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Abstract Buraczewski et al. (2023) proved a functional limit theorem (FLT) and a law of 
the iterated logarithm (LIL) for a random Dirichlet series 

∑︁
𝑘≥2

(log 𝑘 )𝛼
𝑘1/2+𝑠 𝜂𝑘 as 𝑠 → 0+, where 

𝛼 > −1/2 and 𝜂1, 𝜂2, . . . are independent identically distributed random variables with zero 
mean and finite variance. A FLT and a LIL are proved in a boundary case 𝛼 = −1/2. The 
boundary case is more demanding technically than the case 𝛼 > −1/2. A FLT and a LIL 
for 

∑︁
𝑝

𝜂𝑝
𝑝1/2+𝑠 as 𝑠 → 0+, where the sum is taken over the prime numbers, are stated as the 

conjectures.

Keywords Functional limit theorem, law of the iterated logarithm, random Dirichlet series
2020 MSC 60F15, 60F17, 60G50

1 Introduction

Recently there has been a surge of activity around limit theorems for random Dirichlet 
series and their zeros. Throughout the paper, by random Dirichlet series, we mean a 
random series parameterized by 𝑠 > 0:

𝑋𝛼 (𝑠) :=
∑︂
𝑘≥2

(log 𝑘)𝛼
𝑘1/2+𝑠 𝜂𝑘 ,
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where 𝛼 ∈ R and 𝜂1, 𝜂2, . . . are independent copies of a random variable 𝜂 with zero 
mean and finite variance, which live on a probability space (Ω,𝔉, P). By Kolmogorov’s 
three series theorem, the series defining 𝑋𝛼 (𝑠) converges almost surely (a.s.) for each 
𝑠 > 0. Furthermore, if 𝛼 < −1/2, the series 𝑋𝛼 (0+) converges a.s. by the same 
theorem. Thus, as far as limit theorems for 𝑋𝛼 (𝑠) as 𝑠 → 0+ are concerned, the case 
𝛼 < −1/2 is not interesting, hence excluded in the sequel.

The following functional limit theorem (FLT) and law of the iterated logarithm 
(LIL) were known in the case 𝛼 > −1/2. We write =⇒ for weak convergence in a 
function space, and 𝐶 (0,∞) and 𝐶 [0,∞) for the spaces of real-valued continuous 
functions defined on (0,∞) and [0,∞), respectively. It is assumed that the spaces 
𝐶 (0,∞) and 𝐶 [0,∞) are endowed with the topology of locally uniform conver-
gence.

Proposition 1. Assume that E[𝜂] = 0, 𝜎2 = E[𝜂2] ∈ (0,∞) and let 𝛼 > −1/2. 
Then

(︃
𝑠1/2+𝛼

∑︂
𝑘≥2

(log 𝑘)𝛼
𝑘1/2+𝑠𝑡 𝜂𝑘

)︃
𝑡>0

=⇒ 
(︃
𝜎

∫
[0,∞)

𝑦𝛼e−𝑡 𝑦d𝐵(𝑦)
)︃
𝑡>0

, 𝑠 → 0+,

on 𝐶 (0,∞), where (𝐵(𝑦))𝑦≥0 is the standard Brownian motion.

Proposition 1 follows from Corollary 2.3 in [5]. In the cited article, the result was 
derived by a specialization of a FLT for 𝑋𝛼 (𝑠), with a complex-valued 𝜂, in the space 
of analytic functions.

For a family (𝑥𝑡 ) of real numbers denote by 𝐶 ((𝑥𝑡 )) the set of its limit points.

Proposition 2. Assume that E[𝜂] = 0, 𝜎2 = E[𝜂2] ∈ (0,∞) and let 𝛼 > −1/2. Then, 
almost surely,

𝐶

(︃(︃(︃
22𝛼

𝜎2Γ(1 + 2𝛼)
𝑠1+2𝛼

log log 1/𝑠

)︃1/2 ∑︂
𝑘≥2

(log 𝑘)𝛼
𝑘1/2+𝑠 𝜂𝑘 : 𝑠 ∈ (︁

0, e−1)︁)︃)︃ = [−1, 1],

where Γ is the Euler gamma function.

Proposition 2 can be found in Theorem 3.1 of [5]. A classical form of the LIL in 
terms of lim sup and lim inf was earlier obtained in Theorem 1.1 of [2] in a rather 
particular case P{𝜂 = ±1} = 1/2 and 𝛼 = 0. Nevertheless, we stress that the work [2] 
gave impetus to both [5] and the present paper.

Our purpose is to formulate and prove counterparts of Propositions 1 and 2 in a 
boundary case 𝛼 = −1/2.

In the case 𝛼 = 0, real zeros of random Dirichlet series have been in focus of the 
recent papers [1, 3, 9] (it is assumed in [9] that the distribution of 𝜂 is symmetric 
𝛾-stable for 𝛾 ∈ (0, 2]). In the case 𝛼 > −1/2, limit theorems for complex and real 
zeros of 𝑠 ↦→ 𝑋𝛼 (𝑠) were proved in [5]. Although we do not directly investigate zeros 
of 𝑠 ↦→ 𝑋−1/2(𝑠) in the present paper, our LIL stated in Theorem 2 below entails that, 
a.s., 𝑠 ↦→ 𝑋−1/2 (𝑠) has infinitely many real zeros in any right neighborhood of 0.
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2 Main results

We start by stating a FLT for 𝑋−1/2(𝑠), properly scaled, as 𝑠 → 0+. If 𝛼 > −1/2, the 
variance of 𝑋𝛼 (𝑠) exhibits a polynomial growth, whereas the growth of Var [𝑋−1/2 (𝑠)]
is logarithmic. This partly justifies the facts that the scaling of time in Proposition 1
is 𝑠𝑡, that is, standard, whereas the scaling of time in Theorem 1 is 𝑠𝑡 .

Theorem 1. Assume that E[𝜂] = 0 and 𝜎2 = E[𝜂2] ∈ (0,∞). Then
(︃

1 
(log 1/𝑠)1/2

∑︂
𝑘≥2

(log 𝑘)−1/2

𝑘1/2+𝑠𝑡 𝜂𝑘

)︃
𝑡≥0

=⇒ 
(︁
𝜎𝐵(𝑡))︁

𝑡≥0, 𝑠 → 0+,

on 𝐶 [0,∞), where (𝐵(𝑡))𝑡≥0 is the standard Brownian motion.

Observe that the limit process in Theorem 1 is nowhere differentiable a.s., whereas 
the limit process in Proposition 1 is infinitely differentiable a.s. This distinction is a 
manifestation of intricacy of the boundary case 𝛼 = −1/2.

We proceed with a LIL for 𝑋−1/2(𝑠) as 𝑠 → 0+. The FLT given in Theorem 1 was 
used for guessing the LIL’s form, namely, the factor log log log 1/𝑠 in the normaliza-
tion.

Theorem 2. Assume that E[𝜂] = 0 and 𝜎2 = E[𝜂2] ∈ (0,∞). Then

𝐶

(︃(︃(︃
1 

2𝜎2 log 1/𝑠 log log log 1/𝑠

)︃1/2 ∑︂
𝑘≥2

(log 𝑘)−1/2

𝑘1/2+𝑠 𝜂𝑘 : 𝑠 ∈ (︁
0, e−e)︁)︃)︃

= [−1, 1] a.s. (1)

In particular,

lim sup
𝑠→0+ 

(︃
1 

log 1/𝑠 log log log 1/𝑠

)︃1/2 ∑︂
𝑘≥2

(log 𝑘)−1/2

𝑘1/2+𝑠 𝜂𝑘 =
(︁
2𝜎2)︁1/2 a.s. (2)

and

lim inf
𝑠→0+ 

(︃
1 

log 1/𝑠 log log log 1/𝑠

)︃1/2 ∑︂
𝑘≥2

(log 𝑘)−1/2

𝑘1/2+𝑠 𝜂𝑘 = −(︁2𝜎2)︁1/2 a.s. (3)

Since Var [𝑋−1/2 (𝑠)] ∼ 𝜎2 log 1/𝑠 as 𝑠 → 0+ (see the beginning of Section 3), we 
infer

log log Var
[︁
𝑋−1/2 (𝑠)

]︁ ∼ log log log 1/𝑠, 𝑠 → 0+,
where, as usual, 𝑓 (𝑠) ∼ 𝑔(𝑠) as 𝑠 → 0+ means that lim𝑠→0+( 𝑓 (𝑠)/𝑔(𝑠)) = 1. Thus, 
formulas (2) and (3) are indeed laws of the iterated logarithm.

One of the referees has kindly informed us that the results of Theorems 1 and 

2 should hold with 
∑︁
𝑝

𝜂𝑝
𝑝1/2+𝑠 replacing 

∑︁
𝑘≥2

(log 𝑘 )−1/2

𝑘1/2+𝑠 𝜂𝑘 , where 
∑︁
𝑝 denotes the 

summation over the prime numbers. Based on this comment we formulate the following 
conjectures.
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Conjecture 1. Assume that E[𝜂] = 0 and 𝜎2 = E[𝜂2] ∈ (0,∞). Then
(︃

1 
(log 1/𝑠)1/2

∑︂
𝑝

𝜂𝑝

𝑝1/2+𝑠𝑡

)︃
𝑡≥0

=⇒ 
(︁
𝜎𝐵(𝑡))︁

𝑡≥0, 𝑠 → 0+,

on 𝐶 [0,∞), where (𝐵(𝑡))𝑡≥0 is the standard Brownian motion.

Conjecture 2. Assume that E[𝜂] = 0 and 𝜎2 = E[𝜂2] ∈ (0,∞). Then

𝐶

(︃(︃(︃
1 

2𝜎2 log 1/𝑠 log log log 1/𝑠

)︃1/2 ∑︂
𝑝

𝜂𝑝

𝑝1/2+𝑠 : 𝑠 ∈ (︁
0, e−e)︁)︃)︃

= [−1, 1] a.s.

In particular,

lim sup
𝑠→0+ 

(︃
1 

log 1/𝑠 log log log 1/𝑠

)︃1/2 ∑︂
𝑝

𝜂𝑝

𝑝1/2+𝑠 =
(︁
2𝜎2)︁1/2 a.s.

and

lim inf
𝑠→0+ 

(︃
1 

log 1/𝑠 log log log 1/𝑠

)︃1/2 ∑︂
𝑝

𝜂𝑝

𝑝1/2+𝑠 = −(︁2𝜎2)︁1/2 a.s.

At the moment we do not see a way to effectively estimate the difference ∑︁
𝑝

𝜂𝑝
𝑝1/2+𝑠 − ∑︁

𝑘≥2
(log 𝑘 )−1/2

𝑘1/2+𝑠 𝜂𝑘 . Thus, Conjectures 1 and 2 do not seem to follow 
from Theorems 1 and 2. On the other hand, we think that both conjectures can be 
justified by a proper modification of the proofs of Theorems 1 and 2. Some of the 
modifications required are nonobvious and need a substantial technical work. As 
a consequence, proofs of these conjectures will be given elsewhere. Once Conjec-
ture 2 has become a theorem, it provides a significant improvement over Theorem 1.3 
in [6].

The remainder of the paper is structured as follows. Theorems 2 and 1 are proved 
in Sections 3 and 4, respectively. The reversed order of the proofs is necessitated by 
the fact that our proof of Theorem 1 uses some arguments and calculations from the 
proof of Theorem 2. At the first glance it looks plausible that an economical proof 
of the LIL may be based on a strong approximation by a Brownian motion of the 
standard random walk generated by 𝜂, that is, the random sequence (𝑇𝑛)𝑛≥0 defined 
by 𝑇0 := 0, 𝑇𝑛 := 𝜂1 + · · · + 𝜂𝑛 for 𝑛 ∈ N. In Section 5 we explain that this naive idea 
fails.

3 Proof of Theorem 2

Put

𝑔(𝑠) := E

[︃(︃∑︂
𝑘≥2

(log 𝑘)−1/2

𝑘1/2+𝑠 𝜂𝑘

)︃2]︃
= 𝜎2

∑︂
𝑘≥2

(log 𝑘)−1

𝑘1+2𝑠 , 𝑠 > 0.
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We start by showing that 𝑔(𝑠) ∼ 𝜎2 log(1/𝑠) as 𝑠 → 0+. By monotonicity,
∫ ∞

2

(log 𝑥)−1

𝑥1+2𝑠 d𝑥 ≤
∑︂
𝑘≥2

(log 𝑘)−1

𝑘1+2𝑠 ≤ (log 2)−1

21+2𝑠 +
∫ ∞

2

(log 𝑥)−1

𝑥1+2𝑠 d𝑥.

Plainly, lim𝑠→0+
(log 2)−1

21+2𝑠 log 1/𝑠 = 0. Changing the variable we infer

∫ ∞

2

(log 𝑥)−1

𝑥1+2𝑠 d𝑥 =
∫ ∞

2𝑠 log 2

e−𝑦

𝑦
d𝑦 ∼ log 1/𝑠, 𝑠 → 0+.

