 
classification algorithms. At first, some [0, 1]-valued score function 𝑌2,𝑖 is derived�-
for logistic regression models this is the probability that {𝐼2,𝑖 = 1}, for neural nets 
it is the value of the nodes in the output layer and for random forests it is the ratio 
of all trees predicting {𝐼2,𝑖 = 1}. Then the predicted classification is obtained by 
thresholding 𝑌̂2,𝑖.

Now the prediction quality of the logistic regression model—or any other classifi
cation algorithm that works as indicated in the last paragraph—can be assessed using 
the area under the receiver operating curve (AUC). The empirical AUC is

𝐴̂ =

∑︁𝑛
𝑖=1

∑︁𝑛
𝑗=1 1{𝑌̂2,𝑖<𝑌̂2, 𝑗}1{𝐼2,𝑖=0}1{𝐼2, 𝑗=1}

(∑︁𝑛
𝑖=1 1{𝐼2,𝑖=0}) · (

∑︁𝑛
𝑗=1 1{𝐼2, 𝑗=1}) 

+1
2
·
∑︁𝑛

𝑖=1
∑︁𝑛

𝑗=1 1{𝑌̂2,𝑖=𝑌̂2, 𝑗}1{𝐼2,𝑖=0}1{𝐼2, 𝑗=1}
(∑︁𝑛

𝑖=1 1{𝐼2,𝑖=0}) · (
∑︁𝑛

𝑗=1 1{𝐼2, 𝑗=1}) 
.

Its theoretical counterpart is

𝐴 = ℙ(𝑌1 < 𝑌2 | 𝐼1 = 0, 𝐼2 = 1) + 1
2
· ℙ(𝑌1 = 𝑌2 | 𝐼1 = 0, 𝐼2 = 1).

The name of the AUC comes from the fact that it equals a certain area; see Figure 1. 
For further information on the AUC, see [11].
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Fig. 1. Interpretation of the AUC as an area. If the ROC curve (see [11]) is the thick black line, 
then the AUC is the area of the gray polygon

3 Theoretical results

In this section, we present the mathematical theorems that are needed in order to 
establish the new confidence intervals.

We consider two models.

Model 1. Let (𝑌̂2,𝑖 , 𝐼2,𝑖) = (𝑌2,𝑖 , 𝐼2,𝑖), 𝑖 = 1, . . . , 𝑛, be an i.i.d. sample of a real-valued 
variable 𝑌 and a binary variable 𝐼.

Model 2. Let 𝑌̂2,𝑖 , 𝑖 = 1, . . . , 𝑛, be the fitted values of a logistic regression model 
(see Section 2) with true parameter 𝛽0 ∈ ℝ

𝑝 , applied to i.i.d. data points 𝑋2,𝑖, 𝑖 =
1, . . . , 𝑛, and let 𝐼2,𝑖 , 1, . . . , 𝑛, be the known true classification. We shall assume 
that the distribution of the points 𝑋2,𝑖, 𝑖 = 1, . . . , 𝑛, is absolutely continuous with 
the Lebesgue density 𝑞. For two points 𝑋2,𝑖 and 𝑋2, 𝑗 , 𝑗 ≠ 𝑖, the distribution of 
(𝑋2,𝑖 − 𝑋2, 𝑗 )/∥𝑋2,𝑖 − 𝑋2, 𝑗 ∥ has a bounded density with respect to the (𝑝 − 1)-dimen
sional Hausdorff measure on the unit sphere. Moreover, the cardinality 𝑚 of the 
training set and the cardinality 𝑛 of the test set should fulfill

lim inf
𝑛→∞ 

𝑚

𝑛 
> 0, lim sup

𝑛→∞ 

𝑚

𝑛 
< ∞. (1)

Model 1 is the classical model used most frequently in the literature so far (see 
DeLong et al. [4], Kottas et al. [6], Qin & Hotilovac [12] and Sen [13]). The idea is that 
𝑌̂2,𝑖 , 𝑖 = 1, . . . , 𝑛, are fitted values obtained by applying a completely known model 
to an i.i.d. sample of data points. As a consequence of this simplification 𝑌̂2,𝑖 and 𝑌2,𝑖
always coincide under Model 1 and the ``real'' value of 𝑌2,𝑖 is ignored. Notice that the 
first index 2 of the observations is not necessary if one only considers Model 1, since 
then there are no training observations (𝑋1,𝑖, 𝐼1,𝑖). We just add this index in order to 
be able to treat Model 1 and Model 2 jointly.

Model 2 takes the more realistic point of view that the classification model is 
disturbed by random effects that arose in the model fitting procedure. However, under 
Model 2 we require that the used classification model is the logistic regression model, 
while under Model 1 we make no assumptions on the classification model.

We put
𝜎2
𝐴 = 𝑣𝑇Σ𝑣,
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where Σ is the asymptotic covariance matrix of⎛
⎜⎝
∑︁𝑛

𝑖=1
∑︁𝑛

𝑗=1 1{𝑌2,𝑖<𝑌2, 𝑗}1{𝐼2,𝑖=0}1{𝐼2, 𝑗=1} + 1
2 ·∑︁𝑛

𝑖=1
∑︁𝑛

𝑗=1 1{𝑌2,𝑖=𝑌2, 𝑗}1{𝐼2,𝑖=0}1{𝐼2, 𝑗=1}∑︁𝑛
𝑖=1 1{𝐼2,𝑖=0}∑︁𝑛
𝑗=1 1{𝐼2, 𝑗=1}

⎞
⎟⎠

and where

𝑣 =

⎛
⎜⎜⎜⎝

1 
ℙ(𝐼1=0) ·ℙ(𝐼1=1)

−ℙ(𝑌1<𝑌2 ,𝐼1=0,𝐼2=1)
(ℙ(𝐼1=0)2 ·ℙ(𝐼2=1) − 1

2 · ℙ(𝑌1=𝑌2 ,𝐼1=0,𝐼2=1)
ℙ(𝐼1=0)2 ·ℙ(𝐼2=1) 

−ℙ(𝑌1<𝑌2 ,𝐼1=0,𝐼2=1)
ℙ(𝐼1=0) ·ℙ(𝐼2=1)2 − 1

2 · ℙ(𝑌1=𝑌2 ,𝐼1=0,𝐼2=1)
ℙ(𝐼1=0) ·ℙ(𝐼2=1)2

⎞
⎟⎟⎟⎠ ,

with (𝑌1, 𝐼1, 𝑌2, 𝐼2) having the same distribution as (𝑌2,𝑖, 𝐼2,𝑖 , 𝑌2, 𝑗 , 𝐼2, 𝑗 ), 𝑗 ≠ 𝑖. In the 
Appendix, we will show that 𝜎2

𝐴 is the asymptotic variance of 𝐴̂. Let 𝑆2
𝐴 be the plug-in 

estimator for 𝜎2
𝐴, where all probabilities involved in the definition of 𝑣 are estimated 

by their corresponding relative frequencies and where

Σ̂ =
1 

𝑛 · (𝑛 − 1) · (𝑛 − 2)
𝑛∑︂

𝑖, 𝑗 ,𝑘=1

⎛
⎝ 𝑎𝑖 𝑗

1{𝐼2,𝑖=0} + 1{𝐼2, 𝑗=0}
1{𝐼2,𝑖=1} + 1{𝐼2, 𝑗=1}

⎞
⎠

× (︁
𝑎𝑖𝑘 1{𝐼2,𝑖=0} + 1{𝐼2,𝑘=0} 1{𝐼2,𝑖=1} + 1{𝐼2,𝑘=1}

)︁
−
⎛
⎝ 1 

𝑛 · (𝑛 − 1)
𝑛∑︂

𝑖, 𝑗=1

⎛
⎝ 𝑎𝑖 𝑗

1{𝐼2,𝑖=0} + 1{𝐼2, 𝑗=0}
1{𝐼2,𝑖=1} + 1{𝐼2, 𝑗=1}

⎞
⎠
⎞
⎠

×
⎛
⎝ 1 

𝑛 · (𝑛 − 1)
𝑛∑︂

𝑖, 𝑗=1

(︁
𝑎𝑖 𝑗 1{𝐼2,𝑖=0} + 1{𝐼2, 𝑗=0} 1{𝐼2,𝑖=1} + 1{𝐼2, 𝑗=1}

)︁⎞⎠
with

𝑎𝑖 𝑗 = 1{𝑌̂2,𝑖<𝑌̂2, 𝑗} · 1{𝐼2,𝑖=0} · 1{𝐼2, 𝑗=1} +
1
2
· 1{𝑌̂2,𝑖=𝑌̂2, 𝑗} · 1{𝐼2,𝑖=0} · 1{𝐼2, 𝑗=1}

+ 1{𝑌̂2, 𝑗<𝑌̂2,𝑖} · 1{𝐼2, 𝑗=0} · 1{𝐼2,𝑖=1} +
1
2
· 1{𝑌̂2, 𝑗=𝑌̂2,𝑖} · 1{𝐼2, 𝑗=0} · 1{𝐼2,𝑖=1}

is the estimator for Σ. The consistency of 𝑆2
𝐴 will be established in the course of the 

proof of Theorem 1. We remark that the calculation of Σ̂ is indeed not 𝑂 (𝑛3), but 
𝑂 (𝑛2), because

𝑛∑︂
𝑖, 𝑗 ,𝑘=1

⎛
⎝ 𝑎𝑖 𝑗

1{𝐼2,𝑖=0} + 1{𝐼2, 𝑗=0}
1{𝐼2,𝑖=1} + 1{𝐼2, 𝑗=1}

⎞
⎠(︁

𝑎𝑖𝑘 1{𝐼2,𝑖=0} + 1{𝐼2,𝑘=0} 1{𝐼2,𝑖=1} + 1{𝐼2,𝑘=1}
)︁

=
𝑛∑︂
𝑖=1 

𝑤𝑖𝑤
𝑇
𝑖 ,

where

𝑤𝑖 =
𝑛∑︂
𝑗=1 

⎛
⎝ 𝑎𝑖 𝑗

1{𝐼2,𝑖=0} + 1{𝐼2, 𝑗=0}
1{𝐼2,𝑖=1} + 1{𝐼2, 𝑗=1}

⎞
⎠ .
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Theorem 1. Under Model 1 or under Model 2, with the notation introduced above,

√
𝑛 · 𝐴̂ − 𝐴√︂

𝑆2
𝐴

→ 𝒩 (0, 1)

in distribution as 𝑛 → ∞.

