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Abstract Let (&g, 7y )k>1 be independent identically distributed random vectors with arbi-
trarily dependent positive components and Ty := &1 + - -+ + £g—1 + ng for k € N. The random
sequence (Ty)x>1 is called a (globally) perturbed random walk. Consider a general branching
process generated by (T )x>1 and let Y;(¢) denote the number of the jth generation individuals
with birth times < ¢. Assuming that Var & € (0, o) and allowing the distribution of 7 to be
arbitrary, a law of the iterated logarithm (LIL) is proved for Y;(¢). In particular, an LIL for
the counting process of (Ty)x>1 is obtained. The latter result was previously established in the
article by Iksanov, Jedidi and Bouzeffour (2017) under the additional assumption that E’Y]a < o
for some a > 0. In this paper, it is shown that the aforementioned additional assumption is not
needed.

Keywords General branching process, iterated perturbed random walk, law of the iterated
logarithm
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1 Introduction and main results

Let (&x,nk)k>1 be independent copies of a random vector (£,7) with positive arbi-
trarily dependent components. Put

So:=0, Spi=& +--+&, keN:={1,2,...}

and then
Ty :=Sk-1+1nx, kel
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The random sequences S := (Sg)r>0 and T := (T )r>1 are known in the literature
as the standard random walk and a (globally) perturbed random walk. A survey of
various results for the so defined perturbed random walks can be found in the book
[9].
Put
Y(tr) = Z i<y, 120
k>1

A law of the iterated logarithm (LIL) for Y (¢), properly normalized and centered, was
proved as t — oo along integers in Proposition 2.3 of [11] under the assumptions that
En® < oo for some a > 0 and o> := Var& € (0, o0). We improve the aforementioned
result by showing that the assumption En“ < oo for some a > 0 can be dispensed
with and also that the LIL holds as ¢t — oo along reals, thereby obtaining an ultimate
version of the LIL for Y (¢). For a family (x,) of real numbers denote by C((x;)) the
set of its limit points.

Theorem 1. Assume that o> = Var & € (0, ). Then

— ] !
C((Y(l) M /(; P{W < J’}dy > e)) — [_1,1] a.s.,

(202u—3tloglogt)!/2

where u :=E& < oo.

Next, we consider a general branching process generated by the random sequence
(T )k >1- Thus, the random variables 71, T3, . . . are interpreted as the birth times of the
first generation individuals. The first generation produces the second generation. The
shifts of birth times of the second generation individuals with respect to their mothers’
birth times are distributed according to copies of 7, and for different mothers these
copies are independent. The second generation produces the third one, and so on.

Let Y;(t) be the number of the jth generation individuals with birth times < .
Following [3], we call the sequence of processes ((¥;(¢));>0) j>2 an iterated perturbed
random walk. Note that, for r > 0, Y;(¢) = Y(¢) and the following decomposition
holds:

i)=Y Y -T) Lgzry, 22, 1)

r>1

where Yj(f)l () is the number of the jth generation individuals who are descendants of

the first generation individual with birth time 7. Put V(¢) := V| (z) = EY (¢) fort > 0.
Taking expectations in (1) we infer, for j > 2 and ¢ > 0,

V= W0 = [ e vo), @
, T

The iterated perturbed random walks are interesting objects on their own, see
[14, 16]. Also, these are the main auxiliary tool in investigations of nested infinite
occupancy schemes in random environment. Details can be found in the papers [4—
6, 15]. Attention was also paid to iterated standard random walks, which are a rather
particular instance of the iterated perturbed random walks which corresponds ton = £.
An LIL for the iterated standard random walks was recently proved in [12]. Continuing
this line of investigation we formulate and prove an LIL for Y;(¢), properly normalized
and centered, as t — oo.
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Theorem 2. Assume that o> = Var & € (0, o). Then, for j > 2,

C(( u0 -5 : t>e)> =[-1,1] a.s
Q2(2j - 1D)(j - DN lo2u=2-12i-11oglog t)!/2 : = , .S.,
(3

where 1 = B¢ < oo.

Although the beginning of our proof of Theorem 2 is similar to that of Theorem 1.1
in [12], the subsequent technical details are essentially different. The main difficulty is
that the distribution of 77 is arbitrary. Imposing a moment assumption on the distribution
of 7 would greatly simplify an argument.

The remainder of the paper is structured as follows. After proving Theorem | in
Section 2, we give a number of auxiliary results in Section 3 and then prove Theorem
2 in Section 4.