It is convenient to split the presentation into two pieces. We proceed by proving 
one half of Theorem 2. In what follows we write log(3) for log log log.

Proposition 3. Under the assumptions of Theorem 2,

lim sup
𝑠→0+ 

(︃
1 

log 1/𝑠 log(3) 1/𝑠

)︃1/2 ∑︂
𝑘≥2

(log 𝑘)−1/2

𝑘1/2+𝑠 𝜂𝑘 ≤
(︁
2𝜎2)︁1/2 a.s. (4)

and

lim inf
𝑠→0+ 

(︃
1 

log 1/𝑠 log(3) 1/𝑠

)︃1/2 ∑︂
𝑘≥2

(log 𝑘)−1/2

𝑘1/2+𝑠 𝜂𝑘 ≥ −(︁2𝜎2)︁1/2 a.s. (5)

Replacing 𝜂𝑘 with 𝜂𝑘/𝜎 we can work under the assumption that 𝜎2 = 1. For 
𝑠 ∈ (0, e−e), put

𝑓 (𝑠) =
(︃

1 

2 log 1/𝑠 log(3) 1/𝑠

)︃1/2
.

Let 𝑀 : (0,∞) → N0 denote a function satisfying lim𝑠→0+ 𝑀 (𝑠) = +∞ and

lim 
𝑠→0+

𝑀 (𝑠) 
log 1/𝑠 = 0. (6)

Here, as usual, N0 := N ∪ {0}.
In Lemma 1, we remove from the series in focus an initial fragment with a vanishing 

contribution. In all the lemmas given below we assume without further notice that the 
assumptions of Theorem 2 are in force.

Lemma 1. The following limit relation holds:

lim 
𝑠→0+

𝑓 (𝑠)
𝑀 (𝑠)∑︂
𝑘=2 

(log 𝑘)−1/2

𝑘1/2+𝑠 𝜂𝑘 = 0 a.s.

Proof. Recall that 𝑇0 = 0 and 𝑇𝑛 = 𝜂1 + · · · + 𝜂𝑛 for 𝑛 ∈ N. According to the LIL for 
standard random walks,

|𝑇𝑛 | ≤ max
𝑘≤𝑛 

|𝑇𝑘 | = 𝑂
(︁(𝑛 log log 𝑛)1/2)︁, 𝑛 → ∞ a.s. (7)
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Observe that

𝑀 (𝑠)∑︂
𝑘=2 

(log 𝑘)−1/2

𝑘1/2+𝑠 𝜂𝑘 =
∫
(3/2, 𝑀 (𝑠) ]

d𝑇⌊𝑥 ⌋
(log 𝑥)1/2𝑥1/2+𝑠 .

Integrating by parts we obtain
∫
(3/2, 𝑀 (𝑠) ]

(log 𝑥)−1/2

𝑥1/2+𝑠 d𝑇⌊𝑥 ⌋

=
(log 𝑀 (𝑠))−1/2𝑇𝑀 (𝑠)

(𝑀 (𝑠))1/2+𝑠 − (log 3/2)−1/2𝜂1

(3/2)1/2+𝑠

+
∫ 𝑀 (𝑠)

3/2

((log 𝑥)−3/2/2 + (1/2 + 𝑠)(log 𝑥)−1/2)𝑇⌊𝑥 ⌋
𝑥3/2+𝑠 d𝑥.

Relation (6) entails lim𝑠→0+(𝑀 (𝑠))𝑠 = 1. This in combination with (7) enables us to 
conclude that, as 𝑠 → 0+,

(log 𝑀 (𝑠))−1/2 |𝑇𝑀 (𝑠) |
(𝑀 (𝑠))1/2+𝑠 ∼ (log 𝑀 (𝑠))−1/2 |𝑇𝑀 (𝑠) |

(𝑀 (𝑠))1/2

= 𝑂
(︁(︁

log 𝑀 (𝑠))︁−1/2(︁log log 𝑀 (𝑠))︁1/2)︁
= 𝑜(1).

Since lim𝑠→0+ 𝑓 (𝑠) = 0, the latter ensures that

lim 
𝑠→0+

𝑓 (𝑠) (log 𝑀 (𝑠))−1/2 |𝑇𝑀 (𝑠) |
(𝑀 (𝑠))1/2+𝑠 = 0 a.s.

To complete the proof, it is sufficient to show that

lim 
𝑠→0+

𝑓 (𝑠)
∫ 𝑀 (𝑠)

3/2

(log 𝑥)−1/2 |𝑇⌊𝑥 ⌋ |
𝑥3/2+𝑠 d𝑥 = 0 a.s.

To this end, write
∫ 𝑀 (𝑠)

3/2

(log 𝑥)−1/2 |𝑇⌊𝑥 ⌋ |
𝑥3/2+𝑠 d𝑥 ≤

(︂
max 
𝑘≤𝑀 (𝑠)

|𝑇𝑘 |
)︂∫ 𝑀 (𝑠)

3/2

(log 𝑥)−1/2

𝑥3/2+𝑠 d𝑥

= 𝑂
(︁(︁

𝑀 (𝑠) log log 𝑀 (𝑠))︁1/2)︁
𝑂 (1)

= 𝑂
(︁(︁

𝑀 (𝑠) log log 𝑀 (𝑠))︁1/2)︁
, 𝑠 → 0+ a.s.,

having utilized (7) for the penultimate equality. Since (6) entails

lim 
𝑠→0+

𝑀 (𝑠) log log 𝑀 (𝑠)
log 1/𝑠 log(3) 1/𝑠 

= 0,

the claim follows. □
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For 𝑘 ∈ N, 𝜌 > 0 and 𝑠 ∈ (0, e−e), define the event

𝐴𝑘,𝜌 (𝑠) :=
{︃
|𝜂𝑘 | > 𝜌

log log 1/𝑠

(︃
𝑘1+2𝑠 log 𝑘 𝑔(𝑠)

log(3) 1/𝑠 

)︃1/2}︃
.

Next, we demonstrate that the second (remaining) part of the series also vanishes 
if the variables 𝜂𝑘 are properly truncated.

Lemma 2. For all 𝜌 > 0,

lim 
𝑠→0+

∑︂
𝑘≥𝑀 (𝑠)+1

(log 𝑘)−1/2

𝑘1/2+𝑠 |𝜂𝑘 |1𝐴𝑘,𝜌 (𝑠) = 0 a.s. (8)

and

lim 
𝑠→0+

∑︂
𝑘≥𝑀 (𝑠)+1

(log 𝑘)−1/2

𝑘1/2+𝑠 E[|𝜂𝑘 |1𝐴𝑘,𝜌 (𝑠) ] = 0. (9)

Proof. Put ℎ(𝑠) := (log log 1/𝑠)(log(3) 1/𝑠)1/2. Observe that, for 𝑘 ≥ 3 and 𝑠 ≥ 0, 
𝑘2𝑠 log 𝑘 ≥ 1. Hence, for 𝑠 ∈ (0, e−e),

∑︂
𝑘≥𝑀 (𝑠)+1

(log 𝑘)−1/2

𝑘1/2+𝑠 |𝜂𝑘 |1𝐴𝑘,𝜌 (𝑠)

≤
∑︂

𝑘≥𝑀 (𝑠)+1

|𝜂𝑘 | 
𝑘1/21{𝑘−1/2 |𝜂𝑘 |>𝜌(𝑔 (𝑠) )1/2 (ℎ(𝑠) )−1} a.s.

The assumption E[𝜂2] < ∞ entails lim𝑘→∞ 𝑘−1/2 |𝜂𝑘 | = 0 a.s. and thereupon 
sup𝑘≥1 (𝑘−1/2 |𝜂𝑘 |) < ∞ a.s. Since lim𝑠→0+((𝑔(𝑠))1/2(ℎ(𝑠))−1) = +∞, we infer

1{𝑘−1/2 |𝜂𝑘 |>𝜌(𝑔 (𝑠) )1/2 (ℎ(𝑠) )−1} ≤ 1{sup𝑘≥1 (𝑘−1/2 |𝜂𝑘 | )>𝜌(𝑔 (𝑠) )1/2 (ℎ(𝑠) )−1} = 0

a.s. for small 𝑠. We have proved that the sum in (8) is equal to 0 a.s. for small enough 𝑠.
Relation (9) is justified as follows:

∑︂
𝑘≥𝑀 (𝑠)+1

(log 𝑘)−1/2

𝑘1/2+𝑠 E[|𝜂𝑘 |1𝐴𝑘,𝜌 (𝑠) ]

≤
∑︂

𝑘≥𝑀 (𝑠)+1
𝑘−1/2E[|𝜂 |1{𝜌−1 (𝑔 (𝑠) )−1/2ℎ(𝑠) |𝜂 |>𝑘1/2}]

≤ E

[︄
|𝜂 |

⌊𝜌−2 (𝑔 (𝑠) )−1 (ℎ(𝑠) )2𝜂2 ⌋∑︂
𝑘=1 

𝑘−1/2

]︄
≤ 2𝜌−1E

[︁
𝜂2]︁(︁𝑔(𝑠))︁−1/2

ℎ(𝑠)

= 2𝜌−1(︁𝑔(𝑠))︁−1/2
ℎ(𝑠) → 0, 𝑠 → 0+.

The proof of Lemma 2 is complete. □



354 A. Iksanov, R. Kostohryz

In what follows, (𝐴𝑘,𝜌 (𝑠))𝑐 denotes the complement of 𝐴𝑘,𝜌 (𝑠), that is, for 𝑘 ∈ N, 
𝜌 > 0 and 𝑠 ∈ (0, e−e),

(︁
𝐴𝑘,𝜌 (𝑠)

)︁𝑐 :=
{︃
|𝜂𝑘 | ≤ 𝜌

log log 1/𝑠

(︃
𝑘1+2𝑠 log 𝑘 𝑔(𝑠)

log(3) 1/𝑠 

)︃1/2}︃
.

Our next result is related to the fragment of the series giving the principal contribution. 
However, this is a lighter version of what we really need, for the convergence here is 
only along a sequence.
Lemma 3. Fix any 𝛾 ∈ (0, (

√
5 − 1)/2), pick any 𝜌 = 𝜌(𝛾) satisfying

(1 − 𝛾)(1 + 𝛾)2(︁2 − exp
(︁
2
√

2(1 + 𝛾)𝜌)︁)︁ > 1 (10)

and put 𝑠𝑛 := exp(− exp(𝑛1−𝛾)) for 𝑛 ∈ N. Then

lim sup
𝑛→∞ 

𝑓 (𝑠𝑛)
∑︂

𝑘≥𝑀 (𝑠𝑛 )+1

(log 𝑘)−1/2˜︁𝜂𝑘,𝜌 (𝑠𝑛)
𝑘1/2+𝑠𝑛 ≤ 1 + 𝛾 a.s.,

where ˜︁𝜂𝑘,𝜌 (𝑠) := 𝜂𝑘1(𝐴𝑘,𝜌 (𝑠) )𝑐 − E[𝜂𝑘1(𝐴𝑘,𝜌 (𝑠) )𝑐 ] for 𝑘 ∈ N and 𝑠 ∈ (0, e−e).
Proof. Since (1 − 𝛾)(1 + 𝛾)2 > 1 whenever 𝛾 ∈ (0, (

√
5 − 1)/2), 𝜌 satisfying (10)

does indeed exist.
Put 𝑓 ∗(𝑠) := (2𝑔(𝑠) log(3) 1/𝑠)−1/2 for 𝑠 ∈ (0, e−e). Since 𝑓 ∗(𝑠) ∼ 𝑓 (𝑠) as 

𝑠 → 0+, we can and do prove the result, with 𝑓 ∗ replacing 𝑓 . Put

𝑋 (𝑠) = 𝑓 ∗(𝑠)
∑︂

𝑘≥𝑀 (𝑠)+1

(log 𝑘)−1/2˜︁𝜂𝑘,𝜌 (𝑠)
𝑘1/2+𝑠 , 𝑠 ∈ (︁

0, e−e)︁.
Using e𝑥 ≤ 1 + 𝑥 + (𝑥2/2)e |𝑥 | for 𝑥 ∈ R and E[˜︁𝜂𝑘,𝜌 (𝑠)] = 0 we deduce, for 𝑢 ∈ R,

E
[︁
e𝑢𝑋 (𝑠)

]︁
=

∏︂
𝑘≥𝑀 (𝑠)+1

E

[︃
exp

(︃
𝑢 𝑓 ∗(𝑠) (log 𝑘)−1/2˜︁𝜂𝑘,𝜌 (𝑠)

𝑘1/2+𝑠

)︃]︃

≤
∏︂

𝑘≥𝑀 (𝑠)+1

(︃
1 + 𝑢2( 𝑓 ∗(𝑠))2

2 
(log 𝑘)−1

𝑘1+2𝑠

× E

[︃(︁˜︁𝜂𝑘,𝜌 (𝑠))︁2 exp
(︃
|𝑢 | 𝑓 ∗(𝑠) (log 𝑘)−1/2 |˜︁𝜂𝑘,𝜌 (𝑠) |

𝑘1/2+𝑠

)︃]︃)︃
.