The proof of this theorem will be given in Appendix A.
Corollary 1. Assume Model 1 or Model 2 with the notation introduced above. Let 
𝑔 : (0, 1) → ℝ be a 𝐶1-function with 𝑔′ (𝑥) ≠ 0 for all 𝑥 ∈ (0, 1). Then 

√
𝑛 · 𝑔( 𝐴̂) − 𝑔(𝐴)

𝑔′ ( 𝐴̂) ·
√︂
𝑆2
𝐴

→ 𝒩 (0, 1)

in distribution as 𝑛 → ∞.

The proof of this corollary will be given in Appendix A.
Let 𝑧𝛼 be the 𝛼-quantile of the 𝒩 (0, 1)-distribution.

Corollary 2. Under Model 1 or under Model 2, with the notation introduced above, 
the interval (︃

𝐴̂ + 𝑧𝛼/2 ·
√︄

𝑆2
𝐴

𝑛 
, 𝐴̂ + 𝑧1−𝛼/2 ·

√︄
𝑆2
𝐴

𝑛 

)︃
has asymptotically the coverage probability 1 − 𝛼 for 𝐴.

This corollary is immediate from the theorem.
Corollary 3. Assume Model 1 or Model 2 with the notation introduced above. Let 
𝑔 : (0, 1) → ℝ be a bijective 𝐶1-function with 𝑔′ (𝑥) > 0 for all 𝑥 ∈ (0, 1). Then the 
interval 

(︃
𝑔−1

(︃
𝑔( 𝐴̂) + 𝑧𝛼/2 · 𝑔′ ( 𝐴̂) ·

√︄
𝑆2
𝐴

𝑛 

)︃
, 𝑔−1

(︃
𝑔( 𝐴̂) + 𝑧1−𝛼/2 · 𝑔′ ( 𝐴̂) ·

√︄
𝑆2
𝐴

𝑛 

)︃)︃

has asymptotically the coverage probability 1 − 𝛼 for 𝐴.

This corollary is immediate from Corollary 1.
For practice, we recommand to let 𝑔 be the logit-function, 

𝑔(𝑥) := log
(︃

𝑥

1 − 𝑥

)︃
, 𝑥 ∈ (0, 1).

4 Simulations

In this section, we compare the performance of the new proposed confidence intervals 
from Corollary 2 and Corollary 3 with the logit-function as 𝑔 to DeLong’s interval 
[4, 13] and the Modified Wald interval [6] based on simulations. We consider two 
different scenarios, namely the binormal model which is classical for the investigation 
of the AUC and the fitting of a logistic regression model.

In the binormal model the procedure of fitting the model is ignored and it is 
assumed that the fitted values of the control observations and the fitted values of the 
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Table 1. Estimated coverage probabilities in the binormal model. In the first row we give the 
number 𝑛 of observations and in the second row we give the expected value 𝜇1 of the fitted 
values of the case observations

20 200 2000 20 200 2000 
1 1 1 2 2 2 

Corollary 2 0.6154 0.9359 0.9494 0.0038 0.8772 0.9462 
Corollary 3 0.5999 0.9389 0.9494 0.0000 0.8864 0.9463 
DeLong 0.9026 0.9446 0.9505 0.7910 0.9369 0.9499 
Modified Wald 0.9225 0.9543 0.9590 0.8577 0.9709 0.9797 

Table 2. Mean value of the interval lengths in the binormal model. The further details are the 
same as for Table 1

20 200 2000 20 200 2000 
1 1 1 2 2 2 

Corollary 2 0.1911 0.1261 0.0412 0.0126 0.0602 0.0225 
Corollary 3 0.1859 0.1258 0.0412 0.0125 0.0612 0.0225 
DeLong 0.4280 0.1315 0.0414 0.2208 0.0721 0.0228 
Modified Wald 0.4251 0.1365 0.0432 0.2496 0.0858 0.0272 

case observations are normally distributed with different means. We assume that the 
fitted values of the case observations follow the 𝒩 (0, 1)-distribution and the fitted 
values of the control observations follow the 𝒩 (𝜇1, 1)-distribution for 𝜇1 = 1 or 
𝜇1 = 2. We use 𝑛 = 20, 200, 2000 observations in the test set of which one half 
belongs to the case group and the other half belongs to the control group. For each 
parameter combination we determined the coverage probability and the mean length 
of the confidence intervals based on 10,000 simulation runs. The true AUC needed to 
calculate the coverage probability was determined analytically. The results are reported 
in Table 1 and Table 2. 

All confidence intervals have a too low coverage probability at small sample size. 
Not surprisingly, this gets better as the number of observation grows. We see that for 
a small sample size, the new confidence intervals are shorter than the ones reported 
in the literature at the price of having a lower coverage probability. For a large sample 
size there is hardly a difference between the new confidence intervals and DeLong’s 
confidence intervals.

Now we consider the AUC from fitting a logistic regression model. For these 
simulations we assumed that 𝑚 + 𝑛 = 100, 1000, 10000 independent design points 
are drawn from a multivariate standard normal distribution in ℝ𝑝 for 𝑝 = 10, 100. 
However, we dropped the combination 𝑚 + 𝑛 = 100 and 𝑝 = 100, since then we 
have more parameters than observations. We let 80% of the observations be training 
data and 20% be test data; so 𝑛 = 20, 200, 2000 observations are used for testing and 
the results are comparable to the results for the binormal model. We considered two 
models for the true class: a logistic regression model with the first unit vector as true 
parameter and a logistic regression model whose true parameter satisfies

⟨𝛽0, 𝑒 𝑗⟩ = 𝑗 − 𝑝/2 √︂∑︁𝑝
𝑖=1 (𝑖 − 𝑝/2)2

, 𝑗 = 1, . . . , 𝑝.

It is easily seen that the (absolute) probability that an observation is assigned to the 
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case class is one half—however, unlike for the binormal model, now the choice is 
made independently for each observation. For determining the coverage probability 
one has to decide what should be the target parameter. The approach considered in 
the literature so far takes

𝐴1 = ℙ
(︁
𝛽𝑇𝑋1 < 𝛽𝑇𝑋2 | 𝐼1 = 0, 𝐼2 = 1

)︁
|𝛽=𝛽+

1
2
·ℙ(︁𝛽𝑇𝑋1 = 𝛽𝑇𝑋2 | 𝐼1 = 0, 𝐼2 = 1

)︁
|𝛽=𝛽 ,

which is alright if you are interested in the quality of the fitted model. If you are 
interested in the quality of the classification algorithm, it makes more sense to consider

𝐴2 = ℙ
(︁
𝛽𝑇0 𝑋1 < 𝛽𝑇0 𝑋2 | 𝐼1 = 0, 𝐼2 = 1

)︁ + 1
2
· ℙ(︁𝛽𝑇0 𝑋1 = 𝛽𝑇0 𝑋2 | 𝐼1 = 0, 𝐼2 = 1

)︁
,

where 𝛽0 is the true parameter. For each parameter combination we determined the 
coverage probability for 𝐴1, the coverage probability for 𝐴2 and the mean length of the 
confidence intervals based on 10,000 simulation runs. For simulating the true value 
of 𝐴2 we generated a sample of 108 observations and for simulating the true value of 
𝐴1 we generated in each simulation run a sample of 106 observations. The results are 
reported in Tables 3--8. 

We obtain essentially the same results as for the binormal model. All confidence 
intervals have a too low coverage probability at small sample size, but this gets better 
as the number of observation grows. At small sample size the new confidence intervals 
have a lower coverage probability and a shorter length than DeLong’s intervals or the 
modified Wald intervals, while at a large sample size there is not much difference 
between the intervals. Moreover, we see that when 𝐴2 is the target, we have a curse of 
dimensionality, i.e. the coverage probability drops at high dimensions. In particular, 
it is seriously too low for 𝑝 = 100 and 𝑚 + 𝑛 = 1000 and a bit too low for 𝑝 = 100
and 𝑚 + 𝑛 = 10,000. The results for the first unit vector as 𝛽0 are quite similar to the 
results for the ``skew'' vector 𝛽0. This is not surprising, since the first unit vector is 

Table 3. Estimated coverage probabilities for 𝐴1 in the logistic regression model with the first 
unit vector as true parameter. In the first row we give the dimension 𝑝 and in the second row 
we present the number 𝑚 + 𝑛 of observations

10 10 10 100 100 
100 1000 10000 1000 10000 

Corollary 2 0.727 0.937 0.948 0.939 0.951 
Corollary 3 0.737 0.943 0.948 0.946 0.951 
DeLong 0.915 0.946 0.949 0.946 0.952 
Modified Wald 0.912 0.953 0.955 0.951 0.960 

Table 4. Estimated coverage probabilities for 𝐴2 in the logistic regression model with the first 
unit vector as true parameter. The further details are the same as in Table 3

10 10 10 100 100 
100 1000 10000 1000 10000 

Corollary 2 0.718 0.936 0.949 0.665 0.903 
Corollary 3 0.691 0.935 0.950 0.616 0.894 
DeLong 0.919 0.946 0.950 0.684 0.904 
Modified Wald 0.909 0.950 0.957 0.689 0.915 
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Table 5. Mean value of the interval length for the logistic regression model with the first unit 
vector as true parameter. The further details are the same as in Table 3

10 10 10 100 100 
100 1000 10000 1000 10000 

Corollary 2 0.2926 0.1329 0.0428 0.1428 0.0432 
Corollary 3 0.2806 0.1325 0.0428 0.1421 0.0432 
DeLong 0.4921 0.1379 0.0429 0.1473 0.0434 
Modified Wald 0.4646 0.1415 0.0445 0.1490 0.0448 

Table 6. Coverage probability of 𝐴1 for the logistic regression model with the ``skew'' true 
parameter. The further details are the same as in Table 3

10 10 10 100 100 
100 1000 10000 1000 10000 

Corollary 2 0.724 0.937 0.948 0.939 0.948 
Corollary 3 0.734 0.944 0.949 0.945 0.950 
DeLong 0.907 0.947 0.949 0.947 0.950 
Modified Wald 0.905 0.955 0.957 0.951 0.957 

Table 7. Coverage probability of 𝐴2 for the logistic regression model with the ``skew'' true 
parameter. The further details are the same as in Table 3

10 10 10 100 100 
100 1000 10000 1000 10000 

Corollary 2 0.716 0.940 0.949 0.661 0.897 
Corollary 3 0.686 0.938 0.949 0.616 0.890 
DeLong 0.912 0.948 0.950 0.681 0.898 
Modified Wald 0.903 0.953 0.958 0.687 0.910 

Table 8. Mean length for the logistic regression model with the ``skew'' true parameter. The 
further details are the same as in Table 3

10 10 10 100 100 
100 1000 10000 1000 10000 

Corollary 2 0.2918 0.1329 0.0428 0.1428 0.0432 
Corollary 3 0.2800 0.1324 0.0428 0.1420 0.0432 
DeLong 0.4903 0.1379 0.0429 0.1472 0.0434 
Modified Wald 0.4638 0.1415 0.0445 0.1490 0.0448 

mapped by a rotation on the ``skew'' vector and both the logistic regression model and 
the distribution of the design points are invariant under rotations.

