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Abstract Quasi-mixing limits of the killed symmetric Lévy process are studied. It is proved
that (intrinsic) ultracontractivity of the underlying process implies the existence of its (uni-
formly) exponentially quasi-mixing limits. As a by-product, this implication ensures that the
process has (uniformly) exponential quasi-ergodicity and (uniformly) exponentially fractional
quasi-ergodicity on LP (p > 1). It is noteworthy that precise rates of convergence and precise
limiting equalities are provided, which are determined by spectral gaps and eigenfunction ratios
of the underlying process. Finally, three examples are provided to demonstrate the theoretical
results.
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1 Introduction

We consider a d-dimensional (d > 1) symmetric Lévy process Y on (Q, F;, P), where
Q= {w :[0,00) = RY | wis cédlég} is the collection of all cadlag-paths (right-
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continuous with left limits) from [0, ) to R? and F; £ o{Ys,0 < s < t} is the
o-algebra generated by {¥;,0 < s < t}. Denote by {P,,x € R} the corresponding
Markov family. Let D ¢ R be a bounded connected nonempty open domain and 7,
(or 7 for short) be the stopping time defined by inf{r > 0: Y; ¢ D}. We define

Y;, if t>1,
X = .
0, if <1,

and denote the Lévy measure of X; by v which is assumed to be nonzero. Here,
0 is an extra point and inf @ is defined as infinity by convention. Then we call
X = (X, F;, Py, 1) the process on D obtained by killing ¥ upon exiting D, and its
transition function is clearly given by

P.(x,B) = P(t;x,B) =Py(X, € Byt > 1), >0, BeB(D),

where B(D) is the Borel o-algebra of D. Under these circumstances, we are mainly
interested in the long-term behavior of X.

As a typical model with wide application in the fields of finance, physics and signal
processing, cf. [1, 7, 21, 22], Lévy process has a long research history. One of the
most fundamental problems is to study its long-term behavior. This paper is devoted to
investigating quasi-mixing limits of the Lévy process with killing. More specially, we
intend to discuss the quasi-stationary distribution (gsd), fractional quasi-stationary
distribution (fqsd), quasi-ergodic distribution (ged), fractional quasi-ergodic distri-
bution (fged). Recall that u € P(D) is called a gsd of X if there exists a p € P(D)
such that

lim P, (X, € AlZ > 1) = p(A), 1>0, AcBD), (1)

and v € P(D) is called a 8-fgsd (8 € (0, 1)) of X if there is a p € P(D) such that

lim B,(Xo, € Alr > 1) =v(4), >0, A€ B(D), )

where P (D) is the set of all probability measures on (D, B(D)), 1 4 is the indicator
function of A, P, () := fD P, (:)p(dx) is the probability taken for X with an initial
distribution p. Furthermore, ¢ and v are said to be the quasi-ergodic distribution
(ged) and fractional quasi-ergodic distribution (fged) of X if (1) and (2) hold for all
p € P(D). In addition, we study quasi-mixing limits and double limit of X,

tlLH;LEP(f(XHI)g(XT]l)IT > t)’ 9,77 € (O’ 1)5
tlim Tlim Eo(f (X))t >T),

being viewed as extensions of ged and fged, where f and g are some suitable functions
on D. For backgrounds and applications on gsd, fgsd, ged and fged, we refer to
Champagnat et al. [2-4], Chen et al. [5, 6], Guillin et al. [13], Kaleta et al. [17],
Méléard and Villemonais [25] and Zhang et al. [29].

There are a large number of publications on the relationship between the con-
ditional distributions of a Markov process converging (uniformly) exponentially to
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a unique gsd or fgsd and (intrinsic) ultracontractivity of its associated semigroup.
For example, Knobloch and Partzsch [19] reveal that intrinsic ultracontractivity im-
plies uniformly conditional ergodicity; Zhang et al. [29] develop that ultracontractivity
ensure the existence and uniqueness of the ged, fged, etc., for the general Markov pro-
cesses in a finite measure space; Zhang et al. [28] indicate that a symmetric Markov
semigroup having (intrinsic) ultracontractivity implies the (uniformly) exponential
convergence of the conditional distributions to a unique gsd. It is worth mentioning
that, to the best of our knowledge, there are almost no papers describing the rela-
tionship between quasi-mixing limits and ultracontractivity explicitly except [29]. In
this paper, the property that quasi-mixing limits of X (uniformly) exponentially exist
will be studied via (intrinsic) ultracontractivity of its associated semigroup. For more
information on the long-term behavior of Markov process, the interested reader can
consult [2-4, 13, 15, 16, 20, 23, 24, 27, 17].