2 Proof of Theorem 1

We shall denote by n an integer argument and by ¢ a real argument. For ¢ € R, put
F(t) :=P{n <t} and

v(t) = Z Lisi<eyo @

k>0

and observe that F(¢) = 0 and v(¢) =0 for ¢z < 0. For ¢t > e, write

Y(t) - ! /0 F(y)dy = Y(1) - /[0 =)
; / F(t = »)d(r(y) — 1™'y) = X(1) + Z(0)
[0, 7]

and put a(t) := (202u~3tloglogt)'/?. It is shown in the proof of Proposition 2.3 in
[11] that

c((zm)/a(n) : n>3))=[-1,1] as. 5)

This result holds irrespective of whether En® < oo for some a > 0 or En® = oo for all
a > 0. We intend to show that (5) entails

c((zw/a(t) : t>e))=[-1,1] as. (6)
Given t > 4 there exists n € N such that t € (n — 1, n]. Hence, by monotonicity,

2 _Zm+u L FO)Y  z +pt
a(t) ~ a(n-1) ~ a(n-1)

a.s.

Analogously,
Z@) _ zZ(n-1) —u!
a(t) — a(n)

We conclude that (6) does indeed hold.

a.s.



22 O. Braganets

It is known (see the proof of Theorem 3.2 in [1]) that

lim n~'/? (Y(n) - / F(n- y)dv(y)) =0 as.
[0, n]

n—oo
whenever En“ < oo for some a > 0. We note that the latter limit relation may fail to
hold if En® = oo for all a > 0. For instance, it follows from Remark 4.4 in [13] that the
upper limit in the last displayed formula is equal to +oo a.s. whenever P{¢ = ¢} =1
for some ¢ > 0 and lim;_, (loglog)(1 — F(¢)) = 1.

The proof of Theorem 3.2 in [1] operates with power moments and relies heavily
upon the assumption En¢ < oo for some a > 0. Without such an assumption another
argument is needed, which operates with exponential rather than power moments. In
the remainder of the proof we present such an argument, which enables us to prove
that

tlLII.}O(X(t)/b(t)) =0 as, @)

1/2

thereby completing the proof of the theorem; here, b(¢) := (tloglogt)'/~ for ¢t > e.

Fix any u # 0 and ¢ > 0. Put Wy := 1 and, for j € N,
j-1
Wj = exp (M Z(ﬂ{qk+1+sksz} —F(1 = S1) Lgs,<y)
k=0

j-1
— (u?el")2) Z(l = F(t = Sk) Lis<ry )
k=0

and denote by Gy the trivial o-algebra and, for j € N, by G; the o-algebra generated by
(k. M) 1<k<;. Observe that the variable W; is G;-measurable for j € Ny := N U {0}.
Now we prove that (W}, G;) ;>0 is a positive supermartingale. Indeed, writing E;(-)
for E(-|G;) and using the inequality e* < 1 +x + x2el*1/2 for x € R in combination
with

Ej- ( ]1{111-+S_,»,lst} —F(t—S8;-1) Jl{Sj,lsz} ) =0 as.

we infer
Ej—l exXp (u(]l{l]j+s_,'_1ﬁl} _F(t - Sj—l) ]l{Sj_]Sl}))
<1+ W /2)Bj_1(Lizy <y —F(t = Sj-1))?
Xexp(lu(Liry<ry —F (1 = Sj-1) Lis, <oep)l) Lis;_y <oy -
In view of | 1i7,</y —F(f = Sj-1) I(s, <3 | < 1 ass., the right-hand side does not
exceed
L+ el /2)F(t = S;) (1= F(t = S;-1) Lgs,_ <0y
< 1+ (@e/2)(1 = F(t = S;-1)) Lgs, <0y
< exp((u?e™/2)(1 = F(1 = S;-1)) Lgs, <o)

For the latter inequality we have used 1 +x < e* for x > 0. Thus, we have proved

that, for j € N, E;_1(W;/W;_1) < 1 a.s. and thereupon E;_1W; < W;_; ass,, that is,
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(W;,Gj)js0 is indeed a positive supermartingale. As a consequence, the a.s. limit
fim W =t Weo = exp (X (1) - (e /2) 3 (1= F(t = 50) s,y )
= =0
satisfies EW,, < EW; = 1. In other words, with # € R and ¢ > 0 fixed,
Bexp (uX(1) - (w%e"/2) 3" (1= F(t = $0) Tgs<n ) < 1. (®)
k>0

We shall also need another auxiliary result.

lim ¢! Z(l — F(1=S1) Iis,<iy =0 ass. )

t—o0
k>0

Proof. To prove (9), write, for fixed a > O and t > a,

D= F(t=80)) Ispzry = Y (1= F(t = S1)) Lise<i-ay

k>0 k>0

+ Z(l —F(t = S1) Lyg-a<si<ry < (L= F(a)v(1) + (v(1) = v(t - a)).
k>0

By the strong law of large numbers for renewal processes, lim; o t~'v(f) = u~! a.s.
and lim; L0t~ (v(t) = v(t —a)) = u~! — u~' = 0 a.s. Hence, for each fixed a > 0,

limsup ¢! 2(1 —F(t=S) lis,<iy <p~'(1-F(a)) as.

t—o0 k>0
Letting a — oo we arrive at (9). |

Fix any & > 0 and put 7,, := exp(n*/*) for n € N. We intend to prove that
Jim (X(,)/b(12)) =0 as. (10)
To this end, for n > 3, define the event
Ay = A{X(ty) > eb(tn)}.