What can be done against the curse of dimensionality? Dimension reduction 
techniques like LASSO have the potential to mitigate the problem. In Tables 9--14 we 
report the results of LASSO logistic regression with 𝜆 = 0.05. The logistic regresssion 
with LASSO is no longer rotation invariant. Indeed, when the true parameter 𝛽0 is the 
first unit vector, LASSO can be expected to work quite well, since we have one quite 
large entry and many zero entries. Under this easy parameter setting, LASSO provides 
a satisfactory solution. For the ``skew'' true parameter, LASSO can be expected to have 
problems, since there are many entries which are close to zero, but nonzero. Under 
this difficult parameter setting, the result with LASSO are even worse than the results 
without LASSO.
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Table 9. Coverage probability for 𝐴1 for LASSO logistic regression with the first unit vector as 
true parameter

100 100 
1000 10000 

Corollary 2 0.935 0.953 
Corollary 3 0.943 0.953 
DeLong 0.945 0.954 
Modified Wald 0.954 0.961 

Table 10. Coverage probability for 𝐴2 for LASSO logistic regression with the first unit vector 
as true parameter

100 100 
1000 10000 

Corollary 2 0.935 0.953 
Corollary 3 0.943 0.954 
DeLong 0.945 0.954 
Modified Wald 0.953 0.961 

Table 11. Mean interval length for LASSO logistic regression with the first unit vector as true 
parameter

100 100 
1000 10000 

Corollary 2 0.1315 0.0427 
Corollary 3 0.1311 0.0427 
DeLong 0.1366 0.0429 
Modified Wald 0.1404 0.0444 

Table 12. Coverage probability for 𝐴1 for LASSO logistic regression with ``skew'' true parameter

100 100 
1000 10000 

Corollary 2 0.9379 0.0227 
Corollary 3 0.9423 0.0228 
DeLong 0.9437 0.0228 
Modified Wald 0.9432 0.0228 

Table 13. Coverage probability for 𝐴2 for LASSO logistic regression with ``skew'' true parameter

100 100 
1000 10000 

Corollary 2 0.0055 0.0000 
Corollary 3 0.0032 0.0000 
DeLong 0.0067 0.0000 
Modified Wald 0.0068 0.0000 

Table 14. Mean interval length for LASSO logistic regression with ``skew'' true parameter

100 100 
1000 10000 

Corollary 2 0.15580 0.00124 
Corollary 3 0.15458 0.00124 
DeLong 0.15938 0.00124 
Modified Wald 0.15881 0.05062 
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Table 15. Bias and standard deviation of the AUC in the binormal model

20 200 2000 20 200 2000 
1 1 1 2 2 2 

bias 6.11e-04 9.10e-05 1.27e-04 2.09e-04 7.36e-05 5.69e-05 
standard deviation 0.10805 0.03341 0.01050 0.06137 0.01853 0.00578 

Table 16. Bias and standard deviation of the AUC in the logistic regression model

10 10 10 100 100 
100 1000 10000 1000 10000 

mean of A 0.690 0.733 0.739 0.682 0.732 
A1 0.684 0.733 0.739 0.682 0.732 
A2 0.74 0.74 0.74 0.74 0.74 
bias to target A1 6.22e-03 5.29e-05 1.57e-05 1.15e-04 7.12e-05 
bias to target A2 0.049483 0.006789 0.000745 0.057935 0.007481 
standard deviation 0.1171 0.0352 0.0110 0.0385 0.0110 

It is a natural question, whether these confidence intervals can be further improved 
by bias reduction. In order to assess that, we investigated the bias and the standard 
deviation under the model assumptions explained above. The results are reported in 
Table 15 and Table 16. We see that, while the bias in the binormal model and the bias 
to the target 𝐴1 in the logistic regression model are neglectable, there is a considerable 
bias to 𝐴2 in the logistic regression model.

5 Real data application

In this section we apply the confidence intervals to medical data.
We want to predict the presence of an obstructive coronary artery disease from 

ECGs and from seven risk factors (age, sex, systolic blood pressure, LDL, diabetes, 
smoking status, family history). Of the ECGs we extracted 648 features using the 
MUSE(TM) (General Electrics, Boston, US) algorithm yielding 648 explanatory vari
ables. The seven risk factors lead eight explanatory variables, since we decided to split 
the family history in two variables (``present vs. absent or unknown'' and ``unknown vs. 
present or absent''). Notice that four of these risk factors are binary and thus, strictly 
speaking, the assumptions of Model 2 are not fulfilled.

We had data from 283,897 ECGs conducted at the University Hospital of Essen. 
Since we need to know the true classification, we combined this data with the ECAD 
registry containing the results of 33,865 coronary angiographies. We found a matching 
coronary angiography for 13,538 ECGs. The patients, to which these ECGs belong, 
were assigned to the training group with probability 0.6 and to the test group with 
probability 0.4 independently of each other. This resulted in 8136 coronary angiogra
phies being assigned to the training group and 5402 coronary angiographies being 
assigned to the test group.

We fitted a logistic regression model based on the training group and we calcu
lated the AUC together with 95%-confidence intervals to predict obstructive coronary 
artery disease as detected in subsequently preformed coronary angiography proce
dures. When the prediction was based on the ECGs, the AUC for the training group 
was 0.709 and the AUC for the test group was 0.578. We got an AUC for the training 
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Table 17. A comparison of different confidence intervals for the AUC for the diagnosis of 
an obstructive CAD for the full data of 13,538 coronary angiographies via logistic regression 
models

Method ECG ECG Risk factors Risk factors 
(training data) (test data) (training data) (test data) 

AUC 0.709 0.578 0.595 0.581 
Corollary 2 (0.697; 0.721) (0.562; 0.594) (0.582; 0.608) (0.565; 0.597) 
Corollary 3 (0.697; 0.721) (0.561; 0.594) (0.581; 0.608) (0.565; 0.597) 
DeLong (0.697; 0.721) (0.562; 0.594) (0.582; 0.608) (0.565; 0.597) 
Modified Wald (0.698; 0.721) (0.563; 0.593) (0.582; 0.607) (0.566; 0.596) 

Table 18. A comparison of different confidence intervals for the AUC for the diagnosis of an 
obstructive CAD for the reduced data of 100 coronary angiographies via logistic regression 
models

Method ECG ECG Risk factors Risk factors 
(training data) (test data) (training data) (test data) 

AUC 1 0.378 0.751 0.543 
Corollary 2 (1; 1) (0.229; 0.527) (0.602; 0.901) (0.346; 0.739) 
Corollary 3 (1; 1) (0.244; 0.534) (0.576; 0.870) (0.350; 0.724) 
DeLong (1; 1) (0.214; 0.542) (0.575; 0.927) (0.330; 0.755) 
Modified Wald (1; 1) (0.225; 0.531) (0.607; 0.896) (0.386; 0.700) 

group of 0.595 and for the test group of 0.581 for the prediction of an obstructive CAD 
from seven risk factors.

The results are reported in Table 17. Though strictly speaking outside the scope 
of this article, we added the results for the training group. In order to see how the con
fidence intervals behave on a smaller sample, we applied our methods to a subsample 
consisting of 100 coronary angiographies. The results are shown in Table 18.

For the whole sample all confidence intervals have approximately the same 
length—the new intervals have the same length as the ones from the literature and 
the intervals based on the ECGs have the same length as the ones based on the seven 
risk factors. Not surprisingly, as we reduce the number of observations, the intervals 
get longer. In particular, for all 13,538 coronary angiographies the logistic regression 
model is significantly better than a pure random choice (i.e. an AUC of 0.5), which is 
no longer true if we use only 100 coronary angiographies. For the subsample the new 
confidence intervals are slightly narrower than the ones from the literature.

In Tables 19--21 we look what happens, when one uses neural nets, random 
forests or support vector machines instead of logistic regression models. We see that 

Table 19. Neural nets. The further details are the same as in Table 17

Method ECG ECG Risk factors Risk factors 
(training data) (test data) (training data) (test data) 

AUC 0.725 0.587 0.635 0.622 
Corollary 2 (0.713; 0.737) (0.571; 0.604) (0.622; 0.648) (0.606; 0.637) 
Corollary 3 (0.713; 0.737) (0.571; 0.604) (0.622; 0.648) (0.606; 0.637) 
DeLong (0.713; 0.737) (0.571; 0.604) (0.622; 0.648) (0.606; 0.637) 
Modified Wald (0.714; 0.736) (0.572; 0.602) (0.623; 0.647) (0.607; 0.636) 
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Table 20. Random forests. The further details are the same as in Table 17

Method ECG ECG Risk factors Risk factors 
(training data) (test data) (training data) (test data) 

AUC 0.999 0.599 1 0.572 
Corollary 2 (0.999; 0.999) (0.583; 0.615) (1; 1) (0.556; 0.588) 
Corollary 3 (0.999; 0.999) (0.582; 0.615) (1; 1) (0.556; 0.588) 
DeLong (0.999; 0.999) (0.583; 0.615) (1; 1) (0.556; 0.588) 
Modified Wald (0.999; 1) (0.584; 0.614) (1; 1) (0.557; 0.587) 

Table 21. Support vector machines. The further details are the same as in Table 17

Method ECG ECG Risk factors Risk factors 
(training data) (test data) (training data) (test data) 

AUC 0.997 0.571 0.618 0.608 
Corollary 2 (0.996; 0.998) (0.555; 0.588) (0.605; 0.631) (0.592; 0.624) 
Corollary 3 (0.996; 0.998) (0.555; 0.588) (0.605; 0.631) (0.592; 0.624) 
DeLong (0.996; 0.998) (0.555; 0.588) (0.605; 0.631) (0.592; 0.624) 
Modified Wald (0.996; 0.999) (0.556; 0.586) (0.606; 0.63) (0.593; 0.623) 

the confidence intervals are slightly shifted due to the different values of the point 
estimates, but that they all have approximately the same length as the confidence 
intervals of the logistic regression model.