Our paper is structured as follows. In Section 2, we give some basic settings and
key lemmas. We exhibit the main results in Section 3. In Section 4, three examples are
provided to demonstrate the theoretical results.

2 Preparations

Here is the basic setting of this paper. For each p € [1, o], p* and L? (D) represent
respectively its Holder conjugate index and the usual Lebesgue space endowed with
the norm || - ||,. The scalar product and norm in L*(D) are written as (-,-) and || - ||
respectively. p( fg) denotes the integral of fg w.r.t. the measure p on D if this integral
exists. a A b denotes the minimum of a, b € R. The values of the constants cy, ca,
... may change from one appearance to another.

Definition 1. Let {7;} be a strongly continuous semigroup on L?(D). We say that T;
is ultracontractive if and only if {7; } has a kernel k(z, x, y) satisfying 0 < k(¢,x,y) <
¢y < oo a.e. for some constant c;.

Definition 2. Provided that {7}, possessing a positive integral kernel k(z,x,y), is
a strongly continuous semigroup on L?(D), let (—£, D (L)) be its generator and
@o be the bottom eigenfunction (ground state) of £. We say that 7; is intrinsically
ultracontractive if

k(t,x,y)

sup —— 2 t>0.
x,yeD P0(x)@o(y)

For the reader’s convenience, we recall the equivalent statements of Definition 2,
see Davies and Simon [12, Theorem 2.1]. That is, for any 7 > O there exists a constant
¢; such that

k(t,x,y) > c,\/k(t,x,x)\/k(t,y,y), x,y €D. 3)

Hypothesis 1. The standing assumptions in this paper are the following:

H1 Y has a symmetric density ¢(z,x,y) = ¢q(t,y,x) = §(t,x —y) forany (¢,x,y) €
(0,0) x R? x R,

H2 ¢g(¢,x,y) is continuous and there exists a constant ¢ (&) such that §(z,z) < c(9)
fort >0, |z] > 6.
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H3 There is a nonnegative and locally integrable Borel function F on R4\ {0} such
that m(B) = fB F(x)u(dx) for B € B(D), where m and v respectively stand for
the Lebesgue measure in R? and the Lévy measure of X.

In what follows, let X = (X;, F;, Py, 7) be the process on D obtained by killing ¥
upon exiting D, as discussed in the introduction. We infer from [14, Section 2] that
under H1 and H2 the transition density p(¢,x,y) of X is exactly given by

p(t,x,y) =q(t,x,y) —Ex[t > 15q(t =7, X, y)].

Now, we denote by { P, } the transition semigroup of X. It is then well-known, cf. [14,
Section 2], that {P,} is a strongly continuous semigroup of contractions on L?(D).
The following lemmas establish several analytical components for the semigroup
{P;}: quantitative bounds for its heat kernel; spectral estimates for eigenfunctions of
its generator; and asymptotic characterization as ¢ — co.

Lemma 1. Assume HI and H2. Let (—A, D(A)) be the generator of {P;} on L*>(D).

() A has purely discrete spectrum consisting of eigenvalues {4;}72, with0 < A; <
Ay < -+ T +oo, and there exists a complete orthonormal basic {¢;}, of
L*(D). Here, each A; is counted according to multiplicity, ¢; € D(A) is a
continuous function on D such that Ap; = A;¢; for any i > 1, and ¢ can be
chosen to be strictly positive on D.

(ii) The transition density function p(t,-,-) of X is symmetric, continuous, strictly
positive and bounded on D X D, t > 0. Additionally, p(t, x, y) has the expansion

(e8]

p(t7x’y) = Ze_/lit‘pi(x)‘pi(y)’ t>0, X,y € D,
i=1

where the series is locally uniformly convergent on (0,c0) X D X D.

(iii) b; is a continuous function in L*>(D) and |@;| < e%'by; € LP(D) foranyt > 0,
i>1landp € [1,], where b;(x) :=+/p(t,x,x) fort > 0andx € D.

(iv) For each x € D, b;(x) and eV by, (x) are analytic, logarithmically convex,
monotonically decreasing functions of t.

(v) Foranyt>s>0andx,y € D, we find
M p(t,x,3) = @1 (D@1 ()] < e5e” LD (1)by ().