In view of (9), for large n,

D= Flty = S)) Lispzay < (87/8)1.
k>0

Using this we obtain, for any u > 0 and large n,

An = QX (tn) = 2 2) 37 (1= F(tn = $1)) Tis <0y
k>0

> gub(ty) = (e /2) 3 (1= F(t = $1)) Lis,<q }
k>0

C {uX (1) = (W?e"!/2) 3" (1= F(tn = S1)) Lis, <1,
k>0
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> eub(t,) — (2/8) (1! /2)1,} =: B,.

Invoking Markov’s inequality in combination with (8) we infer

P{B,} < exp ( — sub(t,) + (82/8) (u2el! /2)z,,)

x Eexp (X (1) = (26 /2) 3 (1= F(ts = $1)) Lis,<0,))
k>0

< exp ( —sub(1y) + (£2/8) (u2el! /2)t”).

Let p > 0 satisfy exp(8¢~!p) = 3/2. For large x > 0, x ! loglogx < p. Put

u= 8a_l(t,:1 log log ).

Then
—eub(t,) + (£2/8) (ue!" /2)1,, < —8loglogt, + 4ede7'p loglogt, = —2loglogt,.

Hence, by the Borel-Cantelli lemma, lim sup,,_, ., (X (#,)/b(¢,)) < Oa.s. The converse
inequality for the lower limit follows analogously. We start with A, = {-X(t,) >
eb(tn)} and show, by the same reasoning as above, that A}, C B;, where B}, only
differs from B,, by the term —uX (¢,) in place of uX(t,).
It remains to show that (10) can be lifted to (7). To this end, it suffices to prove
that
lim SUPye(t,,, tnsi | | X (u) — X (2)] -0

n—oo /2
n

a.s. (11)

Indeed, (11) in combination with (10) entails

. SUPuelty,, ths1] | X (u)]
lim =

0
n—oo b([n)

This ensures (7) because, for large enough 7,

1X (1) < SUPuelt,, ths1] | X (u)]
b S bl

whenever t € [t,, t,11].
We denote by I = I,, a sequence of positive integers to be chosen later. For j € Ny
and n € N, put

Fi(n) = {vjm(n) =1, +27 m(tyer — 1) 10 <m <27},

In what follows, we write v; ,, for v; ,,(n). Observe that F;(n) C Fj.1(n). For any
u € [ty,tne1], put

uj :=max{v € Fj(n) :v <u} =10+ 27 (ths1 — 1n) {

27 (u - tn)J

Inel —In
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An important observation is that either Uj-1 = Uj OF Uj_| = uj = 27 (ther — tn).
Necessarily, u; = v, for some 0 < m < 2/, so that either u;_y = vj, oruj_1 =
Vi m-1. Write

sup | X (u) — X (1)

uE[t,,, tn+l]

= max sup [(X(vy, ;) = X(tn)) + (X (vy, j +2) = X(vi, )]

0<j<2'-1z¢Jo0, v, js1=vr, i

< max [X(vy ;) - X(t,)l
0<j<2i-1

+ max sup I X(vi,j+2) = X(vy, ;)| as.

0<j<2'~1 z€[0, vy, ju1—v1, 5]

For u € F;(n),

1
X () = X(ta)| = | D (X () = X(atj1)) + X (o) = X (1)
j=1

)i
< max |[X(vj m) = X(Vj m-1)|

= 1<m<2J

With this at hand, we obtain

sup |X(u) - X(zn>|<z max - |X(vj,m) = X))

UE [ty a1 ]

+ max sup |X(v1,j +2) = X(vg, ;)| as. 12)

0<j<2I-1 z€[0, vr, js1-vr, ;]

