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Abstract In the framework of generalized Oppenheim expansions, almost sure convergence 
results for lightly trimmed sums are proven. First, a particular class of expansions is identified 
for which a convergence result is proven assuming that only the largest summand is deleted 
from the sum; this result generalizes a strong law recently proven for the Lüroth digits and also 
covers some new cases that have never been studied before. Next, any assumptions concerning 
the structure of the Oppenheim expansions are dropped and a result concerning trimmed sums 
is proven when at least two summands are trimmed; combining this latter theorem with the 
asymptotic behavior of the 𝑟-th maximum term of the expansion, a convergence result is obtained 
for the case in which only the largest summand is deleted from the sum.

Keywords Oppenheim expansion, infinite expectation, lightly trimmed sum, largest 
summand, good sequence, Lüroth series, Engel series, Sylvester series
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1 Introduction

The framework of this work has been introduced and generalized in [7] and [8], 
respectively, and is described as follows: let (𝐵𝑛)𝑛≥1 be a sequence of integer-valued 
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random variables defined on (Ω,𝒜, 𝑃), where Ω = [0, 1], 𝒜 is the 𝜎-algebra of the 
Borel subsets of [0, 1] and 𝑃 is the Lebesgue measure on [0, 1]. Let {𝐹𝑛, 𝑛 ≥ 1} be 
a sequence of probability distribution functions with 𝐹𝑛(0) = 0, 𝐹𝑛 (1) = 1 ∀𝑛 and, 
moreover, let 𝜑𝑛 : N∗ → R

+ be a sequence of functions. Furthermore, let (𝑞𝑛)𝑛≥1 with 
𝑞𝑛 = 𝑞𝑛 (ℎ1, . . . , ℎ𝑛) be a sequence of nonnegative numbers (i.e. possibly depending 
on the 𝑛 integers ℎ1, . . . , ℎ𝑛) such that, for ℎ1 ≥ 1 and ℎ 𝑗 ≥ 𝜑 𝑗−1(ℎ 𝑗−1), 𝑗 = 2, . . . , 𝑛, 
we have

𝑃(𝐵𝑛+1 = ℎ𝑛+1 |𝐵𝑛 = ℎ𝑛, . . . , 𝐵1 = ℎ1) = 𝐹𝑛 (𝛽𝑛) − 𝐹𝑛 (𝛼𝑛),

where

𝛼𝑛 = 𝛿𝑛 (ℎ𝑛, ℎ𝑛+1 + 1, 𝑞𝑛), 𝛽𝑛 = 𝛿𝑛 (ℎ𝑛, ℎ𝑛+1, 𝑞𝑛)

with 𝛿 𝑗 (ℎ, 𝑘, 𝑞) =
𝜑 𝑗 (ℎ)(1 + 𝑞)

𝑘 + 𝜑 𝑗 (ℎ)𝑞 
.

Let 𝑄𝑛 = 𝑞𝑛 (𝐵1, . . . , 𝐵𝑛), and define

𝑅𝑛 =
𝐵𝑛+1 + 𝜑𝑛 (𝐵𝑛)𝑄𝑛

𝜑𝑛 (𝐵𝑛)(1 +𝑄𝑛) 
=

1 
𝛿𝑛 (𝐵𝑛, 𝐵𝑛+1, 𝑄𝑛)

.

In [8] (see Lemma 3 there) it has been proven that for any integer 𝑛 and 𝑥 ≥ 1,

𝑃(𝑅𝑛 > 𝑥) ≤ 𝐹𝑛

(︃
1
𝑥

)︃
,

which implies that if 𝑈𝑛 is a random variable with distribution 𝐹𝑛 and 𝑌𝑛 = 1 
𝑈𝑛

for 
every integer 𝑛, then

𝑃(𝑅𝑛 > 𝑥) ≤ 𝑃(𝑌𝑛 > 𝑥), ∀𝑥 ≥ 1,

i.e. the sequence (𝑅𝑛)𝑛≥1 is stochastically dominated by the sequence (𝑌𝑛)𝑛≥1.
Since the random variables (𝑅𝑛)𝑛≥1, in general, are not independent and do not 

have finite expectations, a traditional strong law for the quantity 1 
𝑎𝑛

∑︁𝑛
𝑖=1 𝑅𝑖 cannot 

be proven. However, in [7], under some conditions for the involved distributions, 
the convergence in probability of 1 