In order to evaluate the computation times for the confidence intervals, observe 
that their computation is a two-step procedure. First, the chosen model estimator 
is used to calculate the fitted values 𝑌̂2,𝑖, 𝑖 = 1, . . . , 𝑛, and in the second step the 
confidence intervals are calculated from these numbers. So the total computation 
time of a confidence interval is the sum of one component which does depend on the 
model estimator, but not on the confidence interval method, and one component which 
does depend on the confidence interval method, but not on the model estimator. The 
computation times are reported in Table 22 and Table 23. We see that the computation 
times for the new intervals are longer than for those from the literature, but that also 
the computation of the new confidence intervals is feasible. In particular, for random 
forests and support vector machines the difference between the new computation times 
and the old ones is neglectable compared to the time needed for the calculation of the 
fitted values 𝑌̂2,𝑖, 𝑖 = 1, . . . , 𝑛, anyway.

Table 22. Computation time (in seconds) for the whole sample (13,538 patients)

Method ECG ECG Risk factors Risk factors 
(training data) (test data) (training data) (test data) 

logistic regression 26.23 26.13 0.56 0.49 
neural net 4.50 4.68 2.52 2.09 
random forest 164.74 165.06 3.78 3.84 
support vector machines 856.41 857.25 181.66 177.82

AUC 0.01 0.00 0.01 0.01 
Corollary 2 71.00 34.50 74.28 38.77 
Corollary 3 73.74 35.30 81.97 38.60 
DeLong 0.42 0.26 0.51 0.27 
Modified Wald 0.01 0.00 0.01 0.00 
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Table 23. Computation time (in seconds) for the subsample of 100 patients

Method ECG ECG Risk factors Risk factors 
(training data) (test data) (training data) (test data) 

logistic regression 0.44 0.42 0.01 0.02

AUC 0.00 0.00 0.00 0.00 
Corollary 2 0.13 0.01 0.01 0.01 
Corollary 3 0.16 0.01 0.01 0.02 
DeLong 0.04 0.00 0.00 0.00 
Modified Wald 0.01 0.00 0.00 0.00 

6 Discussion and outlook

In this paper we have taken into account two facts that are usually ignored in the 
study of confidence intervals for the AUC. First, only the total size of the test cohort 
can be controlled, while its splitting into the case and control groups is random. 
Second, the fitted binarization model is itself subjected to random effects. The first 
fact brought new confidence intervals that are narrower than the ones in the literature, 
but have a too low coverage probability at a small sample size. The second fact did not 
bring new confidence intervals, since we saw that the confidence intervals we got from 
considering the first fact still had asymptotically the correct coverage probability under 
Model 2. All what we changed was that we had to add additional parts to the proofs (the 
ones that we have only for Model 2 and not for Model 1). It can be expected that in a 
similar manner the confidence intervals proposed in the literature have asymptotically 
the correct coverage probability under Model 2.

Can it be expected for other binarization algorithms as well that the old confidence 
intervals still have asymptotically the correct coverage probability when the model 
uncertainty is taken into account? The estimators in linear discriminant analysis and 
in quadratic discriminant analysis are combinations of standard estimators. Hence cen
tral limit theorems for these estimators are easily established and from there on it is 
straightforward to generalize the results of the present article. For quadratic discrimi
nant analysis a certain challenge will be that the set of all test points (𝑋1, 𝑋2) ∈ ℝ

𝑝×ℝ𝑝

for which 𝑌1 < 𝑌2, but 𝑌̂1 > 𝑌2, will be more complicated than for logistic regression 
models or for linear discriminant analysis. For algorithms from machine learning, 
like neural nets, random forests and support vector machines, a first problem already 
occurs in the definition of the theoretical AUC. Since there is only an algorithm and no 
underlying probability model, we cannot define the theoretical AUC as a probability 
like we have done for logistic regression models. One could define the theoretical AUC 
as the average of many independent realizations of the empirical AUC or as the limit 
of the empirical AUC as the sample size tends to infinity (provided one can show that 
this limit exists). Still with either of these definitions, the proof will be much harder. 
The set of all test points (𝑋1, 𝑋2) ∈ ℝ

𝑝 × ℝ
𝑝 for which 𝑌1 < 𝑌2, but 𝑌̂1 > 𝑌2, will 

be much more complicated for a machine learning algorithm than it was in our proof. 
Moreover, we used a central limit theorem for the estimator in a logistic regression 
model, and central limit theorems are unknown for machine learning algorithms.

While the theoretical results tell that asymptotically the old confidence intervals 
work under Model 2 as well, our simulation results tell that at small sample size these 
confidence intervals may have a seriously too low coverage probability—recall in 
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particular the results in Table 4 for 𝑝 = 100. Hence the construction of new confidence 
intervals is desirable. A tempting idea is to use the 𝛿-method in the same way as we 
use it in the proof. However, the derivative in Lemma 3 is zero and hence one will end 
up with the old confidence intervals when using this approach. A solution would be 
to use the second-order 𝛿-method (see, e.g., [1, Lemma 5]). However, this may appear 
to be inelegant. The second-order 𝛿-method yields that the limiting distribution of the 
AUC is a sum of squares of Gaussian random variables, but since not all Gaussian 
random variables involved in that sum have the same variance, this sum will not be 𝜒2
distributed in general. It is not clear whether a closed-form expression for the variances 
of these Gaussian random variables can be derived even in the ideal situation when 
the design points are multivariate-normally distributed or distributed uniformly on the 
ball. In the realistic situation, when the distribution of the design points is unknown 
and has to be estimated, it will even be a challenge to propose an algorithm that gives 
a reasonable approximation for these variances in acceptable time. The results for 
the LASSO logistic regression ranged from providing a satisfactory solution to being 
even worse than the pure logistic regression depending on the unknown true model 
parameter. Bootstrap [3] is known to have good finite-sample properties in many 
instances and hence would be another approach worth trying. Finally, our simulations 
in Table 16 show that the estimator 𝐴̂ is seriously biased for 𝐴2. Hence one can think 
of constructing an estimator for the bias of 𝐴̂ for 𝐴2 and then applying bias reduction.

7 The equality of the Mann–Whitney intervals and DeLong’s intervals

Here we prove that the Mann–Whitney intervals due to Sen [13] coincide with De
Long’s intervals [4]. For any real-valued sample 𝑎1, 𝑎2, . . . , 𝑎𝑁 , let 𝑎 (1) , 𝑎 (2) , . . . ,
𝑎 (𝑁 ) denote the ordered sample, i.e. the sample containing the same elements (with 
the same multiplicity), such that 𝑎 (1) ≤ 𝑎 (2) ≤ · · · ≤ 𝑎 (𝑁 ) . We let 𝑛0 := |{𝑖 ∈
{1, . . . , 𝑛} | 𝐼𝑖 = 0}| denote the number of observations in the control group and 𝑛1 :=
|{𝑖 ∈ {1, . . . , 𝑛} | 𝐼𝑖 = 1}| the number of observations in the case group. Since Sen 
[13] and DeLong et al. [4] do not consider the training group, it is needless to say that we 
only mean observations of the test group here. We let 𝑋𝑖, 𝑖 = 1, . . . , 𝑛0, be the observa
tions of the control group—not to be confused with the design points of the logistic re
gression model, for which we used the same symbol—and 𝑌 𝑗 , 𝑗 = 1, . . . , 𝑛1, the obser
vations of the case group. The Mann–Whitney intervals are defined as follows. We let

𝑅𝑖 :=
⃓⃓{︁
𝑘 ∈ {1, . . . , 𝑛0} | 𝑋𝑘 ≤ 𝑋(𝑖)

}︁⃓⃓ + ⃓⃓{︁
𝑗 ∈ {1, . . . , 𝑛1} | 𝑌 𝑗 ≤ 𝑋(𝑖)

}︁⃓⃓
,

𝑖 = 1, . . . , 𝑛0,

𝑆 𝑗 :=
⃓⃓{︁
𝑖 ∈ {1, . . . , 𝑛0} | 𝑋𝑖 ≤ 𝑌( 𝑗 )

}︁⃓⃓ + ⃓⃓{︁
𝑘 ∈ {1, . . . , 𝑛1} | 𝑌𝑘 ≤ 𝑌( 𝑗 )

}︁⃓⃓
,

𝑗 = 1, . . . , 𝑛1,

denote the rank of 𝑋(𝑖) or 𝑌( 𝑗 ) respectively within the joint sample of control and case 
observations. Put

𝑅 :=
1 
𝑛0

𝑛0∑︂
𝑖=1 

𝑅𝑖 , 𝑆 :=
1 
𝑛1

𝑛1∑︂
𝑗=1 

𝑆 𝑗 ,
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𝑆2
10 =

1 

(𝑛0 − 1) · 𝑛2
1
·
(︄

𝑛0∑︂
𝑖=1 

(𝑅𝑖 − 𝑖)2 − 𝑛0 ·
(︃
𝑅 − 𝑛0 + 1

2 

)︃2
)︄
,

𝑆2
01 =

1 

(𝑛1 − 1) · 𝑛2
0
·
(︄

𝑛1∑︂
𝑗=1 

(𝑆 𝑗 − 𝑗)2 − 𝑛1 ·
(︃
𝑆 − 𝑛1 + 1

2 

)︃2
)︄
,

𝜎̂2
𝑀 =

𝑛1 · 𝑆2
10 + 𝑛0 · 𝑆2

01
𝑛0 · 𝑛1

.