We first show that, for all £ > 0,

1
ZP{ max X m) =XV m-1)] > etl/? } < 00, (13)
1_01< m<2.

nx1

Let £ € N. As a preparation, we derive an appropriate upper bound for E(X (u) —
X(v))* for u,v > 0, u > v. Observe that X(u) — X(v) is equal to the a.s. limit
lim;_co R(j,u,v), where (R(j,u,v),G;),>0 is a martingale defined by

j-1
R(0,u,v):=0, R(j,u,v):= Z(]l{v<r7k+1+5ksu} —F(u-Si)+F(v-Sy)), JjeN,
k=0
and, as before, Gy denotes the trivial o--algebra and, for j € N, G; denotes the o--algebra

generated by (€x,nk)1<k<j. Recall that F(z) = O for + < 0. By the Burkholder—
Davis—Gundy inequality, see, for instance, Theorem 11.3.2 in [7],

BX(@) = X0)* < C(B( )] B((RGk +1,u,v) = Rk, v))2|gk))€

k>0

+ ZE(R(k +1,u,v)— R(k,u,v))y)

k>0
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= C(B( D50 - F(v = $0)(1 - Flu =5 + F(v - 50))
k>0

+ ) B(Lyepurssiu =F(u=Si) + F(v = $0)* ) = C(Au,v) + B(w,v))
k=0

for a positive constant C. Let f : [0, 00) — [0, o) be a locally bounded function. It is
shown in the proof of Lemma A.3 in [1] that E(v(1))¢ < co and that

Lt .

E(/{M f(t—y)dv(y))[ <EGM) (Y, s f())

n=0 YE[n,n+l)

(14)

Further,

A =B( [P0 - Fa- )
’ 14
¢ [ (P = FO =3 = Flu=y) + Fr = )av()
[0,v]
4
<22 [ Py - Fa- i)

(v,u]

4
+E(/[o,v](F(“ =) = F(v =) (1 = F(u = y) + F(v = ¥))dv(y))

< 2f-1 (E(./[o u 110, u—v)(u = Y)dV()’)){

14
E Fu—-y)-F(v—-y))d
B[ Fan-ro-mem))
=207 (Ay (u, v) + Ay (u, v)).

Using (14) with t = u and f(y) = 1jo,u-v)(y) and then with t = v and f(y) =
F(u—v+y) - F(y) we infer

Lu ,
M) SEG) (Y sup Lo () = EG() (a1,

n=0Y€ [n, n+1)
where x — [x] is the ceiling function, and

Lv) V4
A(uv) <BO) (Y, sup (Flu=-v+y) = F())

=0 YE[n,n+l)

v .

<EG) () (F(u=v+n+1) = F(n)
n=0

[u_v] £
=BO) () (F(lvl+ 14m) = F(n)) < BOO) (Tu=v]+ 1"
n=0
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Finally,

B(u,v) < 3" E(Liyepssizuy —F (= $i) + F(v = Sp))?
k>0

< 2BEv(1)(Ju —v]+1) < 2BEv(1)(Ju —v]+ 1)¢
and thereupon
E(X(u) - X()* < C1(Ju-v]+ 1~ (15)

Note that v; ,, — v -1 = 27 (tye1 —tp). Put I = I, := |_10g2(2“(tn+1 —t)].
We claim that there exists a constant C; > 0 such that C; ([27/ (tp41 — tx)] + DY <
C2 7 (tpe1 — t,)¢ whenever j € N, j < I. Indeed,

(1277 (tnr1 = 1)1+ 1) < Q7 (tpar = 12) +2)° < 277127 (1001 = 1) +2°)
< 26271{(1}1+1 - tn)(;

having utilized 27/ (t,41 — t,) > 2 for j < I. Invoking (15) we then obtain, for
nonnegative integer j < 1,

EX(vj,m) =X, me1))* < Cr(T127 (tnst = 1)1+ 1) < 0227 (41 —1,)° (16)

and thereupon

1<m<2J/

2J
E( max (X(vj,m) — X(v;,m-1))*) < ZE(X(Vj,m) =X}, m-1))*
m=1

< C22_j([_l)(ln+1 - tn)go

By the triangle inequality for the L,,-norm,

I 20
E( max |X(Vj,m)—X(Vj,m—l)|)

J
= 1<m<2

1<m<2J

I 26
< ( : (E( max (X(Vj,m)_X(vj’m_l))2[))1/(2€))

J

—_i(f— 20
< Colter = 1) (D 271NV = Gt = 1)
j=0

By Markov’s inequality,

1
P{ max XV m) = X(vjomo1)| > gz}ﬂ} < Cye X1 (ts1 — 1)

1<m<2J
=i <m<

Since £, (tps1 — t,) ~ (3/4)n™'/* as n — oo, (13) follows upon setting £ = 6, say.
Invoking the Borel-Cantelli lemma we infer

1
_ XicomaXigm<ai [X(vim) = X (V) m-1)]

lim 7 =0 as.

n—oo tn
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Now we proceed with the analysis of the second summand in (12). Put M (z) :=
/lo . F(t — y)dv(y) for + > 0. Using the equality X(¢) = N(¢) — M(¢) and a.s.
monotonicity of N and M we infer

sup [X(vy,j+2) = X(vr, )

z€[0, v, jy1-v1, ;]

< sup (N(vl,j+Z)—N(VI,j))

z€[0, vy, js1-vr, ]

+ sup (M(V[’J'+Z)_M(Vl,j))

z€[0, v, jy1-vr, ;]

(N(vp, j+1) = N(vp, )+ (M(vy, 1) = M(vy ).