Proof. To see (i)—(iv), we refer to [14, Section 2], [11, Theorem 7.2.3 and Theorem
7.2.5], [10, Lemma 2.1, Corollary 2.2, and Lemma 2.3] or [9, Theorem 2.1.4]. The
item (v) follows specifically from (ii) and the Cauchy—Schwarz inequality,

A (V+S)p(r +5,X, y) — @1 (X)(,Dl(y)l

(o]

D e IS o ()i (y)
i=2

le
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< [i — (A=) (r+s) Z(X):| [i —(A;=A1) (r+s) Z(y):|

=2 i=2

1

00 1

< [Ze—(li—ﬂl)r —(Ai=A1)s 2(x):| [Ze—(/l,-—/h)r —(Ai=A1)s 2(y):|

i=1 i=1

< e/l”e_uz_"')rbS(x)bx(y), r,s >0, x,y€D.
Finally, we let r = ¢ — s in the above equation to derive (V). O
Lemma 2. Assume HI and H2.

(i) Foranyt > 0,x € D and f € LP(D) with p € [1, 0], P; f(x) has the bounded
continuous version

0o

P = [ p(exnfO)dy = Y e g et

i=1
where the series converges absolutely and uniformly in (t,x) € [€,00) X D for
any € > 0.
(ii)) Foranyt> s >0, p € P(D) and f € LP (D) with p € [1, o], we find
lo(eM P f) = p(@1) (1, )] < 5™ L™ p (b ) Ibglp £ 1| p-

Proof. The item (ii) is an immediate consequence of Lemma 1(v). To confirm (i),
owing to Lemma 1(i)(iii), all we must show is that the integration and summation in
the second equation may be interchanged. But, this can be guaranteed by the Cauchy—
Schwartz inequality and the dominated convergence. Indeed, if p,(¢, x, y) is the nth
partial sum of p(¢,x,y) for x,y € D, then we arrive at

Pn(t, %, ) F O < b ()b () f () € L'(D), n=1,1>0, f € LP(D), p € [l,00].
O

We strengthen Lemma 2 to analyze uniformly quasi-ergodic behavior of X.
Lemma 3. Assume H1, H2 and H3. Put

1

2

a; = | sup M , t>0.
x.yeD P1(X)@1(y)

(1) {P;} is intrinsically ultracontractive, or alternatively, a; < .
(i) a; and eV ay, are monotonically decreasing functions of t. What is more, we

have b; (x) < a,¢1(x) and |¢; (x)| < ar et pi(x) foranyt >0,x € D, i > 1.
(iii) Foranyt>s > 0andx,y € D,

At 2,5, = (A=)t

le™ p(t,x,y) — @1 ()1 (V)| < e1(x)e1(y),

which in turn leads, for any p € P(D) and f € LP(D) with p € [1, o], to
(e Pif) = p(e) ([, 1) < aze™ e "W p (1) (1,1 f1)

2 s (-2
< aZe™ e gyl e 1 £ 1] -



44 Y.X. Wuet al.

Proof. The item (i) follows directly from [18, Theorem 3.11]. The item (iii) is just a
result of (ii) and Lemma 2(ii). To build (ii), recalling Lemma 1(iii) and the Cauchy—
Schwarz inequality, we have

20, (t
ez’“(’”)azmg: sup e 1(+s)€()2t-|-(2)s,x,Y)
S xyeD @1 (x)e1(y

. e (f"'S)sz_zs (x)e’l' (t+s)b21+2s (y)
< su

P 01 (x)¢1(y)
< sup eM by (x) e by (y)
T xyep  p1(®)e1(y)

< eu‘taét, t>0,5>0,

proving the first part. The second is due to the definitions of @;, b; and Lemma 1(iii).
]

3 Main results

In this section, we consider the existence of (uniformly) exponentially quasi-mixing
limits of the killed symmetric Lévy process X given in the introduction. As a by-
product, (uniformly) exponential quasi-ergodicity and (uniformly) exponentially frac-
tional quasi-ergodicity on LP (D) (p > 1) of X are established. It is worth emphasizing
that our results are straightforward.

Theorem 1. Assume HI and H2. Let u be the measure ¢ - m/m(¢1), B, be the unit
ball of L? (D), « be the multiplicity of the second eigenvalue 2> of A, and 1 = 1p.

(1) X admits the following exponential quasi-ergodicity on LP (D):
lim ¢~ sup [E, (f (X))l > 1) = u(f)]
t—o00 fE]Bp

K+1

Z m(p1)p; —m(;)e
P m(g1)?

_ le(e)l
p(e1)

, pE€ll,o], p€P(D).
e

In particular, p is a ged of X by taking p = oo in the above limit.