Let 𝑧𝛼 be the 𝛼-quantile of the standard normal distribution for 𝛼 ∈ (0, 1). Then(︂
𝐴̂ + 𝑧𝛼/2 ·

√︂
𝜎̂2
𝑀 , 𝐴̂ + 𝑧1−𝛼/2 ·

√︂
𝜎̂2
𝑀

)︂
is the Mann–Whitney confidence interval. In order to define DeLong’s intervals, put

𝑉10 (𝑦) :=
1 
𝑛1

·
𝑛1∑︂
𝑗=1 

(︃
1{𝑦<𝑌𝑗} +

1
2
· 1{𝑦=𝑌𝑗}

)︃
,

𝑉01 (𝑦) :=
1 
𝑛0

·
𝑛0∑︂
𝑖=1 

(︃
1{𝑋𝑖<𝑦} +

1
2
· 1{𝑋𝑖=𝑦}

)︃
,

𝜎̂2
𝐷 =

1 
𝑛0 · (𝑛0 − 1)

𝑛0∑︂
𝑖=1 

(︁
𝑉10 (𝑋𝑖) − 𝐴̂

)︁2 + 1 
𝑛1 · (𝑛1 − 1)

𝑛1∑︂
𝑗=1 

(︁
𝑉01 (𝑌 𝑗 ) − 𝐴̂

)︁2
.

Then DeLong’s interval is(︂
𝐴̂ + 𝑧𝛼/2 ·

√︂
𝜎̂2
𝐷 , 𝐴̂ + 𝑧1−𝛼/2 ·

√︂
𝜎̂2
𝐷

)︂
.

Theorem 2. For any real-valued sample (𝑋1, . . . , 𝑋𝑛0 , 𝑌1, . . . , 𝑌𝑛1) that does not 
contain ties, it holds that

𝜎̂2
𝑀 = 𝜎̂2

𝐷

and, in particular, the Mann–Whitney interval and DeLong’s interval coincide.

This theorem will be proven in Appendix B.

A Proofs for Section 3

Corollary 2 is immediate from Theorem 1 and Corollary 3 is immediate from Corol
lary 1.

We start with the proof of Corollary 1 (taking Theorem 1 for granted) and then 
prove Theorem 1.

In order to prove Corollary 1, we need the following slight extension of the 𝛿
method.
Lemma 1. Let 𝑋𝑛, 𝑛 ∈ ℕ, be a sequence of ℝ𝑑-valued random vectors, 𝐶𝑛, 𝑛 ∈ ℕ, be 
a sequence of random numbers with 𝐶𝑛 → ∞ as 𝑛 → ∞ in probability, 𝜇 ∈ ℝ

𝑑 and 
𝑋 be an ℝ𝑑-valued random vector such that

𝐶𝑛 (𝑋𝑛 − 𝜇) → 𝑋
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in distribution as 𝑛 → ∞. Let 𝑔 : ℝ𝑑 → ℝ
𝐷 be a 𝐶1-function. Then

𝐶𝑛 ·
(︁
𝑔(𝑋𝑛) − 𝑔(𝜇))︁ → 𝑔′ (𝜇)𝑋.

Proof of Corollary 1. By Theorem 1 the assumptions of Lemma 1 are fulfilled with 

𝐶𝑛 :=
√︂
𝑛/𝑆2

𝐴 and 𝑋 ∼ 𝒩 (0, 1). Hence

√
𝑛 · 𝑔( 𝐴̂) − 𝑔(𝐴)

𝑔′ (𝐴) ·
√︂
𝑆2
𝐴

→ 𝒩 (0, 1)

in distribution as 𝑛 → ∞, which is the desired result except that we have 𝑔′ (𝐴) instead 
of 𝑔′ ( 𝐴̂) in the denominator. However, Theorem 1 in particular implies

𝐴̂ − 𝐴 =

√︄
𝑆2
𝐴

𝑛 
·
√︄

𝑛 

𝑆2
𝐴

( 𝐴̂ − 𝐴) → 0 · 𝑋 = 0

in probability as 𝑛 → ∞. So 𝑔′ ( 𝐴̂) → 𝑔′ (𝐴) in probability as 𝑛 → ∞ by the 
continuous mapping theorem and Slutzky’s theorem gives

√
𝑛 · 𝑔( 𝐴̂) − 𝑔(𝐴)

𝑔′ ( 𝐴̂) ·
√︂
𝑆2
𝐴

=
𝑔′ (𝐴)
𝑔′ ( 𝐴̂)

· √𝑛 · 𝑔( 𝐴̂) − 𝑔(𝐴)
𝑔′ (𝐴) ·

√︂
𝑆2
𝐴

→ 𝒩 (0, 1). □

Proof of Lemma 1. By the definition of differentiability there is a function 𝑟 : ℝ𝑑 →
ℝ
𝐷 with lim𝑥→𝜇 𝑟 (𝑥)/∥𝑥 − 𝜇∥ = 0 such that

𝑔(𝑥) − 𝑔(𝜇) = 𝑔′ (𝜇)(𝑥 − 𝜇) + 𝑟 (𝑥).

Hence
𝐶𝑛 ·

(︁
𝑔(𝑋𝑛) − 𝑔(𝜇))︁ = 𝑔′ (𝜇)(︁𝐶𝑛 · (𝑋𝑛 − 𝜇))︁ + 𝐶𝑛 · 𝑟 (𝑋𝑛).

Now the definition of convergence in probability implies 1/𝐶𝑛 → 0 as 𝑛 → ∞ and 
therefore Slutzky’s theorem yields

𝑋𝑛 =
1 
𝐶𝑛

· 𝐶𝑛 · (𝑋𝑛 − 𝜇) + 𝜇 → 0 · 𝑋 + 𝜇 = 𝜇

in probability as 𝑛 → ∞. By a sharp version of the continuous mapping theorem [2, 
Theorem 2.7] we get

𝑟 (𝑋𝑛) 
∥𝑋𝑛 − 𝜇∥ → 0

in probability as 𝑛 → ∞. So

𝐶𝑛 · 𝑟 (𝑋𝑛) = 𝐶𝑛 · ∥𝑋𝑛 − 𝜇∥ · 𝑟 (𝑋𝑛) 
∥𝑋𝑛 − 𝜇∥ → ∥𝑋 ∥ · 0 = 0

in probability as 𝑛 → ∞ and Slutzky’s theorem implies

𝐶𝑛 ·
(︁
𝑔(𝑋𝑛) − 𝑔(𝜇))︁ → 𝑔′ (𝜇)𝑋. □
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Now then Corollary 1 is proven, we turn to the proof of Theorem 1. We start with 
the proof of two lemmata.

Let ℋ 𝑗 denote the 𝑗-dimensional Hausdorff measure. Intuitively, ℋ1(𝐴) is the 
length of a 1-dimensional set 𝐴 ⊆ ℝ

𝑑 , ℋ2 (𝐴) is the area of a two-dimensional set 
𝐴 ⊆ ℝ

𝑑 , and so on. See [9] for a rigorous introduction.
Lemma 2. Let 𝛽0, 𝛽1 ∈ ℝ

𝑑 , 𝛽0 ≠ 0, and put

𝐷 :=
{︁
𝑥 ∈ 𝑆𝑑−1 | 𝛽𝑇0 𝑥 < 0, 𝛽𝑇1 𝑥 > 0

}︁ ∪ {︁
𝑥 ∈ 𝑆𝑑−1 | 𝛽𝑇0 𝑥 > 0, 𝛽𝑇1 𝑥 < 0

}︁
.

Then

ℋ𝑑−1 (𝐷) ≤ 𝜔𝑑−2 · min
{︃
𝜋 · ∥𝛽1 − 𝛽0∥

∥𝛽0∥ 
, 𝜋

}︃
,

where

𝜔𝑑−2 = ℋ𝑑−2(︁𝑆𝑑−2)︁ = 2𝜋 (𝑑−1)/2

Γ( 𝑑−1
2 ) 

.

Proof of Lemma 2. If 𝛽1 is a nonnegative multiple of 𝛽0, then 𝐷 = ∅ and the assertion 
is fulfilled. If 𝛽0 is a negative multiple of 𝛽0, then ∥𝛽1 − 𝛽0∥/∥𝛽0∥ > 1 and hence the 
assertion is fulfilled. Otherwise, put

𝛽𝑡 := cos(𝑡) · 𝛽0
∥𝛽0∥

+ sin(𝑡) ·
𝛽1 − ⟨𝛽1, 𝛽0⟩ · 𝛽0

∥𝛽0 ∥2

∥𝛽1 − ⟨𝛽1, 𝛽0⟩ · 𝛽0
∥𝛽0 ∥2 ∥

.

Then
𝐷 ⊆

⋃︂
𝑡∈[0,arccos(⟨ 𝛽1

∥𝛽1 ∥ ,
𝛽0
∥𝛽0 ∥ ⟩ ) ]

{︁
𝑥 ∈ 𝑆𝑑−1 | 𝛽𝑇𝑡 𝑥 = 0

}︁
.

Hence the area formula ([9, Theorem 3.7]) yields

ℋ𝑑−1 (𝐷) ≤
∫ arccos(⟨ 𝛽1

∥𝛽1 ∥ ,
𝛽0
∥𝛽0 ∥ ⟩ )

0
ℋ𝑑−2(︁{︁𝑥 ∈ 𝑆𝑑−1 | 𝛽𝑇𝑡 𝑥 = 0

}︁)︁
𝑑𝑡

= arccos
(︃⟨︃

𝛽1
∥𝛽1∥

,
𝛽0

∥𝛽0∥

⟩︃)︃
· 𝜔𝑑−2.

Now
cos(𝑥) ≤ 1 − 2 

𝜋2 · 𝑥2, 𝑥 ∈ [0, 𝜋],

yields

arccos
(︃⟨︃

𝛽1
∥𝛽1∥

,
𝛽0

∥𝛽0∥

⟩︃)︃
≤
√︄

𝜋2

2 
·
(︃

1 −
⟨︃

𝛽1
∥𝛽1∥

,
𝛽0

∥𝛽0∥

⟩︃)︃
.