Observe that

max (N(vy js1) —N(vp ;) < max  [X(vy 1) = X (v, )l
0<j<2i-1 0<j<2I-1

+ max (M(vy, j+1) —M(vij)).
0<j<2T-1

Hence, according to the Borel-Cantelli lemma, it is enough to prove that, for all € > 0,

DIPL max (M(vy ) = M(vg ) > et/ *} < o0 an
0<j<2!-1
n>1
and s
PP max (X(vp ) = X (v, )l > o0} < o, (18)
=i 0<j<2-1

Arguing as above we conclude that, for u,v > 0, u > v,

E(M(u) - M(»)) = ]E(/

(v, u]

Py [ (Flu=3) = Fo-y)av)’
<2 TE(v(1)(Tu = v] + 1Y
As a consequence, for nonnegative integer j < / and a constant C4 > 0,
E(M(vr, j1) = M(v1,1))" < Ca27 (tner = 1n)".
By Markov’s inequality and our choice of I,

1/2 —lA-1(-1),-€]2
B{ max  (M(vr js1) = M(vi.j) > et,/*} < Cae™ 2100, Pt - 1)
<j<2'-

— — -£/2
< Cue (22D 20— ).

Hence, (17) follows upon choosing £ > 2. To prove (18), we invoke (16) which enables
us to conclude that

1/2 — — _ _
P{ max |X(vi js1) = X(vr. ) > etp*} < Coe 227 1D b1, 1 — 1)
0<j<2i-1

< Coe 22D (1 — 1),

Choosing ¢ > 1 we arrive at (18).
The proof of Theorem 1 is complete.
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3 Auxiliary results

To prove Theorem 2, we need some auxiliary results on the iterated perturbed random
walks. Lemma 1 is a known result, see Assertion 1 in [16].

Lemma 1. Assume that u = E€ < co. Then, for fixed j € N,

. Vi 1
tlglc}o o m (19)
Put
U(t) :=Ev(t) = ZP{Sk <t} fort >0, (20)
k>0

so that U is the renewal function.

Lemma 2. Foreveryx,h > 0andk €N,
Vi(x +h) = Vi(x) < UR)(V(x + h)* L. (1)

Proof. We use mathematical induction. For k£ = 1, write

Vix+h)-V(x) = /

[0, x+h]
- / Ulx+h - y)dF(y) + / (Ux+h—y) - Ulx - y))dF(y)
(x, x+h] [0, x]

< Uh)(F(x+h) - F(x)) + U(h)F(x) < U(h). 22)

UGx+ h— y)dF(y) - / UGx - y)dF(y)

[0, x]

The penultimate inequality is justified by subadditivity of the renewal function U, see
Theorem 1.7 on p. 10 in [17], and its monotonicity.

Assume that inequality (21) holds for £ < [ — 1. Note that (2) implies that
Vi_i(h) < (V(h)!=' < U(h)(V(x + h))!"2 for | > 2 and h > 0. Using this and the
induction assumption, we have

Vl(x+ /’l) - Vl(x) = /

[0, x

](Vl—l (x+h=y)=Vi1(x - y)dV(y)
+ /(X’Hh] Vii(x+ h —y)dV(y)

< U /[ =) V) V(B V) V)

<UMVE+h)2- V@) +UMR)(V(x+h)2(V(x+h) - V(x)
=U(h)(V(x+h)7".

Lemma 3. Assume that Var & € (0, ). Then, for k € N,

ar(t) := VarY (1) = 0?1, t > oo. (23)
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Proof. We use mathematical induction. For k = 1, write

Yi(0) = Vi) = D (Lgnes, 20y —F(t = S;o0)) + (O F (= 8;) = Vi(0)

j>1 j>0
= 1,(t) + L(1).

Note that VarY; (¢) = BE(Y;(r) = V1(¢))? < 2(B(I;(1))* + E(12(¢))?). Let U be as in
(20). We have

E(1(1))? = /[0 Fa=0( = F U0 < /[0 (=Pl =ynav).