(ii) Assume in addition H3. X admits uniform and exponential quasi-ergodicity on

LP(D):
lim =717 sup By (f(X)|T > 1) = ()]
(p.f)€P(D)xB)
Kk+1
~ sup lo(#2)| Zm(w)% mz(soz)sol Lol
peP(p) Pe1) ||& m(ep1) .
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Proof. (i) For any p € P(D) and f € B, with p € [1, c0]. We calculate by using
Lemma 2(i) that

p(Pf) = p(u(f)P1)

E,(f(X)lr > 1) —u(f) = p(P1)

4
_pER e o) — (DDl @
a p(elitP,1) ’ ’
We then multiply both sides of (4) by e(2=1)7 to derive
BB S > 1) - ()] = PAZE (00 = (0 Du(H)leid
g p(eti!P;1) 5

PSR e (S ) = (e D]}
- p(eliP1)

Observe that p(eY'P;1) — |lg1|lip(¢1) as t — oo by Lemma 2(ii), and that
Lemma 1(iii) yields, for any 0 < € < (Ags2 — A2)/Axs2,

o 3 () - e Dl

i=k+2

<p{ > e E £ lgillye + el gl el }

i=k+2
(o)

< Z e MU= b e+ b erllllnllpe /il TID e o

i=Kk+2

Since b, is decreasing by Lemma 1(iv), the previous inequality implies that the right-
hand side of (5) converges to zero. We take successively the absolute value, the
supremum w.r.t. f € B, and the limit as  — oo in (5), and then use the continuous
linear functional representation theorem to obtain the desired results.

(ii) For any given 0 < € < min{(1p — 41)/A2, (Aks2 — A2)/Axs2}, when t > 0
is large enough such that 1 — a2,e~[(0=€)2-4l" 5 0 Temma 3 suggests that the
right-hand side of (5) is bounded by

P( 2,0 e W, 0) = (@1, D)l @i
P(e’l'tpt]l)
32 e € AR (il e llor £l + il llen L ILF L) o (eil)
<
- p(el P 1)1l
DR ap 207 MmO RA1G2 Y| el 1o (¢1)
(1 - a2, 10-0=-110) | 2p(p1)
P g 207112 o |

_ €
ST (et e o gy), 1 B PP

<

O

We next explore the (uniformly) exponentially fractional quasi-ergodicity of X.
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Theorem 2. Assume HI and H2, and let v be the measure ga% -m
(1) For@ € (0, 1), X admits exponentially -fractional quasi-ergodicity on LP (D):

lim e2=A)[(=01)A(61)] sup |E (f Xo) |t > 1) = v(f)]
100 f€B,
= sup |®(p,«,6,f)|, pell,oo], peP(D),
feBy,

where the function ®(p, k, 0, f) has the expression

(fe1. 0i)p(ei) . 1
Z pler) 7 yo<b<y
& mle) (i fo1) L1
;—m(%) ) zf§<9<1,
i (fevedlpledmig) +medplen] oy 1
. p(p1)m(pr) ’ 2

In particular, v is a 6-fged of X by taking p = oo in the above limit.

(ii) Assume in addition H3. Then the limit in (i) is uniformly convergent w.r.t.
(p, ) € P(D) XB).

Proof. We invoke the properties of conditional expectation and the Markov property
of X to discover that, forany t > 0,0 <6 < 1,x € D and f € B,

E. [f(XHI)]l{T>t}] =Po:[fPi—6:1](x). (6)
Thus we compute easily by using (6) and Lemma 2(i) that

E,(f(Xor)|T > 1) = v(f) = pP{Po:(fPi-0:1) —v(f)Po/1}

p(P:1)
_ pAeM O (Par(Lf = v(£)1eM P,y 1))
p(eM’P;1)
P, e WO (£ y(f)]eN P, 01 g i) @
p(et’P,1)
o0 L,—(Ai=A1)(t-61) . .
+ P{2i=2 ‘ p(e/l]t;jl]i;ol)(fgol,gol)sol}, t >0, p € P(D)

To estimate the right-hand side of (7), we prepare some facts. Thanks to Lemma 1(iii)
and the Cauchy—Schwarz inequality, for any ¢ > 0, p € [1,o0] and f € B,

v(17D) = (f1 €3 < 1112 < lle2m(D)F 2 e, @®)
m(E P ) < eV (by, | f)m(by) < m(D) 7

e |b, |2, £ h(r). )
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(1) Forany € > 0,¢t > 0,i > 1 and 0 € (0, 1), we use the symmetry of {P;},
Holder’s inequality, Lemma 1(iii) and (8)—(9) to estimate the right-hand side of (7):