The inequality

|˜︁𝜂𝑘,𝜌 (𝑠) | ≤ |𝜂𝑘 |1(𝐴𝑘,𝜌 (𝑠) )𝑐 + E[|𝜂𝑘 |1(𝐴𝑘,𝜌 (𝑠) )𝑐 ]

≤ 2𝜌𝑘1/2+𝑠

log log 1/𝑠

(︃
log 𝑘 𝑔(𝑠)
log(3) 1/𝑠 

)︃1/2
≤ 2𝜌𝑘1/2+𝑠

(︃
log 𝑘 𝑔(𝑠)
log(3) 1/𝑠 

)︃1/2
a.s., (11)

which is valid for integer 𝑘 ≥ 2 and 𝑠 ∈ (0, e−e), implies that

exp
(︃
|𝑢 | 𝑓 ∗(𝑠) (log 𝑘)−1/2 |˜︁𝜂𝑘,𝜌 (𝑠) |

𝑘1/2+𝑠

)︃
≤ exp

(︃ √
2𝜌 |𝑢 | 

log(3) 1/𝑠

)︃
a.s.



Limit theorems for random Dirichlet series 355

Together with the inequalities E[(˜︁𝜂𝑘,𝜌(𝑠))2] ≤ 1 and 1 + 𝑥 ≤ e𝑥 for 𝑥 ∈ R this gives, 
for 𝑢 ∈ R,

E
[︁
e𝑢𝑋 (𝑠)

]︁ ≤ ∏︂
𝑘≥𝑀 (𝑠)+1

exp
(︃
𝑢2( 𝑓 ∗(𝑠))2

2 
(log 𝑘)−1

𝑘1+2𝑠 exp
(︃ √

2𝜌 |𝑢 | 
log(3) 1/𝑠

)︃)︃

≤ exp
(︃

𝑢2

4 log(3) 1/𝑠
exp

(︃ √
2𝜌 |𝑢 | 

log(3) 1/𝑠

)︃)︃
. (12)

An application of Markov’s inequality yields, for 𝑢 ≥ 0,

P
{︁
𝑋 (𝑠𝑛) > 1 + 𝛾

}︁ ≤ e−(1+𝛾)𝑢E
[︁
e𝑢𝑋 (𝑠𝑛 )

]︁
≤ exp

(︃
−(1 + 𝛾)𝑢 + 𝑢2

4 log(3) 1/𝑠𝑛
exp

(︃ √
2𝜌𝑢 

log(3) 1/𝑠𝑛

)︃)︃
.

Putting 𝑢 = 2(1 + 𝛾) log(3) 1/𝑠𝑛 we conclude that

P
{︁
𝑋 (𝑠𝑛) > 1 + 𝛾

}︁ ≤ exp
(︁−(1 + 𝛾)2(︁2 − exp

(︁
2
√

2(1 + 𝛾)𝜌)︁)︁ log(3) 1/𝑠𝑛
)︁

=
1 

𝑛(1−𝛾) (1+𝛾)2 (2−exp(2
√

2(1+𝛾)𝜌) )
.

Thus, in view of (10), 
∑︁
𝑛≥1 P{𝑋 (𝑠𝑛) > 1 + 𝛾} < ∞, and invoking the direct part of 

the Borel–Cantelli lemma completes the proof of Lemma 3. □

Now we present our final, and the most involved, preparatory result. It shows that 
the convergence along a sequence discussed in Lemma 3 can be lifted to the full 
convergence along the real numbers.

Lemma 4. Let (𝑠𝑛)𝑛∈N be as defined in Lemma 3, where 𝛾 ∈ (0, 1/2), and 𝑀 (𝑠) =
⌊log 1/𝑠/log log 1/𝑠⌋ for 𝑠 ∈ (0, e−e). For 𝑠 ∈ [𝑠𝑛+1, 𝑠𝑛], the following limit relation 
holds:

lim 
𝑛→∞ 𝑓 (𝑠)

(︃ ∑︂
𝑘≥𝑀 (𝑠)+1

(log 𝑘)−1/2

𝑘1/2+𝑠 𝜂𝑘 −
∑︂

𝑘≥𝑀 (𝑠𝑛+1 )+1

(log 𝑘)−1/2

𝑘1/2+𝑠𝑛+1
𝜂𝑘

)︃
= 0 a.s.

Proof. Using the fact that 𝑀 is a nonincreasing function for the arguments close to 
0, write, for 𝑠 ∈ [𝑠𝑛+1, 𝑠𝑛],

∑︂
𝑘≥𝑀 (𝑠)+1

(log 𝑘)−1/2𝜂𝑘

𝑘1/2+𝑠 −
∑︂

𝑘≥𝑀 (𝑠𝑛+1 )+1

(log 𝑘)−1/2𝜂𝑘

𝑘1/2+𝑠𝑛+1

=
𝑀 (𝑠𝑛+1 ) ∑︂
𝑘=𝑀 (𝑠)+1

(log 𝑘)−1/2𝜂𝑘

𝑘1/2+𝑠 +
∑︂

𝑘≥𝑀 (𝑠𝑛+1 )+1
(log 𝑘)−1/2

(︃
1 

𝑘1/2+𝑠 −
1 

𝑘1/2+𝑠𝑛+1

)︃
𝜂𝑘

=: 𝐼𝑛,1 (𝑠) + 𝐼𝑛,2 (𝑠).
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Analysis of 𝐼𝑛,1(𝑠). Actually, we shall prove that

lim 
𝑛→∞ sup 

𝑠∈[𝑠𝑛+1 , 𝑠𝑛 ]
|𝐼𝑛,1 (𝑠) | = 0 a.s.

This relation is even more than we need because lim𝑠→0+ 𝑓 (𝑠) = 0. We obtain with 
the help of summation by parts

𝐼𝑛,1 (𝑠) =
(log 𝑀 (𝑠𝑛+1))−1/2𝑇𝑀 (𝑠𝑛+1 )

(𝑀 (𝑠𝑛+1))1/2+𝑠 − (log(𝑀 (𝑠) + 1))−1/2𝑇𝑀 (𝑠)
(𝑀 (𝑠) + 1)1/2+𝑠

+
𝑀 (𝑠𝑛+1 )−1∑︂
𝑘=𝑀 (𝑠)+1 

(︃ (log 𝑘)−1/2

𝑘1/2+𝑠 − (log(𝑘 + 1))−1/2

(𝑘 + 1)1/2+𝑠

)︃
𝑇𝑘 ,

where, as before, 𝑇𝑛 = 𝜂1 + · · · + 𝜂𝑛 for 𝑛 ∈ N. Invoking formula (7) and 
lim𝑛→∞(𝑀 (𝑠𝑛+1))𝑠𝑛+1 = 1 we obtain

(log 𝑀 (𝑠𝑛+1))−1/2 |𝑇𝑀 (𝑠𝑛+1 ) |
(𝑀 (𝑠𝑛+1))1/2+𝑠

≤ (log 𝑀 (𝑠𝑛+1))−1/2 |𝑇𝑀 (𝑠𝑛+1 ) |
(𝑀 (𝑠𝑛+1))1/2+𝑠𝑛+1

∼ (log 𝑀 (𝑠𝑛+1))−1/2 |𝑇𝑀 (𝑠𝑛+1 ) |
(𝑀 (𝑠𝑛+1))1/2

= 𝑂
(︁(︁

log 𝑀 (𝑠𝑛+1)
)︁−1/2(︁log log 𝑀 (𝑠𝑛+1)

)︁1/2)︁ → 0, 𝑛 → ∞ a.s.

By a similar argument we conclude that

lim 
𝑛→∞ sup 

𝑠∈[𝑠𝑛+1 , 𝑠𝑛 ]

(log(𝑀 (𝑠) + 1))−1/2 |𝑇𝑀 (𝑠) |
(𝑀 (𝑠) + 1)1/2+𝑠 = 0 a.s.

Further, for 𝑠 ∈ [𝑠𝑛+1, 𝑠𝑛] and large 𝑛,
⃓⃓⃓
⃓⃓𝑀 (𝑠𝑛+1 )−1∑︂
𝑘=𝑀 (𝑠)+1 

(︃ (log 𝑘)−1/2

𝑘1/2+𝑠 − (log(𝑘 + 1))−1/2

(𝑘 + 1)1/2+𝑠

)︃
𝑇𝑘

⃓⃓⃓
⃓⃓

≤
𝑀 (𝑠𝑛+1 )−1∑︂
𝑘=𝑀 (𝑠)+1 

(︃ (log 𝑘)−1/2

𝑘1/2+𝑠 − (log(𝑘 + 1))−1/2

(𝑘 + 1)1/2+𝑠

)︃
|𝑇𝑘 |

≤
(︂

sup 
𝑗≤𝑀 (𝑠𝑛+1 )

|𝑇𝑗 |
)︂ 𝑀 (𝑠𝑛+1 )−1∑︂
𝑘=𝑀 (𝑠)+1 

(︃ (log 𝑘)−1/2

𝑘1/2+𝑠 − (log(𝑘 + 1))−1/2

(𝑘 + 1)1/2+𝑠

)︃

≤
(︂

sup 
𝑗≤𝑀 (𝑠𝑛+1 )

|𝑇𝑗 |
)︂ (log 𝑀 (𝑠))−1/2

(𝑀 (𝑠))1/2+𝑠 ≤
(︂

sup 
𝑗≤𝑀 (𝑠𝑛+1 )

|𝑇𝑗 |
)︂ (log 𝑀 (𝑠𝑛))−1/2

(𝑀 (𝑠𝑛))1/2+𝑠𝑛+1

= 𝑂
(︁(︁

log 𝑀 (𝑠𝑛+1)
)︁−1/2(︁log log 𝑀 (𝑠𝑛+1)

)︁1/2)︁ → 0, 𝑛 → ∞ a.s.

We have used (7), lim𝑛→∞(𝑀 (𝑠𝑛+1)/𝑀 (𝑠𝑛)) = 1 and lim𝑛→∞(𝑀 (𝑠𝑛))𝑠𝑛+1 = 1 for the 
equality.
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Analysis of 𝐼𝑛,2(𝑠). One can show that

lim 
𝑛→∞ sup 

𝑠≥𝑠𝑛+1

∑︂
𝑘≥𝑀 (𝑠𝑛+1 )+1

(log 𝑘)−1/2
(︃

1 
𝑘1/2+𝑠𝑛+1

− 1 
𝑘1/2+𝑠

)︃
|𝜂𝑘 |1{|𝜂𝑘 |>𝑘1/2 log 𝑛}

= 0 a.s. (13)

and

lim 
𝑛→∞ sup 

𝑠≥𝑠𝑛+1

∑︂
𝑘≥𝑀 (𝑠𝑛+1 )+1

(log 𝑘)−1/2
(︃

1 
𝑘1/2+𝑠𝑛+1

− 1 
𝑘1/2+𝑠

)︃

× E
[︁|𝜂𝑘 |1{|𝜂𝑘 |>𝑘1/2 log 𝑛}

]︁
= 0. (14)

For instance, relation (13) follows from sup𝑘≥1 (𝑘−1/2 |𝜂𝑘 |) < ∞ a.s. and

∑︂
𝑘≥𝑀 (𝑠𝑛+1 )+1

(log 𝑘)−1/2
(︃

1 
𝑘1/2+𝑠𝑛+1

− 1 
𝑘1/2+𝑠

)︃
|𝜂𝑘 |1{|𝜂𝑘 |>𝑘1/2 log 𝑛}

≤
∑︂

𝑘≥𝑀 (𝑠𝑛+1 )+1

|𝜂𝑘 | 
𝑘1/21{𝑘−1/2 |𝜂𝑘 |>log 𝑛} a.s.

The summands on the right-hand side are equal to 0 for large enough 𝑛. Here, we have 
used 𝑘2𝑠𝑛+1 log 𝑘 ≥ 1 for 𝑘 ≥ 3 and 𝑛 ∈ N. More details can be found in the proof of 
Lemma 2.

Put ˆ︁𝜂𝑘 (𝑛) := 𝜂𝑘1{|𝜂𝑘 | ≤𝑘1/2 log 𝑛} − E[𝜂𝑘1{|𝜂𝑘 | ≤𝑘1/2 log 𝑛}] for 𝑘, 𝑛 ∈ N. For 𝑛 ∈ N

and small positive 𝑢, put

𝑌 ∗
𝑛 (𝑢) :=

∑︂
𝑘≥𝑀 (𝑠𝑛+1 )+1

(log 𝑘)−1/2ˆ︁𝜂𝑘 (𝑛)
𝑘1/2+𝑢 .

In view of (13) and (14), it suffices to demonstrate that, for each 𝑠 ∈ [𝑠𝑛+1, 𝑠𝑛],

lim 
𝑛→∞ 𝑓 (𝑠𝑛)

(︁
𝑌 ∗
𝑛 (𝑠) − 𝑌 ∗

𝑛 (𝑠𝑛+1)
)︁
= 0 a.s.