If En = oo, then Lemma 6.2.9 in [9] with r; = 0 and r, = 1 yields
1 t
[ a=ra-mawm - [a-Fon=on. 1ow,
[0.7] M Jo

where yu = E¢ < o0, If Epp < o0, then f[o t](l —F(t—y))dU(y) =0(1) ast — o by
the key renewal theorem. Thus, in any case, E(I;(1))> = o(t) as t — co.
In the proof of Lemma 4.2 in [8] it is shown that

E sup (v(s)-U(s5))?=0(1), t— oo, (24)
s€[0,1]

where v(s) is the same as in (4). Therefore, almost surely
ol=] [ Fe—nave)-vo|=] [ o-w -ve-yare)
N N

S/ v(t—y) =U(t=y)IdF(y) < sup [v(s) =U(s)|- F(1)
[0,7]

s€l0,1]

< sup |v(s)=U(s)|. 25)

s€l0,1]

Consequently, according to (24), E(12(1))* < Esup,cjg ,j(v(s) = U(s))* = O(1) as
t — oo. We have proved that a;(t) = O(t) ast — oo.
Assume that relation (23) holds for k < [ — 1. We shall use the representation

Yi(0)=Vi(t) = Y (Y t=T) Vi (1=T) +( D Vile=To)=Vi(0)) = Ji(1)+Ki (1),

r>1 r>1

which particularly entails
ai(t) = E(Y;(t) = Vi(1)* = E(Ji(1))? + E(K; (1)

Note that, according to the induction assumption, there exist A > 0 and ¢y > 0 such
that a;_; (1) < Ar*=3 for all 1 > t,. Therefore, using (19) and (22),

E(i(1)? = /[ = Dave)
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:/ al_l(t—y)dV(y)+/ ap-1(t = y)dv(y)
[0, t-19]

(t-10,1]

<A / (1= 23V + sup a1 ()(V() = V(i 1))
[0, 7]

s€[0,19]
<APVH +0(0) = 0% ?), 1 — oo, (26)

Further,

Ki()) = ) (Ve (1 = T) = (Viey = F) (1 = S,-1)

r=0

+ (Z(V"l * F)(t = Sp_1) = Vi(1)))
r=0

= Kp1(2) + Kpa(1).

Using V; = Vj_| * F = U and the same reasoning as in (25) we obtain
K ()] = | /[ (Vi P)E=0A0 ) -UOD| < swp () =UE] Vim0 as
0,1 sel0,r

Therefore, in view of (19) and (24),

B(Kin(1))* <E sup (v(s) = U()*(Vi-1(0)* = 0(*™"), 1 — oo,

s€l0,1]
Finally,
E(Kn(1)* = Y B(Vioi(t = T2) = (Vi + F)(t = $,1))’
r>1
< 3 B =T) + B((Vier = F)(t = Sr-1)]
r>1

_/[O,t] (Vies0 =) dV(y)+/[0’t] (V-1 « F)(1 = ) dU ()

2 2 _
< (Vi @) V) + (Vi = F)(®) - U@ =0, 11— oo
For the last equality we have used (Vj_1 * F)(t) < V;_1(¢) for t > 0. The proof of the

Lemma 3 is complete. O

We shall also need two results on the standard random walks. The next lemma is
a consequence of formula (33) in [1], with = €.

Lemma 4. For all positive b and c,

lim v(t+b)—v(t) _

t—0o0 t¢

0 a.s.

Lemma 5. Let K|, K> : [0,00) — [0, o) be nondecreasing functions and K (t) >
Ky (1) fort > 0. Assume that

limsup —— A *+KO) ) (0, 00). 7
i—e 1K1 (y) = Ka(y))dy



32 O. Braganets
Then, for all ¢ > 0,

o Ki(t =) = Ka(t = )dv(y)
lim — - =0 a.s. (28)
e e [H(K(y) = Ka(y)dy

Proof. We use the decomposition

Ki(t—v)-K(t—- d = o= I .
/M< Lt = y) — Ka(t = y)dv(y) /[o,m +/mm L) + (1)

For I (t) we have

h(1) < /[L J ]Kl(t_)’)dv()’) <K (=L@ -v(Lt]) < Ki(D)(v() —v(-1)).

Hence, by Lemma 4, for all ¢ > 0, lim;_,o t~“I(#) = 0 a.s. It remains to consider
I (1):

[r]-1
W =K -k + Y [ (Kl - Kl = 3)avy)
=0 YU, J+l]
Lz]-1
<Ki() - Ka(n)+ ) (Ki(t =) =Kot = j = 1) ((j + 1) = v(j)
j=0
[£]-1
<K+ sup (v(s+1)=v(s) D (Ki(t =)= Kat=j—1))
s€l0,1£]] =
lz]-1
<K@+ s (5+1) = () DKL)+ 1= ) = Ka(le] = 1= )
sel0,| ¢ 7=0

se[0,L2]]

Lz]
= sup (v(s+1)-v(s)) (/2 (K1(y) = K2(y))dy + O (K1 (1) +K2(l))> .