[(fe" P o1, 00 il < h(t = 00)e O b eI
(eI OP g1, 00)i| < crh(t = 00)e" Y [1b oz,

e(t- Lip”
(L, @) (fer, e)erl < U= m(D) v [Iber-an lnller 1%,
Cze/lie(tff)t)”b

(10)

>

2
e(t—é)t)||oo~

In order to obtain the expression of ®, we divide 6 into three cases and denote
Kk+1 _ A (t—01) N+
A % e Pi o1, 0i);
@1 (1, p, &, 0, f) == P{Z,,z (Lf (N1 r—or L, i) }’
p(eM! P 1)

pAZI (L) (fe1, @i)e1}
p(eti’P1)

Dy (t,p,k,0, f) =

Case 1. If 6 € (0, 1), we multiply (7) by e(2=1)9" and use (10) to yield

|e TR, (f(Xoo) T > 1) = v(f)] = (p, &, 6, f)]
PR e RO ([f —y(f)]eM = DP_g, 1, 01)il}
B p(eli’P 1)
pAZ R, e WA= =00 (1, o)) (for, @) 1]}
' PN 7P, T)
+|D(p, &, 0, f) = P12, p, k. 0, f)] an
< Ziten(l +cy)e” im0 (1 — 01)||b g I3,
- p(ettP,1)
Zzz Cze(/lz—/ll)et—(/li—/ll—/l,«e)(t—(it)”be(t_et) ”go
p(eMiP, 1)
+|®(p, &, 0, f) = ®1(z, p, &, 6, f)].
We note that b; and h(¢) are monotonically decreasing functions of ¢, and that
p(eM'P 1) — m(p;)p(e1) as t — oo. Accordingly, we conclude that the right-

hand side of (11) converges to zero uniformly w.r.t. f € B, as ¢t — oo for any fixed
€ € (0, ), where

o {/lk+2—/12 (1—29)(/12—/11)}
€ = min ,
Axs2 (1-6)2

Case 2. If 6 € (3, 1), multiplying (7) by e(2=1)(=01) 'we use (10) to obtain

|00 B (f(Xg,)|T > 1) = v(f)] - @(p, &, 6, f)
- pAXR, e U=00=(u=A)0t | ([ £ — y(f)]eM =P, 4.1, 0;) i}
- p(eP,1)
L PR e~ =R =00 (1 o)) (for1, i)e1l}
p(eli’P1)
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+|(I)(p’K’0’f)_q)Z(p’K’Q’fN (12)
_ EE(1 + )h(r = B2 0y |2
B p(etiP1)
+ Z?i,ﬁ.z 626‘_(/1"_/12_/1"6)(1_01)||be(z—91)||go
p(eti’P1)

+ |¢(P’K’ 97 f) - (I)Z(p’ K, 07f)|

Similar to Case 1, the right member of (12) converges to zero uniformly w.r.t. f € B,
as t — oo for any fixed € € (0, €]), where

. {ﬁmz A 20-1D(2-41) }
€] = min , .
Aws2 04>

Case 3. If 6 = 1/2, multiplying both sides of (7) by e~ gives

|e 2= WOEL (f (Xoo) T > 1) = v(f)] = @(p, &, 6, f)]
PR e[ f v ()] IP g1, p))eil}

p(eti'P 1)
N PN ep €™ WD (L o)) (for, @) i |}
p(ettP,1)

+|q)(p’K’97f)_q)l(p7K’9’f)_q)Z(va797f)| (13)
- SR e (L+c)h(t = 0n)e™ Az i) 0t p 4 |12
- p(eliP1)

+ Z?in 026_(/1i_/12_/]i5)9t||be(t—9t)||go

p(eli’P1)

+ |(I)(,0’ K, e?f) - ‘DI(P,K’ 9’ f) - @2(P7K,9, f)l

Once again, the right member of (13) converges to zero uniformly w.r.t. f € B, as
t — oo for any fixed 0 < € < (Ag42 — A2)/Ak42-

(ii) In view of (9) and Lemma 3(ii), we discover, for any € > 0,¢ > Oand f € B,
with p € [1, o], that

|(fet =P, g, 1, i) il < h(t = 61)a? 5, < || o1 |0t
|V (£)eM TP, _g, 1, 0i) @i < cih(t = 01)a2 5,e € o1 llcors
|(L, 0:) (fe1, i) 1] < ai(,_g,)e’lie(t_gt)||901 l1lle1llooll@rll p= 1.