By a technical reason to be explained below, we shall show that, for each 𝑣 ∈ [𝑣𝑛+1, 𝑣𝑛],

lim 
𝑛→∞ 𝑓 (𝑠𝑛)

(︁
𝑌𝑛 (𝑣) − 𝑌𝑛 (𝑣𝑛+1)

)︁
= 0 a.s., (15)

where 𝑌𝑛 (𝑣) := 𝑌 ∗
𝑛 (exp(−1/𝑣)), 𝑣𝑛 := 1/(log 1/𝑠𝑛) = exp(−𝑛1−𝛾) for 𝑛 ∈ N and 

𝑣 > 0.
For 𝑗 ∈ N0 and 𝑛 ∈ N, put

𝐹𝑗 (𝑛) :=
{︁
𝑡 𝑗 , 𝑚 (𝑛) := 𝑣𝑛+1 + 2− 𝑗𝑚(𝑣𝑛 − 𝑣𝑛+1) : 0 ≤ 𝑚 ≤ 2 𝑗

}︁
.

Note that 𝐹𝑗 (𝑛) ⊆ 𝐹𝑗+1(𝑛) and put 𝐹 (𝑛) :=
⋃︁
𝑗≥0 𝐹𝑗 (𝑛). The set 𝐹 (𝑛) is dense in the 

interval [𝑣𝑛+1, 𝑣𝑛]. For any 𝑢 ∈ [𝑣𝑛+1, 𝑣𝑛], put

𝑢 𝑗 := max
{︁
𝑣 ∈ 𝐹𝑗 (𝑛) : 𝑣 ≤ 𝑢

}︁
= 𝑣𝑛+1 + 2− 𝑗 (𝑣𝑛 − 𝑣𝑛+1)

⌊︃
2 𝑗 (𝑢 − 𝑣𝑛+1)
𝑣𝑛 − 𝑣𝑛+1

⌋︃
.
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Then lim 𝑗→∞ 𝑢 𝑗 = 𝑢 (we omit the dependence on 𝑛 in the notation). An important 
observation is that either 𝑢 𝑗−1 = 𝑢 𝑗 or 𝑢 𝑗−1 = 𝑢 𝑗 − 2− 𝑗 (𝑣𝑛 − 𝑣𝑛+1). Consequently, 
𝑢 𝑗 = 𝑡 𝑗 ,𝑚 for some 0 ≤ 𝑚 ≤ 2 𝑗 , which implies that either 𝑢 𝑗−1 = 𝑡 𝑗 , 𝑚 or 𝑢 𝑗−1 =
𝑡 𝑗 , 𝑚−1. Since 𝑌𝑛 is a.s. continuous on [𝑣𝑛+1, 𝑣𝑛], we obtain

|𝑌𝑛 (𝑢) − 𝑌𝑛 (𝑣𝑛+1) | = lim 
𝑙→∞

|𝑌𝑛 (𝑢𝑙) − 𝑌𝑛 (𝑣𝑛+1) |

= lim 
𝑙→∞

⃓⃓⃓
⃓⃓ 𝑙∑︂
𝑗=1 

(︁
𝑌𝑛 (𝑢 𝑗 ) − 𝑌𝑛 (𝑢 𝑗−1)

)︁ + 𝑌𝑛 (𝑢0) − 𝑌𝑛 (𝑣𝑛+1)
⃓⃓⃓
⃓⃓

≤ lim 
𝑙→∞

𝑙∑︂
𝑗=0 

max 
1≤𝑚≤2 𝑗

|𝑌𝑛 (𝑡 𝑗 , 𝑚) − 𝑌𝑛 (𝑡 𝑗 , 𝑚−1) |

=
∑︂
𝑗≥0 

max 
1≤𝑚≤2 𝑗

|𝑌𝑛 (𝑡 𝑗 , 𝑚) − 𝑌𝑛 (𝑡 𝑗 , 𝑚−1) |.

Thus, our purpose is to prove that, for all 𝜀 > 0 and sufficiently large 𝑛0 ∈ N,

∑︂
𝑛≥𝑛0

P

{︃∑︂
𝑗≥0 

max 
1≤𝑚≤2 𝑗

𝑓 (𝑠𝑛) |𝑌𝑛 (𝑡 𝑗 , 𝑚) − 𝑌𝑛 (𝑡 𝑗 , 𝑚−1) | > 𝜀

}︃
< ∞.

Put 𝑎 𝑗 := ( 𝑗 + 1)2− 𝑗/2 for 𝑗 ∈ N0. In view of 
∑︁
𝑗≥0 𝑎 𝑗 < ∞, it suffices to show that, 

for all 𝜀 > 0,
∑︂
𝑛≥𝑛0

∑︂
𝑗≥0 

P

{︂
max 

1≤𝑚≤2 𝑗
𝑓 (𝑠𝑛) |𝑌𝑛 (𝑡 𝑗 , 𝑚) − 𝑌𝑛 (𝑡 𝑗 , 𝑚−1) | > 𝜀𝑎 𝑗

}︂
< ∞. (16)

Now we proceed similarly to the proof of Lemma 3 and refer to that proof regarding 
any missing details. Write, for 𝑢 ∈ R and sufficiently large 𝑛,

E
[︁
exp

(︁±𝑢(︁𝑌𝑛 (𝑡 𝑗 , 𝑚) − 𝑌𝑛 (𝑡 𝑗 , 𝑚−1)
)︁)︁]︁

= E

[︃
exp

(︃
±𝑢

∑︂
𝑘≥𝑀 (𝑠𝑛+1 )+1

1 
(𝑘 log 𝑘)1/2

(︃
1 

𝑘exp(−1/𝑡 𝑗, 𝑚 ) −
1 

𝑘exp(−1/𝑡 𝑗, 𝑚−1 )

)︃ˆ︁𝜂𝑘 (𝑛)
)︃]︃

≤
∏︂

𝑘≥𝑀 (𝑠𝑛+1 )+1
(1 + 𝑢2

2 
1 

𝑘 log 𝑘

(︃
1 

𝑘exp(−1/𝑡 𝑗, 𝑚 ) −
1 

𝑘exp(−1/𝑡 𝑗, 𝑚−1 )

)︃2

× E

[︃(︁ˆ︁𝜂𝑘 (𝑛))︁2 exp
(︃ |𝑢 | 
(𝑘 log 𝑘)1/2

(︃
1 

𝑘exp(−1/𝑡 𝑗, 𝑚 ) −
1 

𝑘exp(−1/𝑡 𝑗, 𝑚−1 )

)︃
|ˆ︁𝜂𝑘 (𝑛) |

)︃]︃
.

Now we prove that, for large 𝑛, all 𝑗 ∈ N0 and integer 𝑚 ∈ [0, 2 𝑗 ],

𝐴( 𝑗 , 𝑛) :=
∑︂

𝑘≥𝑀 (𝑠𝑛+1 )+1

1 
𝑘 log 𝑘

(︃
1 

𝑘exp(−1/𝑡 𝑗, 𝑚 ) −
1 

𝑘exp(−1/𝑡 𝑗, 𝑚−1 )

)︃2

≤ 2− 𝑗 (𝑣𝑛 − 𝑣𝑛+1)
𝑣2
𝑛+1

.



Limit theorems for random Dirichlet series 359

For fixed 𝑎, 𝑏 > 0, the function 𝑥 ↦→ 𝑥−1e−𝑥 (e−𝑎𝑥 − e−𝑏𝑥)2 is decreasing on (1,∞). 
Indeed, 𝑥 ↦→ 𝑥e−𝑥 is decreasing on (1,∞), and

𝑥 ↦→ e− min(𝑎,𝑏)𝑥𝑥−2(︁1 − e−(max(𝑎,𝑏)−min(𝑎,𝑏) )𝑥)︁2

is decreasing on (0,∞) as the product of two positive decreasing functions. As far as 
monotonicity of the second function is concerned, observe that, up to a multiplicative 
constant, it is the Laplace–Stieltjes transform of the Lebesgue–Stieltjes convolution 
of the uniform distribution on [0, 1] with itself. Using this argument with 𝑥 = log 𝑘 , 
𝑎 = exp(−1/𝑡 𝑗 , 𝑚) and 𝑏 = exp(−1/𝑡 𝑗 , 𝑚−1) we conclude that the function of argument 
𝑘 under the sum defining 𝐴( 𝑗 , 𝑛) is decreasing, whence

𝐴( 𝑗 , 𝑛) ≤
∫ ∞

e

1 
𝑥 log 𝑥

(︃
1 

𝑥2 exp(−1/𝑡 𝑗, 𝑚−1 ) +
1 

𝑥2 exp(−1/𝑡 𝑗, 𝑚 )

− 2 

𝑥exp(−1/𝑡 𝑗, 𝑚−1 )+exp(−1/𝑡 𝑗, 𝑚 )

)︃
d𝑥

=
∫ ∞

2 exp(−1/𝑡 𝑗, 𝑚−1 )

e−𝑥

𝑥
d𝑥 +

∫ ∞

2 exp(−1/𝑡 𝑗, 𝑚 )

e−𝑥

𝑥
d𝑥

− 2
∫ ∞

exp(−1/𝑡 𝑗, 𝑚−1 )+exp(−1/𝑡 𝑗, 𝑚 )

e−𝑥

𝑥
d𝑥 =

∫ 1

2 exp(−1/𝑡 𝑗, 𝑚−1 )

e−𝑥

𝑥
d𝑥

+
∫ 1

2 exp(−1/𝑡 𝑗, 𝑚 )

e−𝑥

𝑥
d𝑥 − 2

∫ 1

exp(−1/𝑡 𝑗, 𝑚−1 )+exp(−1/𝑡 𝑗, 𝑚 )

e−𝑥

𝑥
d𝑥.

Put 𝐼 (𝑦) :=
∫ 𝑦

0 𝑥−1(1 − e−𝑥)d𝑥 for 𝑦 ∈ [0, 1] and observe that
∫ 1

𝑦
𝑥−1e−𝑥d𝑥 = − log 𝑦 − 𝐼 (1) + 𝐼 (𝑦), 𝑦 ∈ (0, 1] .

The function 𝑥 ↦→ 𝑥−1(1 − e−𝑥) is decreasing on (0,∞) as the Laplace–Stieltjes 
transform of the uniform distribution on [0, 1]. Hence, 𝐼 is concave on [0, 1] and 
thereupon, for 𝑎, 𝑏 ∈ [0, 1], 𝐼 (2𝑎) + 𝐼 (2𝑏) − 2𝐼 (𝑎 + 𝑏) ≤ 0. As a consequence,

𝐴( 𝑗 , 𝑛) ≤ −2 log 2 + 1 
𝑡 𝑗 , 𝑚−1

+ 1 
𝑡 𝑗 , 𝑚

+ 2 log
(︁
e−1/𝑡 𝑗, 𝑚−1 + e−1/𝑡 𝑗, 𝑚)︁

≤ 𝑡 𝑗 , 𝑚 − 𝑡 𝑗 , 𝑚−1

𝑡 𝑗 , 𝑚−1𝑡 𝑗 , 𝑚
≤ 2− 𝑗 (𝑣𝑛 − 𝑣𝑛+1)

𝑣2
𝑛+1

, (17)

which proves the claim.
Next we work towards estimating

𝐵(𝑢, 𝑘, 𝑛) := exp
(︃ |𝑢 | 
(𝑘 log 𝑘)1/2

(︃
1 

𝑘exp(−1/𝑡 𝑗, 𝑚−1 ) −
1 

𝑘exp(−1/𝑡 𝑗, 𝑚 )

)︃
|ˆ︁𝜂𝑘 (𝑛) |

)︃

for 𝑘 ≥ 𝑀 (𝑠𝑛+1) + 1. Assume first that 2 𝑗 ≥ 𝑣−2
𝑛+1(𝑣𝑛 − 𝑣𝑛+1). Observe that, for 𝑎 > 0

and 0 < 𝑠 < 𝑡,

0 ≤ exp
(︁−𝑎e−1/𝑠)︁ − exp

(︁−𝑎e−1/𝑡)︁ ≤ 𝑎 exp
(︁−𝑎e−1/𝑠)︁e−1/𝑡 (1/𝑠 − 1/𝑡).
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Using this inequality with 𝑎 = log 𝑘 , 𝑡 = 𝑡 𝑗 , 𝑚−1 and 𝑠 = 𝑡 𝑗 , 𝑚 we obtain

0 ≤ 1 

𝑘exp(−1/𝑡 𝑗, 𝑚−1 ) −
1 

𝑘exp(−1/𝑡 𝑗, 𝑚 ) ≤ log 𝑘 

𝑘exp(−1/𝑡 𝑗, 𝑚−1 ) e−1/𝑡 𝑗, 𝑚
(︃

1 
𝑡 𝑗 , 𝑚−1

− 1 
𝑡 𝑗 , 𝑚

)︃
.