Further

1 −
⟨︃

𝛽1
∥𝛽1∥

,
𝛽0

∥𝛽0∥

⟩︃

=
1
2
·
(︃⃦⃦⃦
⃦ 𝛽1
∥𝛽1∥

⃦⃦⃦
⃦

2
+
⃦⃦⃦
⃦ 𝛽0
∥𝛽0∥

⃦⃦⃦
⃦

2
− 2 ·

⟨︃
𝛽1

∥𝛽1∥
,

𝛽0
∥𝛽0∥

⟩︃)︃
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=
1
2
·
⃦⃦⃦
⃦ 𝛽1
∥𝛽1∥

− 𝛽0
∥𝛽0∥

⃦⃦⃦
⃦

2
≤ 1

2
·
(︃ ∥𝛽1 − 𝛽0∥

∥𝛽0∥ 
+ ∥𝛽1∥ · |∥𝛽0∥ − ∥𝛽1∥|

∥𝛽1∥ · ∥𝛽0∥ 

)︃2

≤ 2 · ∥𝛽1 − 𝛽0∥2

∥𝛽0 |2
.

Hence
ℋ𝑑−1 (𝐷) ≤ 𝜔𝑑−2 · min

{︃
𝜋 · ∥𝛽1 − 𝛽0∥

∥𝛽0∥ 
, 𝜋

}︃
. □

Lemma 3. Put
𝑧(𝛽) := ℙ

(︁
𝛽𝑇𝑋1 < 𝛽𝑇𝑋2, 𝐼1 = 0, 𝐼2 = 1

)︁
.

Then, under Model 2, 𝑧 is differentiable on ℝ𝑝 \ {0} with

𝑑

𝑑𝛽
𝑧(𝛽)|𝛽=𝛽0 = 0.

Proof of Lemma 3. Recall that 𝑞 is the Lebesgue density of a design point 𝑋1 and 
that 𝜋(𝑡) = 1/(exp{𝑡} + 1). For any 𝛽 ∈ ℝ

𝑝 it holds that

𝑧(𝛽) = ℙ
(︁
𝛽𝑇𝑋1 < 𝛽𝑇𝑋2, 𝐼1 = 0, 𝐼2 = 1

)︁
=
∫
ℝ𝑝

∫
ℝ𝑝

1{0<𝛽𝑇 (𝑥2−𝑥1 )} · 𝜋
(︁
𝛽𝑇0 𝑥1

)︁ · 𝑞(𝑥1) ·
(︁
1 − 𝜋

(︁
𝛽𝑇0 𝑥2

)︁)︁ · 𝑞(𝑥2) 𝑑𝑥1 𝑑𝑥2

=
∫
ℝ𝑝

1{0<𝛽𝑇𝑣}

∫
ℝ𝑝

𝜋
(︁
𝛽𝑇0 𝑤

)︁ · 𝑞(𝑤) · (︁1 − 𝜋
(︁
𝛽𝑇0 (𝑣 + 𝑤))︁)︁ · 𝑞(𝑣 + 𝑤) 𝑑𝑤 𝑑𝑣.

Now consider 𝛽𝑡 = 𝛽 + 𝑡𝑢 with 𝑢 ∈ 𝑆𝑝−1 and 𝑡 > 0. If 𝑢 = ±𝛽/∥𝛽∥, then 𝑧(𝛽𝑡 ) = 𝑧(𝛽)
for |𝑡 | < 1/∥𝛽∥. So assume that 𝑢 and 𝛽 are linearly independent now. Put

𝑢′ :=
𝑢 − ⟨𝑢,𝛽⟩

∥𝛽 ∥2 𝛽 

∥𝑢 − ⟨𝑢,𝛽⟩
∥𝛽 ∥2 𝛽∥

.

Let 𝑀 be an orthogonal matrix mapping 𝛽/∥𝛽∥ to the first unit vector and 𝑢′ to the 
second unit vector. Then∫

ℝ𝑝
1{0<𝛽𝑇

𝑡 𝑣}

∫
ℝ𝑝

𝜋
(︁
𝛽𝑇0 𝑤

)︁ · 𝑞(𝑤) · (︁1 − 𝜋
(︁
𝛽𝑇0 (𝑣 + 𝑤))︁)︁ · 𝑞(𝑣 + 𝑤) 𝑑𝑤 𝑑𝑣

=
∫
ℝ𝑝

1{0<∥𝛽 ∥ ·𝑥1+𝑡 ·⟨𝑢,𝑢′ ⟩ ·𝑥2}

∫
ℝ𝑝

𝜋
(︁
𝛽𝑇0 𝑤

)︁ · 𝑞(𝑤)
· (︁1 − 𝜋

(︁
𝛽𝑇0 (𝑀𝑥 + 𝑤))︁)︁ · 𝑞(𝑀𝑥 + 𝑤) 𝑑𝑤 𝑑𝑥.

Now the fundamental theorem of calculus implies

𝑑

𝑑𝑡

∫
ℝ𝑝

1{0<∥𝛽 ∥ ·𝑥1+𝑡 ·⟨𝑢,𝑢′ ⟩ ·𝑥2}

∫
ℝ𝑝

𝜋
(︁
𝛽𝑇0 𝑤

)︁ · 𝑞(𝑤)
· (︁1 − 𝜋

(︁
𝛽𝑇0 (𝑀𝑥 + 𝑤))︁)︁ · 𝑞(𝑀𝑥 + 𝑤) 𝑑𝑤 𝑑𝑥 |𝑡=0

=
∫
ℝ𝑝−1

⟨𝑢, 𝑢′⟩ · 𝑥′2
∥𝛽∥ 

∫
ℝ𝑝

𝜋
(︁
𝛽𝑇0 𝑤

)︁ · 𝑞(𝑤) · (︁1 − 𝜋
(︁
𝛽𝑇0

(︁
𝑀
(︁
0, 𝑥′

)︁ + 𝑤
)︁)︁)︁
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· 𝑞(︁𝑀(︁
0, 𝑥′

)︁ + 𝑤
)︁
𝑑𝑤 𝑑𝑥′

=
∫
{𝑣∈ℝ𝑝 |𝛽𝑇𝑣=0}

⟨𝑣, 𝑢⟩
∥𝛽∥ 

∫
ℝ𝑝

𝑞(𝑤) · 𝜋(︁𝛽𝑇0 𝑤)︁ · 𝑞(𝑣 + 𝑤) · (︁1 − 𝜋
(︁
𝛽𝑇0 (𝑣 + 𝑤))︁)︁𝑑𝑤 𝑑𝑣,

because ⟨𝑢, 𝑢′⟩ · ⟨𝑣, 𝑢′⟩ = ⟨𝑣, 𝑢⟩. Since this expression is continuous in 𝛽, we conclude 
that 𝑧 is differentiable with

𝑑

𝑑𝛽
𝑧(𝛽) =

∫
{𝑣∈ℝ𝑝 |𝛽𝑇𝑣=0}

𝑣 
∥𝛽∥

∫
ℝ𝑝

𝑞(𝑤)·𝜋(︁𝛽𝑇0 𝑤)︁·𝑞(𝑣+𝑤)·(︁1−𝜋(︁𝛽𝑇0 (𝑣+𝑤))︁)︁ 𝑑𝑤 𝑑𝑣.

Since for 𝑣 with 𝛽𝑇0 𝑣 = 0 it holds that∫
ℝ𝑝

𝑞(𝑤) · 𝜋(︁𝛽𝑇0 𝑤)︁ · 𝑞(𝑣 + 𝑤) · (︁1 − 𝜋
(︁
𝛽𝑇0 (𝑣 + 𝑤))︁)︁ 𝑑𝑤

=
∫
ℝ𝑝

𝑞(𝑤) · 𝜋(︁𝛽𝑇0 𝑤)︁ · 𝑞(−𝑣 + 𝑤) · (︁1 − 𝜋
(︁
𝛽𝑇0 (−𝑣 + 𝑤))︁)︁ 𝑑𝑤,

we conclude that 𝑑/𝑑𝛽 𝑧(𝛽)|𝛽=𝛽0 = 0. □

Proof of Theorem 1. We start by proving Theorem 1 under Model 1.
Put

𝑔
(︁(𝑦1, 𝑖1), (𝑦2, 𝑖2)

)︁
:=

⎛
⎝(1{𝑦1<𝑦2} + 1

2 1{𝑦1=𝑦2}) · (1 − 𝑖1) · 𝑖2
1 − 𝑖1
𝑖2

⎞
⎠ ,

ℎ
(︁(𝑦1, 𝑖1), (𝑦2, 𝑖2)

)︁
=

1
2
· 𝑔(︁(𝑦1, 𝑖1), (𝑦2, 𝑖2)

)︁ + 1
2
· 𝑔(︁(𝑦2, 𝑖2), (𝑦1, 𝑖1)

)︁
and

𝑈 =
2 

𝑛 · (𝑛 − 1)
𝑛∑︂
𝑖=1 

𝑛∑︂
𝑗=𝑖+1

ℎ
(︁(𝑌2,𝑖 , 𝐼2,𝑖), (𝑌2, 𝑗 , 𝐼2, 𝑗 )

)︁
.

Now [7, Section 5.1.1, Theorem 1] implies
√
𝑛 · (𝑈 − 𝜃) → 𝒩 (0,Σ)

in distribution as 𝑛 → ∞, where

𝜃 =

⎛
⎝ℙ(𝑌1 < 𝑌2, 𝐼1 = 0, 𝐼2 = 1) + 1

2 · ℙ(𝑌1 = 𝑌2, 𝐼1 = 0, 𝐼2 = 1)
ℙ(𝐼1 = 0)
ℙ(𝐼1 = 1)

⎞
⎠

is the expected value vector and where Σ denotes the covariance matrix of 𝔼[ℎ((𝑌1, 𝐼1),
(𝑌2, 𝐼2)) |𝑌1, 𝐼1]�-recall that (𝑌1, 𝐼1, 𝑌2, 𝐼2) has the same distribution as (𝑌2,𝑖 , 𝐼2,𝑖 ,
𝑌2, 𝑗 , 𝐼2, 𝑗 ) for 𝑖 ≠ 𝑗 .

Put
𝑓 : ℝ3 → ℝ, (𝑥1, 𝑥2, 𝑥3) ↦→ 𝑥1

𝑥2 · 𝑥3

so that 𝐴̂ = 𝑛/(𝑛 − 1) · 𝑓 (𝑈). Now the 𝛿-method implies
√
𝑛 · ( 𝐴̂ − 𝐴) → 𝒩 (︁

0, 𝜎2
𝐴

)︁
,
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where
𝜎2
𝐴 = 𝑓 ′ (𝜃)𝑇Σ 𝑓 ′ (𝜃) = 𝑣𝑇Σ𝑣.