Besides, for any fixed 0 < € < (12 — 41)/A2 and ¢t > O large enough such that

1 —a?,e”l-)L=ult 5 (0 we apply Lemma 3(iii) to get the estimate
p(eVP1) 2 (1= ag,e LI p(pm(er).
Consequently, (ii) is obtained by performing similar tricks and steps as in (i). O

We exhibit the quasi-mixing limit theorem and the double limit theorem for X.
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Theorem 3. Assume HI and H2.
(i) Forany p € P(D) and a € (0, 1), there exists a finite function ¥ such that

lim et~ qup B, [ f(Xar)g(Xo)lT > 1] = v(£)p(g)]
-0 (f.g)€B,xBy

= sup |\P(p,K,Q,f,g)|, ar::a/\(l—a), P»qe[l»oo],
(f.8)€BpxBy

where the function ¥(p, k, a, f, g) has the expression

Kk+1

Z (f‘Pl,stlJOiz;(lé)’)P(soi)’ ifa<1/2,
Z (fsoll;:iil(;e 901)’ ifa>1/2,
k+1

(fe1, ) [v(g)p(pi)m(p1) + (8, ¢i)p(p1)] P
2 m(e0p(en) o el

(ii)) Forany p € P(D) and0 < a < b < 1, there exists a finite function I such that

lim e~ sup (B[ f (Xar)g(Xpo) |7 > 1] = v(f)v(g)l
1—e0 (f.g)€B,xBy

(f.g)€BpxBy

where the function T'(p, k, B, f, g) has the expression

K+1

Z (o1, 9)v(@)p(ei) o Ti(o, K, frg), ifa<[(b-a)A(l-b)],
p(e1)
Kk+1

Z(fsol,soz)(gsﬂl,%) £ (. f,8), if (b—a) <[an(1-b)],

Z (gp1, e)v(f)m(pi) D3k, f,8),  if (1=b) <[an(b-a)l,

m(ep1)
Fl(P»K,f,g)+F2(K,f,g), ifa=b-a<1-b,
Do(p, &, f,8) +T3(k, f, 8), ifb-a=1-b<a,
ik, f,8) +T3(x, £, 8), ifa=1-b<b-a,

FI(P’K’f’g)"'FZ(K,f,g)+F3(K,f7g)7 ifa=1—b=b—a.

(iii) Assume in addition H3. Then the limits in (i) and (ii) are uniformly convergent
w.rt. (p, f,8) € P(D) xB), xBy.

Proof. Using the properties of conditional expectation and the Markov property of
X, wehave, forany t > 0,x € D,0<a <b <1land(f,g)€B, xBy,

Ex[f (Xa)8(Xpr) Liz<r3] = Par{fP(b-a): [§(Pi-p: 1) ]} (x). (14)
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Foranyt > 0, p € P(D) and a € (0, 1), we employ (14) and Lemma 2(i) to get

Ep[f (Xar)g(Xe)|T > 1] = v(f)pu(g)
_pAZEy e At (fei AP g, o)}
p(et’P1)
R, e A (v (fu(g)eM TP ol )i} (15)
p(eti'P1)

, PAEZ e (g 00 (fen en)er}

p(eli'P 1) .
(1) Similar to (8)—(10) and utilizing the symmetry of {P, }, we have the following

estimates for the right-hand side of (15), forany a € (0,1),7 >0, f € B, and g € B,
with p, g € [1, 00]:

udlgh = (gl en)/lletll < ligllglleillg- /el < lleillg-/lletlh = ca.
|(fe TPy _arg, pi) @il < (1/2 = at]2)*e" bt Iz,
| (u(R)eM P oy 1, 00) @il < cre3h(t — at)e b ear 1%,

R . _
(g, @) (@i f o)1l < m(D)T 77 M€= Ip (12 o1 1%
/lie(t—at)“b

>

2
c4e e(t—at)”oo-

(16)
In order to derive the expression of ¥, we now divide a into three cases and denote
Yi(t,p,xa, f,8)

P (e TP g = v(F)u(@)eM TP 1], 9i) i}
. p(eti'P1)

X (8. 00 (for o)1}
lPZ(t’p’K’a’f’g) = zp(e’lltptﬂ)

Case 1. If a € (0, %), we multiply (15) by e(2=1)a% and yse (16) to deduce

|2 WUE [ f (Xar)g(X) Liy<ry] = ¥(p, &, a, f8)]
S gp € WO (172 — a1 )22 b |

)