In view of the inequality 𝑥e−𝑎𝑥 ≤ (e𝑎)−1 for 𝑥 ≥ 0, we conclude that the right-hand 
side does not exceed

1
e 

e1/𝑡 𝑗, 𝑚−1−1/𝑡 𝑗, 𝑚
(︃

1 
𝑡 𝑗 , 𝑚−1

− 1 
𝑡 𝑗 , 𝑚

)︃

≤ 1
e 

exp
(︃

2− 𝑗 (𝑣𝑛 − 𝑣𝑛+1)
𝑣2
𝑛+1

)︃
2− 𝑗 (𝑣𝑛 − 𝑣𝑛+1)

𝑣2
𝑛+1

≤ 2− 𝑗 (𝑣𝑛 − 𝑣𝑛+1)
𝑣2
𝑛+1

,

where the last inequality is justified by our present choice of 𝑗 . Thus,

𝐵(𝑢, 𝑘, 𝑛) ≤ |𝑢 |2− 𝑗 log 𝑛 
(log 𝑀 (𝑠𝑛+1))1/2

𝑣𝑛 − 𝑣𝑛+1

𝑣2
𝑛+1

=: 𝐶 𝑗 (𝑢, 𝑛)

whenever 𝑘 ≥ 𝑀 (𝑠𝑛+1) + 1.
Assume now that 2 𝑗 ≤ 𝑣−2

𝑛+1(𝑣𝑛 − 𝑣𝑛+1) for nonnegative integer 𝑗 . Using a trivial 
estimate

1 

𝑘exp(−1/𝑡 𝑗, 𝑚−1 ) −
1 

𝑘exp(−1/𝑡 𝑗, 𝑚 ) ≤ 1

we infer

𝐵(𝑢, 𝑘, 𝑛) ≤ |𝑢 | log 𝑛 
(log 𝑀 (𝑠𝑛+1))1/2 =: 𝐶 𝑗 (𝑢, 𝑛)

whenever 𝑘 ≥ 𝑀 (𝑠𝑛+1) + 1.
Using now 1 + 𝑥 ≤ e𝑥 for 𝑥 ∈ R we arrive at

E
[︁
exp

(︁±𝑢(︁𝑌𝑛 (𝑡 𝑗 , 𝑚) − 𝑌𝑛 (𝑡 𝑗 , 𝑚−1)
)︁)︁]︁

≤ exp
(︃
𝑢2

2 
2− 𝑗 (𝑣𝑛 − 𝑣𝑛+1)

𝑣2
𝑛+1

e𝐶 𝑗 (𝑢,𝑛)
)︃
, 𝑢 ∈ R.

By Markov’s inequality and the inequality e𝑢 |𝑥 | ≤ e𝑢𝑥 + e−𝑢𝑥 for 𝑥 ∈ R,

P
{︁
𝑓 (𝑠𝑛) |𝑌𝑛 (𝑡 𝑗 , 𝑚) − 𝑌𝑛 (𝑡 𝑗 , 𝑚−1) | > 𝜀𝑎 𝑗

}︁
≤ exp

(︃
−𝑢 𝜀𝑎 𝑗

𝑓 (𝑠𝑛)

)︃
E
[︁
exp

(︁
𝑢 |𝑌𝑛 (𝑡 𝑗 , 𝑚) − 𝑌𝑛 (𝑡 𝑗 , 𝑚−1) |

)︁]︁
≤ 2 exp

(︃
− 𝑢𝜀𝑎 𝑗

𝑓 (𝑠𝑛)
+ 𝑢2

2 
2− 𝑗 (𝑣𝑛 − 𝑣𝑛+1)

𝑣2
𝑛+1

e𝐶 𝑗 (𝑢,𝑛)
)︃
.

Put

𝑢 =
𝜀2 𝑗/2

𝑓 (𝑠𝑛)
𝑣2
𝑛+1

𝑣𝑛 − 𝑣𝑛+1
and 𝑘𝑛 :=

1 
( 𝑓 (𝑠𝑛))2

𝑣2
𝑛+1

𝑣𝑛 − 𝑣𝑛+1
.
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In view of

(︁
log 𝑀 (𝑠𝑛+1)

)︁−1/2 ∼ 𝑛𝛾/2−1/2, 
(︃

𝑣𝑛+1
𝑣𝑛 − 𝑣𝑛+1

)︃1/2
∼ (1 − 𝛾)−1/2𝑛𝛾/2, 𝑛 → ∞,

and
lim 
𝑛→∞(log 1/𝑠𝑛)𝑣𝑛+1 = 1,

we conclude that, for 𝑗 satisfying 2 𝑗 ≥ 𝑣−2
𝑛+1(𝑣𝑛 − 𝑣𝑛+1),

𝐶 𝑗 (𝑢, 𝑛) = |𝑢 |2− 𝑗 log 𝑛 
(log 𝑀 (𝑠𝑛+1))1/2

𝑣𝑛 − 𝑣𝑛+1

𝑣2
𝑛+1

=
𝜀2− 𝑗/2 log 𝑛 

𝑓 (𝑠𝑛)(log 𝑀 (𝑠𝑛+1))1/2

≤ 𝜀 log 𝑛 
𝑓 (𝑠𝑛)(log 𝑀 (𝑠𝑛+1))1/2

𝑣𝑛+1

(𝑣𝑛 − 𝑣𝑛+1)1/2

=
𝜀21/2 ((log 1/𝑠𝑛)𝑣𝑛+1)1/2 (log(3) 1/𝑠𝑛)1/2 log 𝑛

(log 𝑀 (𝑠𝑛+1))1/2

(︃
𝑣𝑛+1

𝑣𝑛 − 𝑣𝑛+1

)︃1/2

∼ 𝜀21/2𝑛𝛾−1/2(log 𝑛)3/2 → 0, 𝑛 → ∞.

For nonnegative integer 𝑗 satisfying 2 𝑗 ≤ 𝑣−2
𝑛+1(𝑣𝑛 − 𝑣𝑛+1), 𝐶 𝑗 (𝑢, 𝑛) admits the same 

upper bound:

𝐶 𝑗 (𝑢, 𝑛) = |𝑢 | log 𝑛 
(log 𝑀 (𝑠𝑛+1))1/2 =

𝜀2 𝑗/2 log 𝑛 
𝑓 (𝑠𝑛)(log 𝑀 (𝑠𝑛+1))1/2

𝑣2
𝑛+1

𝑣𝑛 − 𝑣𝑛+1

≤ 𝜀 log 𝑛 
𝑓 (𝑠𝑛)(log 𝑀 (𝑠𝑛+1))1/2

𝑣𝑛+1

(𝑣𝑛 − 𝑣𝑛+1)1/2 → 0, 𝑛 → ∞.

Therefore, for sufficiently large 𝑛 such that 𝑘𝑛 > 𝜀−2 log 2 and e𝐶 𝑗 (𝑢,𝑛) ≤ 3/2,
∑︂
𝑗≥0 

P

{︂
max 

1≤𝑚≤2 𝑗
𝑓 (𝑠𝑛) |𝑌𝑛 (𝑡 𝑗 , 𝑚) − 𝑌𝑛 (𝑡 𝑗 , 𝑚−1) | > 𝜀𝑎 𝑗

}︂

≤
∑︂
𝑗≥0 

2 𝑗2 exp
(︁−𝜀2 ( 𝑗 + 1)𝑘𝑛

)︁
exp

(︁
3𝜀2𝑘𝑛/4

)︁
=

2 exp(−𝜀2𝑘𝑛/4) 
1 − 2 exp(−𝜀2𝑘𝑛)

.

Since 𝑘𝑛 ∼ 2𝑛𝛾 log 𝑛 as 𝑛 → ∞, (16) follows.
Now we comment on the reason behind the passage from 𝑌 ∗

𝑛 to 𝑌𝑛 via a logarithmic 
transformation. In order to have in the present context a successful approximation 
with the help of a dyadic partition of an interval [𝜆𝑛+1, 𝜆𝑛], say, the endpoints should 
satisfy lim𝑛→∞(𝜆𝑛/𝜆𝑛+1) = 1. This is the case for 𝜆𝑛 = 𝑣𝑛 and not the case for 
𝜆𝑛 = 𝑠𝑛. □

We are prepared to prove Proposition 3.

Proof of Proposition 3. We only prove (4) because (5) follows from (4) by replacing 
𝜂𝑘 with −𝜂𝑘 . Recall our convention that 𝜎2 = 1.
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Choose any 𝛾 > 0 sufficiently close to 0, put 𝑠𝑛 = exp(− exp(𝑛1−𝛾)) for 𝑛 ∈ N

and select 𝜌 = 𝜌(𝛾) such that (10) holds true. Let 𝑀 (𝑠) = ⌊log 1/𝑠/log log 1/𝑠⌋ for 
𝑠 ∈ (0, e−e). By Lemmas 2 and 3 and the fact that E[𝜂𝑘1(𝐴𝑘,𝜌 (𝑠) )𝑐 ] = −E[𝜂𝑘1𝐴𝑘,𝜌 (𝑠) ],

lim sup
𝑛→∞ 

𝑓 (𝑠𝑛)
∑︂

𝑘≥𝑀 (𝑠𝑛 )+1

(log 𝑘)−1/2

𝑘1/2+𝑠𝑛 𝜂𝑘 ≤ 1 + 𝛾 a.s. (18)

Lemma 4 in combination with relation (18) secures

lim sup
𝑠→0+ 

𝑓 (𝑠)
∑︂

𝑘≥𝑀 (𝑠)+1

(log 𝑘)−1/2

𝑘1/2+𝑠 𝜂𝑘 ≤ 1 + 𝛾 a.s.

Finally, by Lemma 1,

lim sup
𝑠→0+ 

𝑓 (𝑠)
∑︂
𝑘≥2

(log 𝑘)−1/2

𝑘1/2+𝑠 𝜂𝑘 ≤ 1 + 𝛾 a.s.,

which entails (4) because the left-hand side does not depend on 𝛾. □

Proposition 4. Under the assumptions of Theorem 2,

lim sup
𝑠→0+ 

(︃
1 

log 1/𝑠 log(3) 1/𝑠

)︃1/2 ∑︂
𝑘≥2

(log 𝑘)−1/2

𝑘1/2+𝑠 𝜂𝑘 ≥
(︁
2𝜎2)︁1/2 a.s. (19)

and

lim inf
𝑠→0+ 

(︃
1 

log 1/𝑠 log(3) 1/𝑠

)︃1/2 ∑︂
𝑘≥2

(log 𝑘)−1/2

𝑘1/2+𝑠 𝜂𝑘 ≤ −(︁2𝜎2)︁1/2 a.s. (20)

Proposition 4 will be proved by using Lemmas 1 and 2, together with two additional 
lemmas. In the first of these, we show that an initial and a final fragments of the series 
in question do not contribute to the LIL.

As before, we assume without further notice that the assumptions of Theorem 2
hold true and that 𝜎2 = 1. When proving Proposition 4 we use the sets 𝐴𝑘,𝜌 (𝑠) and 
the corresponding variables ˜︁𝜂𝑘,𝜌 (𝑠) with 𝜌 = 1.
Lemma 5. Fix any 𝛾 > 0 and put 𝔰𝑛 := exp(− exp(𝑛1+𝛾)) for 𝑛 ≥ 1. Let 𝑁1
and 𝑁2 be functions which take positive integer values, may depend on 𝛾 and 
satisfy 𝑁1 (𝑠) ≥ 2 for small positive 𝑠, lim𝑠→0+(log log 𝑁1(𝑠)/log 1/𝑠) = 0, 
lim𝑠→0+(log log 𝑁2 (𝑠)/log 1/𝑠) = 1 and lim𝑠→0+ 𝑠 log 𝑁2(𝑠) = 0. Then

lim 
𝑛→∞ 𝑓 (𝔰𝑛)

𝑁1 (𝔰𝑛 )∑︂
𝑘=2 

(log 𝑘)−1/2

𝑘1/2+𝔰𝑛 ˜︁𝜂𝑘,1 (𝔰𝑛) = 0 a.s. (21)

and

lim 
𝑛→∞ 𝑓 (𝔰𝑛)

∑︂
𝑘≥𝑁2 (𝔰𝑛 )+1

(log 𝑘)−1/2

𝑘1/2+𝔰𝑛 ˜︁𝜂𝑘,1 (𝔰𝑛) = 0 a.s. (22)
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Proof. As in the proof of Lemma 3, we obtain the result, with 𝑓 ∗ replacing 𝑓 . For 
𝑠 > 0 close to 0, put

𝑍1(𝑠) := 𝑓 ∗(𝑠)
𝑁1 (𝑠)∑︂
𝑘=2 

(log 𝑘)−1/2

𝑘1/2+𝑠 ˜︁𝜂𝑘,1(𝑠).
The reasoning used to derive both (21) and (22) is similar to the one applied in the 
proof of Lemma 3. Therefore, we give a proof of (21) and indicate the only minor 
change needed for a proof of (22).