Another application of Lemma 4 yields

. 1(2) _
m 7 =
1= ge [ (K1 (y) = Ka(y))dy

The proof of Lemma 5 is complete. O

4 Proof of Theorem 2

We use a decomposition

Y;(1)-V,(1) = Z " (t—Tk)—Vj_l(t—Tk))+Z Vi1 (t=To)=V, (1), j=2,120.
k>1 k>1

The first term of the decomposition is treated in Proposition 1.
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Proposition 1. Assume that Var & € (0, ). Then, for j > 2,

D (V5 =T = V(= T)
lim - =0 a.s.
100 (t2-1loglog1)!/2

We first prove Theorem 2 with the help of Proposition 1. Afterwards, a proof of
Proposition 1 will be given.

Proof of Theorem 2. By Proposition 1, the contribution of the first term in (29)
normalized by (1~ ! loglog r)!/? vanishes as t — co.
For the second term in (29), write

SVt =1 -5 = [

Y(t—x)dVi_1(x) = V;(?)
k>1 [0,7]

= ‘/[0 ; (Y(t —x)— (F=v)(t —x))de_l(x)

+ (/[M(F £v) (1 = x)dV;_y (x) - vj(t)) =1 AL (1) + As(1).

Y(O)-(Fxv)(1) _
W =0 a.s., whence

[Y(z) = (F*v)(2)| _

According to (7), lim; e

lim su =0 as.
% oy (tloglog )12
With this at hand,
|41 ()] Y (z) = (F*=») ()] Vi-1(1)
i < sup C — 0 as, t— oo,
t=12(loglog)'/2 = _cjo,s)  (tloglogr)!/? 1i-1
. Vis() 1
using ——— — — —., 1 0.
z (=D

Further,
As(t) = (F s v V) (1) = V(1) = /[0 (F 3V =0 ~U ()

:‘/[0 ](v(t—x)—U(t—x))d(F*Vj_l)(x).

Recall that the distribution of 7 is arbitrary. Now we show that in the subsequent
proof F can be replaced with an absolutely continuous distribution function that has
a directly Riemann integrable (dRi) density.

Put G(x) :=1—-e* for x > 0. The function H := F = G is absolutely continuous
with the density A(x) = /[O,X] e~ (*"Y)dF(y) for x > 0. Since x + e* is dRi on
[0, ), so is & as a Lebesgue—Stieltjes convolution of a dRi function and a distribution
function, see Lemma 6.2.1 (c) in [9]. Note that H(x) < F(x) for x > 0. To show that

we can work with H instead of F, it suffices to check that

lim (FViixv)(1) - (H+ Vi xv)(1)
t—00 tj_l/z -

0 as. 30)
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and

FxV,_ 1«U)(t)—(H=Vi_1 xU)(¢t
lim( * Vg x )(). (H=Vj_y* )()zo_ 31)
t—o0 [1_1/2

For (31), write

(F* Vj—l * U)(l) - (H*Vj_l * U)([) = /[‘0 J(] - G(l —x))de(x)

=/ e‘(’_x)de(x)~(/ e_yd)’)Vj—1(t)
[0,1] 0

ti-1
(- D=t

where the asymptotic equalities are justified by (19) and Theorem 2 in [16]. This
proves (31).

To prove (30), we use Lemma 5 with K1(¢) = (F * V;_1)(¢) and K»(¢) = (H *
Vi—1)(t) fort > 0. Note that K>(¢) = EK; (¢ —0) 1{g<,}, where 6 is arandom variable
with the distribution function G, and that

=Vi_1(t) ~

t— 00,

OS/'muw—waMy:/'muw—EKwy—@ﬂwgw@
0 0

t t
=/ Ki(y)dy-e™* +E/ Ki(y)dy Lig<sy -
0 t—0

Using the Laplace transforms and (19), we have

/=1
K](l) ~ Kz(t) ~ Vj_l(t) ~ W, t — 00,

Therefore,

Ky e
m -— =
1= K (1)

and, in view of monotonicity,

t
EOK,(t — 0) Lig<s} . E [, Ki(»)dy o< -

K0 S KO =E=l
By Lebesgue’s dominated convergence theorem
t -1
| w0 =gy~ ki)~ e o

Thus, condition (27) holds with A = 2. Consequently, (30) holds by (28) with ¢ = 1/2.