< i=Kk+
- p(etP 1)
Z;’ik+2 Clc3e7(/1i7/127/li6)ath(t - at)”beat ||%o (17)
p(eltP, 1)
552 caet At U OU-a oI
p(etiP 1)

+ |1P(p’K’a’fsg) _‘Pl(t’p’K’a’f’g)|'

We note that b, and h(¢) are monotonically decreasing functions of t and p (e*1? P, 1) —
m(g1)p(¢)) as t — oo, Thus, the right member of (17) converges to zero uniformly
wrt.p € P(D)and (f,g) € B, x B, as t — oo for any fixed € € (0, €2), where

o {/1,@2—/12 (1—261)(/12—/11)}
€ = min ,
Axs2 (1 -a)dy
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Case 2. Ifa € (%, 1), we multiply (15) by e~ {=a1) and use (16) to get

|e LAV EE [ f(Xa) g (X0) Lii<ey] = ¥p, ko as f,8)]
L Lo el M) mat) = (=ti=Li€)at (12 — ar[2)2||b e ||3,
B p(ettP,1)
T2, creze W Uman (== i€)at p(t — ap)||b e gy |15
+
p(et’P,1)
Z?i,ﬁz C4€_(/li_/lz_/li€)(t_m)”be(t—at)”go
p(et’P, 1)
+ |lP(p’K’a7 f’g) - TZ([’p’K’a’ f7g)|

Similarly, the right member of (18) converges to zero uniformly w.r.t. p € P(D) and
(f.8) € B, xB, ast — oo for any fixed € € (0, €3), where

2a — 1)(1, — A A -
E3=mil‘l{(a )2 = A1) Aes2 2}.

(18)

aly T A2
Case 3. If a = 1/2, we multiply (15) by e2=1)a" and employ (16) to derive

le2= A [ £(Xu)g(X) Li<ay] — (o, ks a, £, 8)]
R € WAt (12— at[2)2 b |12,

<
p(eti'P1)
Zlik+2 Clc3e_(/l[_/12_/li€)mh(t - at)”béut”%o (19)
p(etiP1)
" Z?i,@,z C4e_(/li_/12_/lie)at”be(z—at)”go
p(ettP, 1)

+ |T(p’K7a’f’g) —‘{’l(t,p,K,a,f,g) _lPZ(t’p’K’a?f’g)|'

Analogously, the right member of (19) converges to zero uniformly w.r.t. p € P(D)
and (f,g) € B, xB, ast — oo for any fixed 0 < € < (Ags2 — A2)/As2.

(ii)) We find, forany 7 > 0, p € P(D) and 0 < @ < b < 1, that

Eolf (Xar)8(Xps)lt > t] —v(f)v(g)
_p{Syertimtat(felbmaitpy, (g PN P 1), 0i) @i}
p(eti’P 1)
p{Zi e~ imat (y(fy(g)et=aUP,_ 1, ¢:) @i}
p(eli’P1)
L P e~ i) (b=a)t (go=bDIp, T ;) foi, 1)1}
p(et’P,1)
L P e~ A=W E=bD (1, ¢1) g, ¢1) fo1. 01 @1 }
p(et’P,1) .

The desired conclusion is completed by performing calculations similar to (i).
(iii) The proof is almost precisely like that of Theorem 2(ii). O
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Theorem 4. Assume HI and H2. For any p € [1, 0] and p € P(D), we have

lim lim e(2~4)s fsup [Ep(f(Xs)|T > 1) —=v(f)| = sup

§—00 f—00 f€By

Z (fer1, ‘pl)p(‘pt)’
o~ ple)

Assume in addition H3. Then the limit above is uniformly convergent w.r.t. (p, f) €
P(D) xB,.

Proof. For any t > s > 0, p € P(D) and f € B, with p € [1, c0], the Markov
property and Lemma 2(i) yield

15 1(t—s) _ \s
B (F(Xo)lr > 1) — v(f) = 2PN TP D) = p(el Py (fop))m(en)

p(et’P1)
P(el‘sP (fe))m(e1) = v(fp(e)m(er)
p(et’P1)
L YDple)mer) - v(f)p(et' P, 11)
p(eti'P 1)

We now claim that, for any fixed s > 0,

Jlim sup B, (f(Xs)lr > 1) —v(f)] = sup

E P EBP

O = (;-A1)s . .
Ze (fsol,%)p(so[). (20)

~ p(e1)

Indeed, the Cauchy—Schwarz inequality gives rise to

lp{e Py f(eM P, 1~ llerllien) 1}
< M ||bglloo (b, 1 f (€M P 1 = Nl lli9n)])
< e ||bylleollbsllpe 1 (e P T = Nl llienlp
< M ||bglleollBs oo 1£ 11 p lle™ = Py 1 = g1 101 oo

proving the claim. Finally, we multiply both sides of (20) by e(*2=41)$ and then perform
simple calculations similar to the proof in Theorem 1. O

4 Examples

In this section, we present three typical processes — a Lévy process with a Gaus-
sian component, killed Brownian motion, and a symmetric @-stable process with no
Gaussian component — to demonstrate how Theorems 1—4 in Section 3 apply to these
cases.