Regarding (21), in view of the direct part of the Borel–Cantelli lemma, it is 
sufficient to demonstrate that, for all 𝜀 > 0,∑︂

𝑛≥1
P
{︁
𝑍1(𝔰𝑛) > 𝜀

}︁
< ∞. (23)

To this end, we obtain a counterpart of (12), for 𝑢 ∈ R,

E
[︁
e𝑢𝑍1 (𝑠)]︁ ≤ exp

(︄
𝑢2( 𝑓 ∗(𝑠))2

2 

𝑁1 (𝑠)∑︂
𝑘=2 

(log 𝑘)−1

𝑘1+2𝑠 exp
(︃ √

2|𝑢 | 
log(3) 1/𝑠

)︃)︄
.

For each fixed 𝑠 > 0, the function 𝑥 → (log 𝑥)−1𝑥−1−2𝑠 is decreasing on (1,∞). 
The assumption lim𝑠→0+(log log 𝑁1(𝑠)/log 1/𝑠) = 0 entails lim𝑠→0+ 𝑠 log 𝑁1(𝑠) = 0. 
Hence,

𝑁1 (𝑠)∑︂
𝑘=2 

(log 𝑘)−1

𝑘1+2𝑠 ≤ (log 2)−1

21+2𝑠 +
∫ 𝑁1 (𝑠)

2

(log 𝑥)−1

𝑥1+2𝑠 d𝑥

= 𝑂 (1) +
∫ 2𝑠 log 𝑁1 (𝑠)

(2 log 2)𝑠
𝑦−1e−𝑦d𝑦 = 𝑂

(︁
log log 𝑁1(𝑠)

)︁
, 𝑠 → 0+.

(24)

Our choice of 𝑁1 guarantees that there exists an 𝑟 > 0 close to 0 and such that

𝑁1 (𝑠)∑︂
𝑘=2 

(log 𝑘)−1

𝑘1+2𝑠 ≤ 𝑟𝑔(𝑠)

for small positive 𝑠, and also (1 − 𝛿)(1 + 𝛾) > 1, where 𝛿 := 𝑟 (4𝜀2)−1 exp(
√

2𝜀−1)
with 𝜀 appearing in (23). Then, for 𝑢 ∈ R and small 𝑠 > 0,

E
[︁
e𝑢𝑍1 (𝑠)]︁ ≤ exp

(︃
𝑟𝑢2𝑔(𝑠)( 𝑓 ∗(𝑠))2

2 
exp

(︃ √
2|𝑢 | 

log(3) 1/𝑠

)︃)︃

= exp
(︃

𝑟𝑢2

4 log(3) 1/𝑠
exp

(︃ √
2|𝑢 | 

log(3) 1/𝑠

)︃)︃
.

Applying Markov’s inequality with 𝑢 = (1/𝜀) log(3) 1/𝔰𝑛 yields, for large 𝑛,

P
{︁
𝑍1(𝔰𝑛) > 𝜀

}︁ ≤ e−𝑢𝜀E
[︁
e𝑢𝑍1 (𝔰𝑛 )]︁ ≤ exp

(︁−(︁1 − 𝑟
(︁
4𝜀2)︁−1e

√
2𝜀−1)︁

log(3) 1/𝔰𝑛
)︁
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=
1 

𝑛(1−𝛿 ) (1+𝛾)
,

thereby proving (23) and hence (21).
The proof of (22) is analogous to that of (21). The corresponding version of (24)

reads
∑︂

𝑘≥𝑁2 (𝑠)+1

(log 𝑘)−1

𝑘1+2𝑠 ≤
∫ ∞

𝑁2 (𝑠)

(log 𝑥)−1

𝑥1+2𝑠 d𝑥 =
∫ ∞

2𝑠 log 𝑁2 (𝑠)
𝑦−1e−𝑦d𝑦 = 𝑜(1) (25)

as 𝑠 → 0+. □

Lemma 6 treats the component of the series in question which gives a principal 
contribution to the LIL. Our proof is based on the converse part of the Borel–Cantelli 
lemma, which requires independence. The independence requirement complicates to 
some extent a selection of the essential component.
Lemma 6. Fix sufficiently small 𝛿 > 0, pick 𝛾 > 0 satisfying (1 + 𝛾)(1 − 𝛿2/8) < 1
and let, as before, 𝔰𝑛 = exp(− exp(𝑛1+𝛾)) for 𝑛 ∈ N. Then

lim sup
𝑛→∞ 

𝑓 (𝔰𝑛)
∑︂
𝑘≥2

(log 𝑘)−1/2

𝑘1/2+𝔰𝑛 ˜︁𝜂𝑘,1 (𝔰𝑛) ≥ 1 − 𝛿 a.s.

Proof. Functions 𝑠 ↦→ log log 𝑁1(𝑠)/log 1/𝑠 in Lemma 5 can tend to 0 as fast as we 
please. Observe that lim𝑛→∞(𝔰𝑛+1/𝔰𝑛) = ∞. Thus, we can choose 𝑁1 satisfying

log log 𝑁1(𝔰𝑛+1)
log 1/𝔰𝑛

=
log log 𝑁1 (𝔰𝑛+1)

log 1/𝔰𝑛+1

log 1/𝔰𝑛+1
log 1/𝔰𝑛

→ +∞, 𝑛 → ∞.

Let 𝑁2 be any function satisfying the assumptions of Lemma 5. Since

lim 
𝑛→∞

log log 𝑁2 (𝔰𝑛)
log 1/𝔰𝑛

= 1,

we conclude that there exists 𝑛0 ∈ N such that

log log 𝑁1(𝔰𝑛+1)
log 1/𝔰𝑛

≥ log log 𝑁2 (𝔰𝑛)
log 1/𝔰𝑛

for all 𝑛 ≥ 𝑛0,

whence
𝑁1 (𝔰𝑛+1) ≥ 𝑁2 (𝔰𝑛), 𝑛 ≥ 𝑛0. (26)

In view of Lemma 5, it is sufficient to check that

lim sup
𝑛→∞ 

𝑍2(𝔰𝑛) ≥ 1 − 𝛿 a.s., (27)

where, for small 𝑠 > 0,

𝑍2(𝑠) := 𝑓 (𝑠)
𝑁2 (𝑠) ∑︂

𝑘=𝑁1 (𝑠)+1

(log 𝑘)−1/2

𝑘1/2+𝑠 ˜︁𝜂𝑘,1 (𝑠).
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We shall prove that there exists 𝑠 > 0 such that for all 𝑠 ∈ (0, 𝑠),

P
{︁
𝑍2(𝑠) > 1 − 𝛿

}︁ ≥ 3−1e−(1−𝛿2/8) log(3) 1/𝑠 . (28)

As a consequence,
∑︂
𝑛≥𝑛1

P
{︁
𝑍2(𝔰𝑛) > 1 − 𝛿

}︁ ≥ 3−1
∑︂
𝑛≥𝑛1

1 

𝑛(1+𝛾) (1−𝛿2/8) = ∞,

where 𝑛1 ≥ 𝑛0 is chosen to ensure that 𝔰𝑛 < 𝑠 for 𝑛 ≥ 𝑛1. In view of (26) the 
random variables 𝑍2(𝔰𝑛1 ), 𝑍2(𝔰𝑛1+1), . . . are independent. Hence, divergence of the 
series entails (27) by the converse part of the Borel–Cantelli lemma.

When proving (28) we use the event

𝑈𝑠 :=
{︁

1 − 𝛿 < 𝑍2(𝑠) ≤ 1
}︁
=
{︁(1 − 𝛿)𝑉 (𝑠) < 𝑊 (𝑠)/(︁𝑔(𝑠))︁1/2 ≤ 𝑉 (𝑠)}︁,

where 𝑉 (𝑠) = (2 log(3) 1/𝑠)1/2 and

𝑊 (𝑠) :=
𝑍2(𝑠)
𝑓 (𝑠) =

𝑁2 (𝑠) ∑︂
𝑘=𝑁1 (𝑠)+1

(log 𝑘)−1/2

𝑘1/2+𝑠 ˜︁𝜂𝑘,1 (𝑠).
For 𝑢 ∈ R and small 𝑠 > 0, let Q𝑠,𝑢 be a probability measure on (Ω,𝔉) defined by

Q𝑠,𝑢 (𝐴) = E[e𝑢𝑊 (𝑠)/(𝑔 (𝑠) )1/2
1𝐴]

E[e𝑢𝑊 (𝑠)/(𝑔 (𝑠) )1/2] , 𝐴 ∈ 𝔉. (29)

Then

E
[︁
e𝑢(𝑊 (𝑠)/(𝑔 (𝑠) )1/2−𝑉 (𝑠) )]︁Q𝑠,𝑢 (𝑈𝑠) = e−𝑢𝑉 (𝑠)E

[︁
e𝑢𝑊 (𝑠)/(𝑔 (𝑠) )1/2

1𝑈𝑠

]︁
≤ P(𝑈𝑠) ≤ P

{︁
𝑍2(𝑠) > 1 − 𝛿

}︁
. (30)

Now we show that by selecting an appropriate 𝑢 = 𝑢(𝑠) = 𝑂 ((log(3) 1/𝑠)1/2), the 
expectation on the left-hand side of (30) is bounded from below by e−(1−𝛿2/8) log(3) 1/𝑠

for small positive 𝑠. Also, we shall prove that Q𝑠,𝑢(𝑈𝑠) ≥ 1/3, thereby deriving (28).
We start by demonstrating that, with 𝑢 = 𝑂 ((log(3) 1/𝑠)1/2),

E
[︁
e𝑢𝑊 (𝑠)/(𝑔 (𝑠) )1/2]︁ ∼ e𝑢

2/2+𝑢2ℎ(𝑠) , 𝑠 → 0+, (31)

for some function ℎ satisfying lim𝑠→0+ ℎ(𝑠) = 0. Put

𝜉𝑘 (𝑠) = (log 𝑘)−1/2

(𝑔(𝑠))1/2𝑘1/2+𝑠 ˜︁𝜂𝑘,1(𝑠), 𝑘 ≥ 2, 𝑠 ∈ (︁
0, e−e)︁.

As a consequence, for 𝑢 ∈ R,

𝑢𝑊 (𝑠)/(︁𝑔(𝑠))︁1/2
=

𝑁2 (𝑠) ∑︂
𝑘=𝑁1 (𝑠)+1

𝑢𝜉𝑘 (𝑠). (32)
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According to the second inequality in (11),

|𝑢𝜉𝑘 (𝑠) | = 𝑂 (1/log log 1/𝑠) = 𝑜(1), 𝑠 → 0+ a.s.

for each 𝑘 ≥ 2. Using

e𝑥 = 1 + 𝑥 + 𝑥2/2 + 𝑜
(︁
𝑥2)︁ and log(1 + 𝑥) = 𝑥 +𝑂

(︁
𝑥2)︁, 𝑥 → 0,

we obtain

E
[︁
e𝑢𝑊 (𝑠)/(𝑔 (𝑠) )1/2]︁
=

𝑁2 (𝑠) ∏︂
𝑘=𝑁1 (𝑠)+1

E
[︁
exp

(︁
𝑢𝜉𝑘 (𝑠)

)︁]︁

=
𝑁2 (𝑠) ∏︂

𝑘=𝑁1 (𝑠)+1
E
[︁
1 + 𝑢𝜉𝑘 (𝑠) + 𝑢2𝜉2

𝑘 (𝑠)
(︁
1/2 + 𝑜(1))︁]︁

= exp
𝑁2 (𝑠) ∑︂

𝑘=𝑁1 (𝑠)+1
log

(︁
1 + 𝑢2E

[︁
𝜉2
𝑘 (𝑠)

(︁
1/2 + 𝑜(1))︁]︁)︁

= exp

(︄
𝑢2(︁1/2 + 𝑜(1))︁ 𝑁2 (𝑠) ∑︂

𝑘=𝑁1 (𝑠)+1
E
[︁
𝜉2
𝑘 (𝑠)

]︁ + 𝑢4𝑂

(︄
𝑁2 (𝑠) ∑︂

𝑘=𝑁1 (𝑠)+1

(︁
E
[︁
𝜉2
𝑘 (𝑠)

]︁)︁2
)︄)︄

.

(33)

Here, we have used the fact that the 𝑜(1) term can be chosen nonrandom. In view of 
(24) and (25),

𝑁2 (𝑠) ∑︂
𝑘=𝑁1 (𝑠)+1

(log 𝑘)−1

𝑘1+2𝑠 ∼ 𝑔(𝑠), 𝑠 → 0+.