As a consequence of (30) and (31), we can and do investigate A, () = /[0, " (v(t-
x) = U(t —x))d(H = V;_1)(x) in place of A>(z). By Lemma 3.1 in [12], there exists a
standard Brownian motion (W (#));>¢ such that

S0, V(D) ~U Q) —ou W
0o (tloglogt)!/2 -

0 as. (32)
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With this specific (W (?));»0, write
Ay (1) = /[0’ | <v(t —x)=U(t=—x)—ou W - x))d(H *Vi_1)(x)

+ou3? W(t —x)d(H % V;_1)(x) = By (1) + o> By (1).
[0.1]

Then, using (32) and (19), we have

|Bi(1)| < sup | v(2) = U(2) = opPW(R)| - (H % V1) (1)

z€|O0,

< sup [v(2) = U(2) —ouPW(R)] - Vimi (1)
z€[0,¢]

=o((¥! loglogt)l/z), t — oo,

We are left with showing that

i — D)/~ By (2
C .(] ),u. 2(1) ct>e) ) =[-1,1] as.
(2(2j — 1)~1t2i-1loglog r)!/2
Since H is absolutely continuous with a dRi density, the function H * V;_; is almost
everywhere differentiable with

(H+Vi_1) (x) = / h(x —y)dV;_i(y) for almost every x > 0.

[0, x]

Consequently,
[ W=t v = [ W= v e
[0,¢] [0,¢]

By Theorem 2 in [16], for j > 2,
j_2 x.]_2

© X
h(x —y)dV;_ ~ h(y)dy - — = — — 0.
/[o,x] G ) /o O G G (33)

In particular, (H * V;_1) varies regularly at infinity with index j — 2, and Proposition
2.4 in [10] yields

C(((j—l_)zuf-‘ Srovo Wt =x)(H * Vi_p) (x)dx :t>e)) ] s
ti-1 (2(2j = 1)~ 'tloglogt)1/2

Here, we have used that (33) entails

j—1

xJ
(H Vi) (x) ~ W, X — oo,
see Proposition 1.5.8 in [2]. The proof of Theorem 2 is complete. O

Finally, we prove Proposition 1.
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Proof of Proposition 1. Put Z;(t) = Y5, (Y]('_‘i (t=T) = Vj_1(t = Ty)) for t > 0.

Relation (23) implies that there exist o > 0 and A > 0 such that a;_;(¢) < At =3 for
all ¢ > 9. Using the same reasoning as in (26), we have

E(Z;(1))* = /[0 ]a,-,l(t —x)dV(x) = 0772, t > co. (34)

By Markov’s inequality and (34), for all € > 0,
1Z;(n*?)] } E(Z;(n*?))?
E P ———+—— > < — < oo.
3/2)(j-1/2 2,3(j—-1/2
“ {n(/)(//) nzlgn(//)
Hence, by the Borel-Cantelli lemma,

Z:(n3?
lim i )

Jm G -0 as (35)

It remains to pass from an integer argument to a continuous argument. For any ¢ > 0
there exists n € Ny such that 7 € [7%/2, (n + 1)3/2). By monotonicity,

2 Zi(n+ D)
-2 = G172
/f()’ (n+1)3/2] Vj*l ((n + 1)3/2 - x)dY(x) - AO’ n3/2] Vj*l (}’l3/2 - x)dY(x)
* HGIG-172) :

Relation (35) implies that the first summand on the right-hand side converges to O a.s.
as n — co. The second summand is equal to

/ Vioi((n+ 1) — x)dy (x)
(n32,(n+1)3/2]
. 3/2 . 3/2 — Y. .
+/[ %/2](V,_1((n+1) —x) = Vi1 (0’7 =x))dY (x) =: Xj1(n) + Xj 2(n).
0,n”

By monotonicity, for j > 2, asn — oo, a.s.

Xja(n) < Vi ((n+ Y2 =) (¢ (04 1)) =¥ (0712))
= O(nf/2+1) — O(n(3/2)(j_1/2)).

Here, the penultimate equality is justified by the inequality Y () < v(¢) for ¢ > 0, the
strong law of large numbers for renewal processes lim, .o n~'v(n) = u~! a.s. and
Vici((n+ 1)3/2 = n312) = 0(nY=1/2) as n — oo, which holds true by (19).

Using (21), we infer

Xja(n) < U((n+ 12 =) (V((n + 1DP2)) 2y (n?)
= 0(nBDU=23)) = (3D G-112)
a.s.asn — oo. The penultimate equality is secured by the elementary renewal theorem,

the strong law of large numbers for renewal processes and the inequality Y (z) < v(¢)
fort > 0.
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We have shown that

1imsupt_(j_1/2)Zj(t) <0 as.

t—00

An analogous argument proves the converse inequality for the lower limit. The proof
of Proposition 1 is complete. O
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