It follows from [7, pp. 163, 164] that Σ̂ (defined on page 61) is a consistent estimator 
for Σ. Hence we get that 𝑆2

𝐴 is a consistent estimator for 𝜎2
𝐴. So Slutzky’s theorem 

implies the assertion.
Now we turn to Model 2. Put

Ψ𝑛 (𝛽) :=
√
𝑛 ·

(︃
𝑍𝑛 (𝛽) − ℙ

(︁
𝛽𝑇𝑋1 < 𝛽𝑇𝑋2 | 𝐼1 = 0, 𝐼2 = 1

)︁
− 1

2
· ℙ(︁𝛽𝑇𝑋1 = 𝛽𝑇𝑋2 | 𝐼1 = 0, 𝐼2 = 1

)︁)︃
,

where

𝑍𝑛 (𝛽) :=
1 

|{𝑖 ∈ {1, . . . , 𝑛} | 𝐼2,𝑖 = 0}| ·
1 

|{ 𝑗 ∈ {1, . . . , 𝑛} | 𝐼2, 𝑗 = 1}|

·
𝑛∑︂

𝑖, 𝑗=1
(1{𝛽𝑇𝑋2,𝑖<𝛽𝑇𝑋2, 𝑗 ,𝐼2,𝑖=0,𝐼2, 𝑗=1} + 1/2 · 1{𝛽𝑇𝑋2,𝑖=𝛽𝑇𝑋2, 𝑗 ,𝐼2,𝑖=0,𝐼2, 𝑗=1}).

Then 𝑍𝑛 (𝛽) is the empirical AUC. Put

𝑧(𝛽) = ℙ
(︁
𝛽𝑇𝑋1 < 𝛽𝑇𝑋2 | 𝐼1 = 0, 𝐼2 = 1

)︁ + 1/2 · ℙ(︁𝛽𝑇𝑋1 = 𝛽𝑇𝑋2 | 𝐼1 = 0, 𝐼2 = 1
)︁

and
𝑅 :=

√
𝑛 · (︁𝑧(𝛽) − 𝑧(𝛽0)

)︁
.

The aim is to derive a central limit theorem for

Ψ𝑛 (𝛽) + 𝑅.

We treat the two summands separately. Put

𝑔
(︁(𝑥1, 𝑖1), (𝑥2, 𝑖2); 𝛽

)︁
:=

⎛
⎝(1{𝛽𝑇 𝑥1<𝛽𝑇 𝑥2} + 1

2 1{𝛽𝑇 𝑥1=𝛽𝑇 𝑥2}) · (1 − 𝑖1) · 𝑖2
1 − 𝑖1
𝑖2

⎞
⎠ ,

ℎ
(︁(𝑥1, 𝑖1), (𝑥2, 𝑖2); 𝛽

)︁
=

1
2
· 𝑔(︁(𝑥1, 𝑖1), (𝑥2, 𝑖2); 𝛽

)︁ + 1
2
· 𝑔(︁(𝑥2, 𝑖2), (𝑥1, 𝑖1); 𝛽

)︁
and

𝑈 (𝛽) = 2 
𝑛 · (𝑛 − 1)

𝑛∑︂
𝑖=1 

𝑛∑︂
𝑗=𝑖+1

ℎ
(︁(𝑋2,𝑖 , 𝐼2,𝑖), (𝑋2, 𝑗 , 𝐼2, 𝑗 ); 𝛽

)︁
.

Now [7, Section 5.1.1, Theorem 1] implies
√
𝑛 · (︁𝑈 (𝛽0) − 𝜃

)︁ → 𝒩 (0,Σ)
in distribution as 𝑛 → ∞, where

𝜃 =

⎛
⎝ 𝑧(𝛽0)
ℙ(𝐼1 = 0)
ℙ(𝐼1 = 1)

⎞
⎠
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is the expected value vector and Σ is the covariance matrix of 𝔼[ℎ((𝑋1, 𝐼1),
(𝑋2, 𝐼2); 𝛽0) | 𝑋1, 𝐼1]. We would like to show that also

√
𝑛 · (︁𝑈 (𝛽) − 𝜃

)︁ → 𝒩 (0,Σ), (2)

where

𝜃 =

⎛
⎝ 𝑧(𝛽)
ℙ(𝐼1 = 0)
ℙ(𝐼1 = 1)

⎞
⎠ .

For this, by Slutzky’s theorem it suffices to show that
√
𝑛 · (︁𝑈1(𝛽) − 𝔼

[︁
𝑈1(𝛽) |𝛽

]︁ −𝑈1(𝛽0) + 𝔼
[︁
𝑈1(𝛽0)

]︁)︁ → 0 (3)

in probability as 𝑛 → ∞, where 𝑈1(𝛽) denotes the first component of 𝑈 (𝛽)�-notice 
the second and third components do not depend on 𝛽. At first, however, consider √
𝑛(𝑈1(𝛽1) −𝔼[𝑈1 (𝛽1) −𝑈1(𝛽0) +𝔼𝑈1(𝛽0)) for a deterministic point 𝛽1 ∈ ℝ

𝑝 which 
is not a multiple of 𝛽0. For 𝜖 > 0 we have by the Chebychev inequality that

ℙ
(︁√

𝑛·
⃓⃓(︁
𝑈1(𝛽1)−𝔼𝑈1 (𝛽1)

)︁−(︁𝑈1(𝛽0)−𝔼𝑈1 (𝛽0)
)︁⃓⃓

> 𝜖
)︁ ≤ 𝑛 

𝜖2 ·Var
(︁
𝑈1(𝛽1)−𝑈1(𝛽0)

)︁
.

Similar to (3.71) in [7] one gets

Var
(︁
𝑈1(𝛽1) −𝑈1(𝛽0)

)︁ ≤ 8 
𝑛
· Var

(︃(︃
1{𝛽𝑇

1 𝑋1<𝛽𝑇
1 𝑋2} +

1
2

1{𝛽𝑇
1 𝑋1=𝛽𝑇

1 𝑋2}

)︃
1{𝐼1=0}1{𝐼2=1}

−
(︃

1{𝛽𝑇
0 𝑋1<𝛽𝑇

0 𝑋2} +
1
2

1{𝛽𝑇
0 𝑋1=𝛽𝑇

0 𝑋2}

)︃
1{𝐼1=0}1{𝐼2=1}

)︃
+ 8 
𝑛2 .

Put

𝐷 :=
{︁
𝑥 ∈ 𝑆𝑝−1 | 𝛽𝑇1 𝑥 < 0, 𝛽𝑇0 𝑥 > 0

}︁ ∪ {︁
𝑥 ∈ 𝑆𝑝−1 | 𝛽𝑇1 𝑥 > 0, 𝛽𝑇0 𝑥 < 0

}︁
and denote by 𝐷̄ the closure of 𝐷 and by relbd 𝐷 the boundary of 𝐷 relative to 𝑆𝑝−1

as surrounding topological space. Neglecting the event {𝑋1 = 𝑋2} which occurs with 
probability 0, we have⃓⃓⃓

⃓1{𝛽𝑇
1 𝑋1<𝛽𝑇

1 𝑋2} +
1
2

1{𝛽𝑇
1 𝑋1=𝛽𝑇

1 𝑋2} − 1{𝛽𝑇
0 𝑋1<𝛽𝑇

0 𝑋2} −
1
2

1{𝛽𝑇
0 𝑋1=𝛽𝑇

0 𝑋2}

⃓⃓⃓
⃓

=

⎧⎪⎪⎨
⎪⎪⎩

1 if 𝑋2−𝑋1
∥𝑋2−𝑋1 ∥ ∈ 𝐷

1
2 if 𝑋2−𝑋1

∥𝑋2−𝑋1 ∥ ∈ relbd 𝐷

0 if 𝑋2−𝑋1
∥𝑋2−𝑋1 ∥ ∉ 𝐷̄

.

Hence

Var
(︃(︃

1{𝛽𝑇
1 𝑋1<𝛽𝑇

1 𝑋2} +
1
2

1{𝛽𝑇
1 𝑋1=𝛽𝑇

1 𝑋2}

)︃
1{𝐼1=0}1{𝐼2=1}

−
(︃

1{𝛽𝑇
0 𝑋1<𝛽𝑇

0 𝑋2} +
1
2

1{𝛽𝑇
0 𝑋1=𝛽𝑇

0 𝑋2}

)︃
1{𝐼1=0}1{𝐼2=1}

)︃
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≤ 𝔼

[︃
1𝐷̄

(︃
𝑋2 − 𝑋1

∥𝑋2 − 𝑋1∥

)︃]︃
≤ 𝑀 ·ℋ𝑝−1(𝐷),

where ℋ𝑝−1(𝐷) denotes the (𝑝 − 1)-dimensional Hausdorff measure of 𝐷 and where 
𝑀 is the upper bound of the density of (𝑋2 − 𝑋1)/∥𝑋2 − 𝑋1∥ with respect to the 
(𝑝 − 1)-dimensional Hausdorff measure (recall that by the assumptions of Model 2
such a bound exists).

Therefore Lemma 2 implies

ℙ
(︁√

𝑛 ·
⃓⃓
𝑈1(𝛽1) − 𝔼𝑈1(𝛽1) −𝑈1(𝛽0) + 𝔼𝑈1(𝛽0)

⃓⃓
> 𝜖

)︁
≤ 8 

𝜖2 · 𝑀 · 𝜔𝑝−2 · min
{︃
𝜋 · ∥𝛽1 − 𝛽0∥

∥𝛽0∥ 
, 𝜋

}︃
+ 8 
𝑛 · 𝜖2 .