The latter, combined with uniformity in the integer 𝑘 ∈ [𝑁1(𝑠) +1, 𝑁2(𝑠)] of the limit 
relation

E
[︁˜︁𝜂2
𝑘,1 (𝑠)

]︁
= E

[︁
𝜂2
𝑘1(𝐴𝑘,1 (𝑠) )𝑐

]︁ − (︁
E[𝜂𝑘1(𝐴𝑘,1 (𝑠) )𝑐 ]

)︁2 → 1, 𝑠 → 0+,

results in

𝑁2 (𝑠) ∑︂
𝑘=𝑁1 (𝑠)+1

E
[︁
𝜉2
𝑘 (𝑠)

]︁
=

1 
𝑔(𝑠)

𝑁2 (𝑠) ∑︂
𝑘=𝑁1 (𝑠)+1

(log 𝑘)−1

𝑘1+2𝑠 E
[︁˜︁𝜂2
𝑘,1 (𝑠)

]︁ → 1, 𝑠 → 0+. (34)

Finally,

𝑢2
𝑁2 (𝑠) ∑︂

𝑘=𝑁1 (𝑠)+1

(︁
E
[︁
𝜉2
𝑘 (𝑠)

]︁)︁2
=

𝑢2

(𝑔(𝑠))2

𝑁2 (𝑠) ∑︂
𝑘=𝑁1 (𝑠)+1

(log 𝑘)−2

𝑘2+4𝑠

(︁
E
[︁˜︁𝜂2
𝑘,1 (𝑠)

]︁)︁2

≤ 𝑢2

(𝑔(𝑠))2

∑︂
𝑘≥𝑁1 (𝑠)+1

(log 𝑘)−2

𝑘2 = 𝑜(1), 𝑠 → 0+, (35)
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because both factors converge to 0 as 𝑠 → 0+. Now relations (33), (34) and (35) entail 
(31).

Formula (31), with 𝑢 ∈ R fixed, reads lim𝑠→0+ E[e𝑢𝑊 (𝑠)/(𝑔 (𝑠) )1/2] = e𝑢2/2, which 

implies a central limit theorem 𝑊 (𝑠)/(𝑔(𝑠))1/2 d → 𝒩 (0, 1) as 𝑠 → 0+. Here, d →
denotes convergence in distribution and 𝒩 (0, 1) denotes a random variable with the 
normal distribution with mean 0 and variance 1.

Passing to the proof of (28), put

𝑢 = 𝑢(𝑠) =
√

2(1 − 𝛿/2)(︁log(3) 1/𝑠)︁1/2
.

Formula (31) entails

E
[︁
e𝑢(𝑊 (𝑠)/(𝑔 (𝑠) )1/2−𝑉 (𝑠) )]︁ = e−(1−𝛿2/4) log(3) 1/𝑠+𝑜(log(3) 1/𝑠)

≥ e−(1−𝛿2/8) log(3) 1/𝑠 (36)

for small 𝑠 > 0. Now we show that the Q𝑠,𝑢-distribution of

𝑊 (𝑠)/(︁𝑔(𝑠))︁1/2 − (︁
𝑢 + 2𝑢ℎ(𝑠))︁

converges weakly as 𝑠 → 0+ to the P-distribution of 𝒩 (0, 1). To this end, we prove 
convergence of the moment generating functions. Let EQ𝑠,𝑢 denote the expectation 
with respect to the probability measure Q𝑠,𝑢. Invoking (31) we conclude that, for 
𝑡 ∈ R,

EQ𝑠,𝑢

[︁
e𝑡 (𝑊 (𝑠)/(𝑔 (𝑠) )1/2−(𝑢+2𝑢ℎ(𝑠) ) )]︁ ∼ E[e(𝑡+𝑢)𝑊 (𝑠)/(𝑔 (𝑠) )1/2]

E[e𝑢𝑊 (𝑠)/(𝑔 (𝑠) )1/2] e−𝑡 (𝑢+2𝑢ℎ(𝑠) )

= exp
(︁(𝑡 + 𝑢)2/2 + (𝑡 + 𝑢)2ℎ(𝑠) − 𝑢2/2 − 𝑢2ℎ(𝑠) − 𝑡

(︁
𝑢 + 2𝑢ℎ(𝑠))︁)︁

= exp
(︁(︁

1/2 + ℎ(𝑠))︁𝑡2)︁ → exp
(︁
𝑡2/2

)︁
= E

[︁
exp

(︁
𝑡 𝒩 (0, 1))︁]︁, 𝑠 → 0+.

As a consequence of the weak convergence, we infer

lim sup
𝑠→0+ 

Q𝑠,𝑢
{︁
𝑊 (𝑠)/(︁𝑔(𝑠))︁1/2 ≤ (1 − 𝛿)𝑉 (𝑠)}︁

≤ lim 
𝑠→0+

Q𝑠,𝑢
{︁
𝑊 (𝑠)/(︁𝑔(𝑠))︁1/2 ≤ 𝑢 + 2𝑢ℎ(𝑠)}︁ = P

{︁𝒩 (0, 1) ≤ 0
}︁
= 1/2.

Further, the relation lim𝑠→0+(𝑉 (𝑠) − (𝑢 + 2𝑢ℎ(𝑠))) = +∞ entails

lim 
𝑠→0+

Q𝑠,𝑢
{︁
𝑊 (𝑠)/(︁𝑔(𝑠))︁1/2 ≤ 𝑉 (𝑠)}︁ = 1

and thereupon

Q𝑠,𝑢 (𝑈𝑠) = Q𝑠,𝑢
{︁
𝑊 (𝑠)/(︁𝑔(𝑠))︁1/2 ≤ 𝑉 (𝑠)}︁

− Q𝑠,𝑢
{︁
𝑊 (𝑠)/(︁𝑔(𝑠))︁1/2 ≤ (1 − 𝛿)𝑉 (𝑠)}︁ ≥ 1/3 (37)

for small 𝑠 > 0. Now (28) follows from (30), (36) and (37). The proof of Lemma 6 is 
complete. □
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Proof of Proposition 4. It suffices to prove (19). To this end, pick sufficiently small 
𝛿 > 0 and 𝛾 > 0, and let 𝔰𝑛 = exp(− exp(𝑛1+𝛾)) for 𝑛 ≥ 1. We shall invoke a 
representation

𝑓 (𝔰𝑛)
∑︂
𝑘≥2

(log 𝑘)−1/2

𝑘1/2+𝔰𝑛 𝜂𝑘

= 𝑓 (𝔰𝑛)
⌊ (log 1/𝔰𝑛 )1/2 ⌋∑︂

𝑘=2 

(log 𝑘)−1/2

𝑘1/2+𝔰𝑛 𝜂𝑘

− 𝑓 (𝔰𝑛)
⌊ (log 1/𝔰𝑛 )1/2 ⌋∑︂

𝑘=2 

(log 𝑘)−1/2

𝑘1/2+𝔰𝑛
(︁
𝜂𝑘1(𝐴𝑘,1 (𝔰𝑛 ) )𝑐 − E[𝜂𝑘1(𝐴𝑘,1 (𝔰𝑛 ) )𝑐 ]

)︁

+ 𝑓 (𝔰𝑛)
∑︂

𝑘≥⌊ (log 1/𝔰𝑛 )1/2 ⌋+1

(log 𝑘)−1/2

𝑘1/2+𝔰𝑛
(︁
𝜂𝑘1𝐴𝑘,1 (𝔰𝑛 ) − E[𝜂𝑘1𝐴𝑘,1 (𝔰𝑛 ) ]

)︁

+ 𝑓 (𝔰𝑛)
∑︂
𝑘≥2

(log 𝑘)−1/2

𝑘1/2+𝔰𝑛
(︁
𝜂𝑘1(𝐴𝑘,1 (𝔰𝑛 ) )𝑐 − E[𝜂𝑘1(𝐴𝑘,1 (𝔰𝑛 ) )𝑐 ]

)︁
.

Here, we have used that E[𝜂] = 0. The first three terms on the right-hand side converge 
to 0 a.s. as 𝑛 → ∞ by Lemma 1, formula (21) of Lemma 5, with 𝑁1(𝑠) = 𝑀 (𝑠) =
⌊(log 1/𝑠)1/2⌋, and Lemma 2, respectively. Lemma 6 ensures that

lim sup
𝑠→0+ 

𝑓 (𝑠)
∑︂
𝑘≥2

(log 𝑘)−1/2

𝑘1/2+𝑠 𝜂𝑘 ≥ lim sup
𝑛→∞ 

𝑓 (𝔰𝑛)
∑︂
𝑘≥2

(log 𝑘)−1/2

𝑘1/2+𝔰𝑛 𝜂𝑘 ≥ 1 − 𝛿 a.s.

Sending 𝛿 to 0+ we arrive at (19). □

Proof of Theorem 2. A combination of Propositions 3 and 4 yields (2) and (3). To 
prove (1) we put 𝐻 := {𝑧 ∈ C : Re 𝑧 > 0} and

𝑋 (𝑧) :=
∑︂
𝑘≥2

(log 𝑘)−1/2

𝑘1/2+𝑧 𝜂𝑘 , 𝑧 ∈ 𝐻,

and note that the so defined 𝑋 is a random analytic function, see p. 247 in [5]. Hence, 
its restriction to positive arguments

𝑠 → 𝑋 (𝑠) =
∑︂
𝑘≥2

(log 𝑘)−1/2𝑘−1/2−𝑠𝜂𝑘

is a.s. continuous, and so is 𝑠 ↦→ (2𝜎2 log 1/𝑠 log(3) 1/𝑠)−1/2𝑋 (𝑠) on (0, e−e). In 
view of (2) and (3), we obtain (1) with the help of the intermediate value theorem for 
continuous functions. □

4 Proof of Theorem 1

It is more convenient to prove the result in an equivalent form(︃
1 

𝑠1/2

∑︂
𝑘≥2

(log 𝑘)−1/2

𝑘1/2+exp(−𝑡𝑠) 𝜂𝑘

)︃
𝑡≥0

=⇒ 
(︁
𝜎𝐵(𝑡))︁

𝑡≥0, 𝑠 → +∞,
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on 𝐶 [0,∞). Without loss of generality we can and do assume that 𝜎2 = 1.
In what follows we write 𝑋 for 𝑋−1/2. We use a standard approach, which consists 

of two steps: (a) proving weak convergence of finite-dimensional distributions; (b) 
checking tightness.
(a) If 𝑡 = 0, then, for 𝑠 > 0, 𝑋 (e−𝑡𝑠) = 𝑋 (1) =

∑︁
𝑘≥2 (log 𝑘)−1/2𝑘−3/2𝜂𝑘 , and 

𝑠−1/2𝑋 (1) converges in probability to 𝐵(0) = 0 as 𝑠 → +∞.
Thus, it suffices to show that, for 𝑡1, 𝑡2 ∈ (0,∞) (we do not need to consider 𝑡 = 0),

E
[︁
𝑋
(︁
e−𝑡1𝑠

)︁
𝑋
(︁
e−𝑡2𝑠

)︁]︁ ∼ min(𝑡1, 𝑡2)𝑠, 𝑠 → +∞, (38)

and check the Lindeberg–Feller condition: for all 𝜀 > 0 and each fixed 𝑡 > 0,

lim 
𝑠→+∞

1
𝑠

∑︂
𝑘≥2

E

[︃(︃ (log 𝑘)−1/2

𝑘1/2+exp(−𝑡𝑠) 𝜂𝑘

)︃2
1{(log 𝑘 )−1/2 |𝜂𝑘 |>𝜀𝑘1/2+exp(−𝑡𝑠) 𝑠1/2}

]︃
= 0. (39)

Proof of (38). Using monotonicity to pass from the series to an integral we obtain

E

[︃∑︂
𝑘≥2

(log 𝑘)−1/2

𝑘1/2+exp(−𝑡1𝑠) 𝜂𝑘
∑︂
𝑗≥2 

(log 𝑗)−1/2

𝑗1/2+exp(−𝑡2𝑠) 𝜂 𝑗

]︃
=
∑︂
𝑘≥2

(log 𝑘)−1

𝑘1+exp(−𝑡1𝑠)+exp(−𝑡2𝑠)

∼
∫ ∞

e

(log 𝑦)−1

𝑦1+exp(−𝑡1𝑠)+exp(−𝑡2𝑠) d𝑦 =
∫ ∞

1

e−(exp(−𝑡1𝑠)+exp(−𝑡2𝑠) )𝑦

𝑦
d𝑦

∼ − log
(︁
e−𝑡1𝑠 + e−𝑡2𝑠

)︁ ∼ min(𝑡1, 𝑡2)𝑠, 𝑠 → +∞.

Proof of (39). For each 𝑘 ≥ 2 and each 𝑠 > 0, (log 𝑘)−1/2𝑘−1/2−exp(−𝑡𝑠) ≤
(log 2)−1/2 =: 1/𝐴. Hence, the expression under the limit on the left-hand side of 
(39) does not exceed

1
𝑠

∑︂
𝑘≥2

(log 𝑘)−1

𝑘1+2 exp(−𝑡𝑠) E
[︁
𝜂21{|𝜂 |>𝐴𝑠1/2}

]︁
.

As shown in the proof of (38), 
∑︁
𝑘≥2 (log 𝑘)−1𝑘−1−2 exp(−𝑡𝑠) ∼ 𝑡𝑠 as 𝑠 → +∞. Fur-

ther, E[𝜂2] < ∞ entails lim𝑠→+∞ E[𝜂21{|𝜂 |>𝐴𝑠1/2}] = 0. With these at hand, (39)
follows.
(b) We have to prove tightness on 𝐶 [0, 𝑇] (the set of continuous functions defined 
on [0, 𝑇]) for each 𝑇 > 0. Since (𝐵(𝑡))𝑡∈[0,𝑇 ] has the same distribution as 
𝑇1/2(𝐵(𝑡))𝑡∈[0,1] , it is enough to investigate the case 𝑇 = 1 only.