The first example is the usual Lévy process whose long-term behavior has been
analyzed in [29], but it seems that our results are more straightforward.

Example 1. LetY = {Y; : > 0} be a symmetric Lévy process on R with a Gaussian
component. Y has a smooth transition density ¢(z,x,y) w.r.t. the Lebesgue measure
m. Its regular Dirichlet form (£, D(E)) is given by

E(u,v) = /Rd(Vu(x), AVu(x))dx + / (u(x) —v(y)?v(dy — x)dx,

R4 xR4
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and D(€) = Co(Rd)gl, where A is a symmetric positive definite d X d matrix, v is
the Lévy measure of Y and & (u, u) = E(u, u) + (u, u). Let D be a bounded connected
open subset of R? and X = {X, : t > 0} be the process on D obtained by killing ¥
upon exiting D.

It is known, cf. [29, Example 4.2], that (£, D(E)) satisfies the Nash inequality,
lull3 ™ < ey /R VuPdx -l < e2€ uanllull}'?, u e DE).

Thus, X has a strictly positive continuous density p(z,x,y) and there exists a ¢ > 0
such that
dj2

p(t,x,y) < q(t,x,y) <ct” t>0, x,y € R%;

consult, e.g., [9, Theorem 2.4.6] or [26, Theorem 4.1.1]. This also suggests that
Lemma 2 holds for the transition semigroup of X. If furthermore the Lebesgue measure
m and Lévy measure v meet H3, then Lemma 3 holds for the transition semigroup
of X.

Next we discuss the one-dimensional killed Brownian motion on a finite interval.

Example 2. Let D = (a, b) be a finite open interval. Consider the operator A = — 1.4

2dx?
on L*(D) and define a bilinear form (£, D(£)) as
1
E(u,v) = (Au,v) = E(u',v’), Yu,v € D(E),

where D (€) stands for the closure of C2°(D) w.r.t. the norm || -||g,, C2° (D) denotes the
space of infinitely differentiable functions with compact supports in D and &; (u, u) =

E(u,u) + (u,u).

(i) (£,D(&)) is aregular Dirichlet form on L2(D), (A, D(A)) and {P, := e~}
are its generator and semigroup, where D(A) = D(£) N {u : Au € L*>(D)}.

(i) (A, D(A)) has discrete spectrum A; = i’ /[2(b — a)*] with the eigenfunction

wi(x) =~2/(b —a) sin(inz_Z), xeD,iz>l.

(i) We have |¢;(x)| < i@ (x) for any i > 1, and the heat kernel of P; admits the
expansion

p(t,x,3) = > M pi(x)ei(y) < ) e Mg (x)@1(y) <o, 1> 0,x,y € D.
= =

By (iii) and the definition of intrinsic ultracontractivity, {P,} is intrinsically ul-
tracontractive. Therefore, Theorems 14 are satisfied by X.

The last example is the symmetric a-stable process with no Gaussian component.
Example 3. LetY = {Y, : t > 0} be a symmetric e-stable process on R¢ with d > 2
and 0 < a < 2. Its regular Dirichlet form (£, D(£)) is given by

g(u’ V) - % /Rd Rd (u(x) _ u(y))(v(x) - V(y))

|x_y|d+a

dxdy, u,v € D),
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D(€) = {M e L*(RY): Ad 9 %dxdy < oo} .

For any bounded connected open subset D ¢ RY, weuse r = inf{r > 0:Y, ¢ D} to
denote the first exit time of the symmetric a-stable process Y from D. Adjoin an extra

point 0 to D and set
Y,, if t>1,
X = .
0, if r<rt.

The process X = {X; : t > 0} is called the symmetric a-stable process killed upon
leaving D, or simply the killed symmetric a-stable process on D.

Denote by {P;} the transition semigroup of X, then [8, Theorem 2.5] asserts that
{P,} is ultracontractive. Therefore, Lemma 2 holds for the transition semigroup {P; }.
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