ℙ
(︁√

𝑛 ·
⃓⃓
𝑈1(𝛽) − 𝔼𝑈1(𝛽) −𝑈1(𝛽0) + 𝔼𝑈1(𝛽0)

⃓⃓
> 𝜖

)︁
= 𝔼

[︁
ℙ
(︁√

𝑛 ·
⃓⃓
𝑈1(𝛽) − 𝔼

[︁
𝑈1(𝛽) |𝛽

]︁ −𝑈1(𝛽0) + 𝔼𝑈1(𝛽0)
⃓⃓
> 𝜖 | 𝛽)︁]︁

≤ 𝔼

[︃
8 
𝜖2 · 𝑀 · 𝜔𝑝−2 · min

{︃
𝜋 · ∥𝛽 − 𝛽0∥

∥𝛽0∥ 
, 𝜋

}︃]︃
+ 8 
𝑛 · 𝜖2 → 0 (4)

as 𝑛 → ∞. So (3) holds, which concludes the proof of (2). Now the 𝛿-method implies

Ψ𝑛 (𝛽) → 𝒩 (︁
0, 𝜎2

𝐴

)︁
,

where 𝜎2
𝐴 is as in the proof for Model 1. Let us turn to 𝑅. Recall that by [5, p. 203] 𝛽

obeys a central limit theorem as 𝑚 → ∞. Under Model 2 we have

ℙ
(︁
𝛽𝑇𝑋1 = 𝛽𝑇𝑋2 |𝐼1 = 0, 𝐼2 = 1

)︁
= 0

for all 𝛽 ∈ ℝ
𝑝 \ {0} and thus

𝑧(𝛽) = ℙ
(︁
𝛽𝑇𝑋1 < 𝛽𝑇𝑋2 | 𝐼1 = 0, 𝐼2 = 1

)︁ + 1
2
· ℙ(︁𝛽𝑇𝑋1 = 𝛽𝑇𝑋2 | 𝐼1 = 0, 𝐼2 = 1

)︁
= ℙ

(︁
𝛽𝑇𝑋1 < 𝛽𝑇𝑋2 | 𝐼1 = 0, 𝐼2 = 1

)︁
.

Hence the 𝛿-method together with Lemma 3 and assumption (1) gives

𝑅 =
√
𝑛 · (︁𝑧(𝛽) − 𝑧(𝛽0)

)︁ → 0

in probability as 𝑛 → ∞. This shows
√
𝑛 · (︁𝑍𝑛 (𝛽) − 𝑧(𝛽0)

)︁ → 𝒩 (︁
0, 𝜎2

𝐴

)︁
.

It remains to estimate 𝜎2
𝐴. A consistent pseudo-estimator for Σ is given by

Σ̃ =
1 

𝑛 · (𝑛 − 1) · (𝑛 − 2)
𝑛∑︂

𝑖, 𝑗 ,𝑘=1

⎛
⎝ 𝑎̃𝑖 𝑗

1{𝐼2,𝑖=0} + 1{𝐼2, 𝑗=0}
1{𝐼2,𝑖=1} + 1{𝐼2, 𝑗=1}

⎞
⎠

× (︁
𝑎̃𝑖𝑘 1{𝐼2,𝑖=0} + 1{𝐼2,𝑘=0} 1{𝐼2,𝑖=1} + 1{𝐼2,𝑘=1}

)︁
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−
⎛
⎝ 1 

𝑛 · (𝑛 − 1)
𝑛∑︂

𝑖, 𝑗=1

⎛
⎝ 𝑎̃𝑖 𝑗

1{𝐼2,𝑖=0} + 1{𝐼2, 𝑗=0}
1{𝐼2,𝑖=1} + 1{𝐼2, 𝑗=1}

⎞
⎠
⎞
⎠

×
⎛
⎝ 1 

𝑛 · (𝑛 − 1)
𝑛∑︂

𝑖, 𝑗=1

(︁
𝑎̃𝑖 𝑗 1{𝐼2,𝑖=0} + 1{𝐼2, 𝑗=0} 1{𝐼2,𝑖=1} + 1{𝐼2, 𝑗=1}

)︁⎞⎠
with

𝑎̃𝑖 𝑗 = 1{𝛽𝑇
0 𝑋2,𝑖<𝛽𝑇

0 𝑋2, 𝑗} · 1{𝐼2,𝑖=0} · 1{𝐼2, 𝑗=1} +
1
2
· 1{𝛽𝑇

0 𝑋2,𝑖=𝛽𝑇
0 𝑋2, 𝑗} · 1{𝐼2,𝑖=0} · 1{𝐼2, 𝑗=1}

+ 1{𝛽𝑇
0 𝑋2, 𝑗<𝛽𝑇

0 𝑋2,𝑖} · 1{𝐼2, 𝑗=0} · 1{𝐼2,𝑖=1} +
1
2
· 1{𝛽𝑇

0 𝑋2, 𝑗=𝛽𝑇
0 𝑋2,𝑖} · 1{𝐼2, 𝑗=0} · 1{𝐼2,𝑖=1}

(see [7, pp. 163, 164]). However, Σ̃ is only a pseudo-estimator, since it depends on 𝛽0
which is unknown when working with real data. So we have to use the estimator Σ̂ in 
which 𝛽0 is replaced with 𝛽. By the Markov inequality we have for all 𝜖 > 0 and all 
coordinates 𝑟, 𝑠 = 1, 2, 3 that

ℙ
(︁|Σ̃𝑟𝑠 − Σ̂𝑟𝑠 | > 𝜖

)︁
≤ 1

𝜖
· 𝔼

[︃
𝔼

[︃
1{𝛽𝑇𝑋1<𝛽𝑇𝑋2} +

1
2

1{𝛽𝑇𝑋1=𝛽𝑇𝑋2} − 1{𝛽𝑇
0 𝑋1<𝛽𝑇

0 𝑋2} −
1
2

1{𝛽𝑇
0 𝑋1=𝛽𝑇

0 𝑋2} | 𝛽
]︃]︃

and hence
lim 
𝑛→∞ ℙ

(︁|Σ̃𝑟𝑠 − Σ̂𝑟𝑠 | > 𝜖
)︁
= 0

holds in the same way as (4). So Σ̂ is a consistent estimator for Σ. Therefore 𝑆2
𝐴 → 𝜎2

𝐴
in probability, and Slutzky’s theorem implies

√
𝑛 · 𝐴̂ − 𝐴√︂

𝑆2
𝐴

→ 𝒩 (0, 1). □

B Proof for Section 7

Proof of Theorem 2. It holds that

𝑅𝑖 − 𝑖 =
𝑛1∑︂
𝑗=1 

1{𝑌𝑗≤𝑋(𝑖) } = 𝑛1 − 𝑛1 · 𝑉10 (𝑋(𝑖) )

and

𝑆 𝑗 − 𝑗 =
𝑛0∑︂
𝑖=1 

1{𝑋𝑖≤𝑌( 𝑗) } = 𝑛0 · 𝑉01 (𝑌( 𝑗 ) ).

Hence

𝑅 − 𝑛0 + 1
2 

=
1 
𝑛0

·
𝑛0∑︂
𝑖=1 

(𝑅𝑖 − 𝑖) = 1 
𝑛0

𝑛0∑︂
𝑖=1 

𝑛1∑︂
𝑗=1 

1{𝑌𝑗≤𝑋𝑖} = 𝑛1 − 𝑛1 · 𝐴̂
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and

𝑆 − 𝑛1 + 1
2 

=
1 
𝑛1

·
𝑛1∑︂
𝑗=1 

(𝑆 𝑗 − 𝑗) = 1 
𝑛1

𝑛1∑︂
𝑗=1 

𝑛0∑︂
𝑖=1 

1{𝑋𝑖≤𝑌𝑗} = 𝑛0 · 𝐴̂.

So

𝑆2
10 =

1 

(𝑛0 − 1) · 𝑛2
1

[︄
𝑛0∑︂
𝑖=1 

(𝑅𝑖 − 𝑖)2 − 𝑛0 ·
(︃
𝑅 − 𝑛0 + 1

2 

)︃2
]︄

=
1 

(𝑛0 − 1) · 𝑛2
1

[︄
𝑛0∑︂
𝑖=1 

(︁
𝑛1 − 𝑛1 · 𝑉10 (𝑋(𝑖) )

)︁2

− 2

(︄
𝑛0∑︂
𝑖=1 

(︁
𝑛1 − 𝑛1 · 𝑉10 (𝑋(𝑖) )

)︁)︄ · (𝑛1 − 𝑛1 · 𝐴̂) + 𝑛0 · (𝑛1 − 𝑛1 · 𝐴̂)2

]︄

=
1 

(𝑛0 − 1) · 𝑛2
1

[︄
𝑛0∑︂
𝑖=1 

(︁(︁
𝑛1 − 𝑛1 · 𝑉10(𝑋(𝑖) )

)︁ − (𝑛1 − 𝑛1 · 𝐴̂)
)︁2
]︄

=
1 

𝑛0 − 1

𝑛0∑︂
𝑖=1 

(︁
𝑉10 (𝑋𝑖) − 𝐴̂

)︁2

and

𝑆2
01 =

1 

(𝑛1 − 1) · 𝑛2
0

[︄
𝑛1∑︂
𝑗=1 

(𝑆 𝑗 − 𝑗)2 − 𝑛1 ·
(︃
𝑆 − 𝑛1 + 1

2 

)︃2
]︄

=
1 

(𝑛1 − 1) · 𝑛2
0

[︄
𝑛1∑︂
𝑗=1 

(︁
𝑛0 · 𝑉01(𝑌( 𝑗 ) )

)︁2

− 2 ·
𝑛1∑︂
𝑗=1 

(︁
𝑛0 · 𝑉01 (𝑌( 𝑗 ) )

)︁ · 𝑛0 · 𝐴̂ + 𝑛1 · (𝑛0 · 𝐴̂)2

]︄

=
1 

𝑛1 − 1

𝑛1∑︂
𝑗=1 

(︁
𝑉01 (𝑌 𝑗 ) − 𝐴̂

)︁2
.

This yields

𝜎̂2
𝑀 =

𝑛0 · 𝑆2
01 + 𝑛1 · 𝑆2

10
𝑛0 · 𝑛1

=
1 

𝑛1 · (𝑛1 − 1)
𝑛1∑︂
𝑗=1 

(︁
𝑉01 (𝑌 𝑗 ) − 𝐴̂

)︁2 + 1 
𝑛0 · (𝑛0 − 1)

𝑛0∑︂
𝑖=1 

(︁
𝑉10 (𝑋𝑖) − 𝐴̂

)︁2
= 𝜎̂2

𝐷 .

In particular, the two confidence intervals are equal. □

Supplementary Material

The file AUC_CI.R contains all confidence intervals mentioned in this article—the 
new ones proposed here and the ones used in the simulation study for comparison.
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The files Simulation_binormal.R, Simulation_logistic.R, Siumlation_logistic_2_ 
fast.R, Simulation_LASSO.R, Simulation_LASSO_2_fast.R, Simulation_binormal_ 
bias.R and Simulation_logistic_bias.R contain the source code for the simulations 
reported in this article. 
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