Let 𝑀∗ : (0,∞) → N0 denote a function satisfying lim𝑠→+∞ 𝑀∗(𝑠) = +∞ and 
𝑀∗(𝑠) = 𝑜(𝑠) as 𝑠 → +∞. We shall need a relation sup𝑘≤𝑛 |𝑇𝑘 | = 𝑂 (𝑛1/2) in 

probability as 𝑛 → ∞, which is a consequence of 𝑛−1/2 max𝑘≤𝑛 |𝑇𝑘 | d → |𝒩 (0, 1) |
as 𝑛 → ∞. Repeating the proof of Lemma 1, with the aforementioned limit relation 
replacing (7), we infer

lim 
𝑠→+∞

1 
𝑠1/2 sup 

𝑡∈[0,1]

⃓⃓⃓
⃓⃓𝑀

∗ (𝑠)∑︂
𝑘=2 

(log 𝑘)−1/2

𝑘1/2+exp(−𝑡𝑠) 𝜂𝑘

⃓⃓⃓
⃓⃓ = 0 in probability. (40)



370 A. Iksanov, R. Kostohryz

From now on, we choose a particular 𝑀∗ defined as above, for instance, 𝑀∗(𝑠) =
⌊𝑠1/2⌋ and put 𝑎(𝑠) := (log 𝑀∗(𝑠))1/2 for 𝑠 ≥ 0. Arguing as in the proof of Lemma 2
or in the analysis of 𝐼𝑛,2(𝑠) in the proof of Lemma 4, we obtain

lim 
𝑠→+∞ sup 

𝑡∈[0,1]

∑︂
𝑘≥𝑀∗ (𝑠)+1

(log 𝑘)−1/2

𝑘1/2+exp(−𝑡𝑠) |𝜂𝑘 |1{|𝜂𝑘 |>𝑘1/2𝑎 (𝑠)} = 0 a.s. (41)

and
lim 
𝑠→∞ sup 

𝑡∈[0,1]

∑︂
𝑘≥𝑀∗ (𝑠)+1

(log 𝑘)−1/2

𝑘1/2+exp(−𝑡𝑠) E[|𝜂𝑘 |1{|𝜂𝑘 |>𝑘1/2𝑎 (𝑠)}] = 0. (42)

Put 𝜂∗𝑘 (𝑠) := 𝜂𝑘1{|𝜂𝑘 | ≤𝑘1/2𝑎 (𝑠)} − E[𝜂𝑘1{|𝜂𝑘 | ≤𝑘1/2𝑎 (𝑠)}] for 𝑘 ∈ N and 𝑠 > 0, and 
then

𝑋∗ (𝑡, 𝑠) :=
1 

𝑠1/2

∑︂
𝑘≥𝑀∗ (𝑠)+1

(log 𝑘)−1/2𝜂∗𝑘 (𝑠)
𝑘1/2+exp(−𝑡𝑠) , 𝑡 ≥ 0, 𝑠 > 0.

In view of (40), (41) and (42) it remains to prove tightness of the distributions of 
(𝑋∗(𝑡, 𝑠))𝑡∈[0,1] for large 𝑠 > 0. According to formula (7.8) on p. 82 in [4], it is 
enough to show that, for all 𝜀 > 0,

lim 
𝑖→∞

lim sup
𝑠→∞ 

P

{︂
sup 

𝑢,𝑣∈[0,1], |𝑢−𝑣 | ≤2−𝑖
|𝑋∗(𝑢, 𝑠) − 𝑋∗(𝑣, 𝑠) | > 𝜀

}︂
= 0. (43)

The proof of (43) follows closely the last part of the proof of Lemma 4. We use dyadic 
partitions of [0, 1] by points 𝑡∗𝑗 , 𝑚 := 2− 𝑗𝑚 for 𝑗 ∈ N0 and 𝑚 = 0, 1, . . . , 2 𝑗 . Similarly 
to the argument preceding formula (16) we infer

sup 
𝑢,𝑣∈[0,1], |𝑢−𝑣 | ≤2−𝑖

|𝑋∗(𝑢, 𝑠) − 𝑋∗ (𝑣, 𝑠) |

≤
∑︂
𝑗≥𝑖 

max 
1≤𝑚≤2 𝑗

⃓⃓
𝑋∗(︁𝑡∗𝑗 , 𝑚, 𝑠)︁ − 𝑋∗(︁𝑡∗𝑗 , 𝑚−1, 𝑠

)︁⃓⃓
.

Thus, it suffices to prove that, for all 𝜀 > 0,

lim 
𝑖→∞

lim sup
𝑠→+∞ 

P

{︃∑︂
𝑗≥𝑖 

max 
1≤𝑚≤2 𝑗

⃓⃓
𝑋∗(︁𝑡∗𝑗 , 𝑚, 𝑠)︁ − 𝑋∗(︁𝑡∗𝑗 , 𝑚−1, 𝑠

)︁⃓⃓
> 𝜀𝑠1/2

}︃
= 0.

Put 𝑎∗𝑗 := 2− 𝑗/2 𝑗2 for 𝑗 ∈ N0. The last limit relation follows if we can show that, for 
all 𝜀 > 0,

lim 
𝑖→∞

lim sup
𝑠→+∞ 

∑︂
𝑗≥𝑖 

P

{︂
max 

1≤𝑚≤2 𝑗

⃓⃓
𝑋∗(︁𝑡∗𝑗 , 𝑚)︁ − 𝑋∗(︁𝑡∗𝑗 , 𝑚−1

)︁⃓⃓
> 𝜀𝑎∗𝑗 𝑠

1/2
}︂
= 0.

Denote by 𝐴∗( 𝑗 , 𝑠) and 𝐵∗(𝑢, 𝑘, 𝑠) the counterparts of 𝐴( 𝑗 , 𝑛) and 𝐵(𝑢, 𝑘, 𝑛) in the 
present situation. Then 𝐴∗( 𝑗 , 𝑠) ≤ 2− 𝑗 𝑠 and, if 2 𝑗 ≥ 𝑠, 𝐵∗(𝑢, 𝑘, 𝑠) ≤ |𝑢 |2− 𝑗 𝑠 =:
𝐶∗
𝑗 (𝑢, 𝑠), if 2 𝑗 ≤ 𝑠, 𝐵∗( 𝑗 , 𝑘, 𝑠) ≤ |𝑢 | =: 𝐶∗

𝑗 (𝑢, 𝑠). With these at hand we obtain

E
[︁
exp

(︁±𝑢(︁𝑋∗(︁𝑡∗𝑗 , 𝑚, 𝑠)︁ − 𝑋∗(︁𝑡∗𝑗 , 𝑚−1, 𝑠
)︁)︁)︁]︁ ≤ exp

(︃
2− 𝑗 𝑠𝑢2

2 
e𝐶

∗
𝑗 (𝑢,𝑠)

)︃
, 𝑢 ∈ R,
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and thereupon

P
{︁⃓⃓
𝑋∗(︁𝑡∗𝑗 , 𝑚, 𝑠)︁ − 𝑋∗(︁𝑡∗𝑗 , 𝑚−1, 𝑠

)︁⃓⃓
> 𝜀𝑎∗𝑗 𝑠

1/2}︁
≤ exp

(︁−𝑢𝜀𝑎∗𝑗 𝑠1/2)︁E[︁exp
(︁
𝑢
⃓⃓
𝑋∗(︁𝑡∗𝑗 , 𝑚, 𝑠)︁ − 𝑋∗(︁𝑡∗𝑗 , 𝑚−1, 𝑠

)︁⃓⃓)︁]︁
≤ 2 exp

(︃
−𝑢𝜀2− 𝑗/2 𝑗2𝑠1/2 + 2− 𝑗 𝑠𝑢2

2 
e𝐶

∗
𝑗 (𝑢,𝑠)

)︃
.

Put 𝑢 = 𝜀2 𝑗/2𝑠−1/2. Then 𝐶∗
𝑗 (𝑢, 𝑠) ≤ 𝜀 and further

∑︂
𝑗≥𝑖 

P

{︂
max 

1≤𝑚≤2 𝑗

⃓⃓
𝑋∗(︁𝑡∗𝑗 , 𝑚, 𝑠)︁ − 𝑋∗(︁𝑡∗𝑗 , 𝑚−1, 𝑠

)︁⃓⃓
> 𝜀𝑎∗𝑗 𝑠

1/2
}︂

≤ 2 exp
(︁
𝜀2e𝜀/2

)︁∑︂
𝑗≥𝑖 

2 𝑗e−𝜀
2 𝑗2 → 0, 𝑖 → ∞.

The proof of Theorem 1 is complete.

5 A failure of approach based on a strong approximation

Our proof of Theorem 2 is quite technical. Naturally we wanted to work out a less 
technical argument. One promising possibility has been to exploit a strong approxima-
tion result for centered standard random walks with finite variance, see, for instance, 
Theorem 12.6 in [7].
Lemma 7. There exists a standard Brownian motion (𝑊 (𝑡))𝑡≥0 such that

𝑇⌊𝑡 ⌋ −𝑊 (𝑡) = 𝑜
(︁(𝑡 log log 𝑡)1/2)︁, 𝑡 → ∞ a.s.

Implicit in the preceding proofs is the fact that the principal contribution to the 
LIL is made by the fragment of the original series which has the variance comparable 
to the variance of the full series. More precisely, one may reduce attention to the 

sum 
∑︁𝑁2 (𝑠)
𝑘=𝑁1 (𝑠)

(log 𝑘 )−1/2

𝑘1/2+𝑠 𝜂𝑘 , where 𝑁1 and 𝑁2 are positive integer-valued functions 
satisfying lim𝑠→0+(log log 𝑁1 (𝑠)/log 1/𝑠) = 0, lim𝑠→0+ 𝑠 log 𝑁2 (𝑠) = 0 and

lim 
𝑠→0+

(︁
log log 𝑁2 (𝑠)/log 1/𝑠)︁ = 1. (44)

The reason is that

Var

(︄
𝑁2 (𝑠) ∑︂
𝑘=𝑁1 (𝑠)

(log 𝑘)−1/2

𝑘1/2+𝑠 𝜂𝑘

)︄
∼ Var

(︃∑︂
𝑘≥2

(log 𝑘)−1/2

𝑘1/2+𝑠 𝜂𝑘

)︃
∼ log 1/𝑠, 𝑠 → 0+.

We hoped it would be possible to work with Gaussian random variables given 

by 
∫ 𝑁2 (𝑠)
𝑁1 (𝑠)

(log 𝑥 )−1/2

𝑥1/2+𝑠 d𝑊 (𝑥) in place of 
∫ 𝑁2 (𝑠)
𝑁1 (𝑠)

(log 𝑥 )−1/2

𝑥1/2+𝑠 d𝑇⌊𝑥 ⌋ . Unfortunately, Lemma 7
does not seem to secure such a possibility. Indeed, after integrating by parts we 
intended to show that

lim 
𝑠→0+

𝑓 (𝑠)
∫ 𝑁2 (𝑠)

𝑁1 (𝑠)

|𝑇⌊𝑥 ⌋ −𝑊 (𝑥) | 
(log 𝑥)1/2𝑥3/2+𝑠 d𝑥 = 0 a.s.
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In view of Lemma 7 the latter would be a consequence of

lim 
𝑠→0+

𝑓 (𝑠)
∫ 𝑁2 (𝑠)

𝑁1 (𝑠)

(log log 𝑥)1/2

(log 𝑥)1/2𝑥1+𝑠 d𝑥 = 0. (45)

Since ∫ 𝑁2 (𝑠)

𝑁1 (𝑠)

(log log 𝑥)1/2

(log 𝑥)1/2𝑥1+𝑠 d𝑥 =
1 

𝑠1/2

∫ 𝑠 log 𝑁2 (𝑠)

𝑠 log 𝑁1 (𝑠)

(log 1/𝑠 + log 𝑧)1/2e−𝑧

𝑧1/2 d𝑧

≤ (log log 𝑁2 (𝑠))1/2

𝑠1/2

∫ 𝑠 log 𝑁2 (𝑠)

0

e−𝑧

𝑧1/2 d𝑧

∼ 2
(︁
log 𝑁2 (𝑠) log log 𝑁2 (𝑠)

)︁1/2
, 𝑠 → 0+,

the validity of (45) required lim𝑠→0+(log 𝑁2(𝑠)/log 1/𝑠) = 0, which was incompatible 
with (44).

We note in passing that another strong approximation of (𝑇𝑛)𝑛≥0, this time by 
sums of independent Gaussian random variables, has a better error the big 𝑂 of square 
root, see [8]. Revisiting the calculation above reveals that this approximation does not 
seem to help either.
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