𝑛 log 𝑛

∑︁𝑛
𝑖=1 𝑅𝑖 is established. This result, raises the 

question whether a strong law of large numbers can be proven, after deleting finitely 
many of the largest summands from the partial sums. Particularly, let 𝑟 be a fixed 
integer. We are interested in studying the almost sure convergence of

(𝑟 )𝑆𝑛
𝑛 log 𝑛

,

where (𝑟 )𝑆𝑛 =
∑︁𝑛

𝑖=1 𝑅𝑖 −
∑︁𝑟

𝑘=1 𝑀
(𝑘 )
𝑛 and 𝑀 (𝑟 )

𝑛 denotes the 𝑟-th maximum of 
𝑅1, . . . , 𝑅𝑛 (in decreasing order, i.e. 𝑀 (1)

𝑛 denotes the maximum). In the literature, 
the sequence ( (𝑟 )𝑆𝑛)𝑛≥1 is known as the lightly trimmed sum process. Note that 
in the case where 𝑟 is substituted by a sequence (𝑟𝑛)𝑛≥1 such that 𝑟𝑛 → ∞ and 
𝑟𝑛/𝑛 → 0 as 𝑛 → ∞ we have the so-called moderate trimming while in the case 
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where 𝑟𝑛/𝑛 → 𝑐 ∈ (0, 1) the resulting sequence is said to be heavily trimmed. 
For more details we refer the interested reader to [3] (and references therein). Con-
vergence results for moderately trimmed sums of Oppenheim expansions can be 
found [9].

The problem of trimming has been extensively studied in the literature: we cite 
here [12, 11, 10, 4, 5, 3], where i.i.d. sequences are considered, and [1], which studies 
stationary sequences. It is worth to be stressed that generic Oppenheim expansions, 
besides not being independent, are not stationary either, a fact that highlights the 
novelty of the current work.

The structure of the paper is as follows. In Section 2 we state the main results 
of this paper, i.e. Theorems 1, 2 and 3; the first result is a strong law for the lightly 
trimmed sum processes for the case 𝑟 = 1 and concerns a special class of Oppenheim 
expansions. It is worth mentioning that Theorem 1 covers the Lüroth, Engel and the 
Sylvester sequences of digits (already studied in the literature) but also concerns some 
new examples, leading to asymptotic results that have never appeared in the literature 
before. See Remark 1 for details. Theorem 2 and Theorem 3 address the general case, 
i.e. we do not impose any condition on the sequence of expansions taken into account. 
Theorem 2 is an asymptotic result for 𝑟 ≥ 2 which becomes instrumental for proving 
another asymptotic law for 𝑟 = 1, that is, Theorem 3 which, though being weaker 
than Theorem 1, is proven under more general conditions since any assumptions for 
the structure of the Oppenheim expansion are dropped and we impose more relaxed 
conditions for the involved distribution functions. The special class of expansions 
mentioned above is studied in greater detail in Section 3, where we provide some 
preliminary results that will be utilized in the proof of Theorem 1. A detailed proof 
of Theorem 1 is discussed in Section 4. Section 5 contains some preliminaries for the 
proofs of Theorems 2 and 3, which are contained in Section 6.

2 The main results

In this section we state the main results of this paper.

2.1 A strong law

The first result presented (Theorem 1), is a strong law for the trimmed sums of a 
special class of generalized Oppenheim expansions (discussed also in the subsequent 
Proposition 4) in the case where only the maximum term is excluded, i.e. we provide 
an a.s. convergence result for (1)𝑆𝑛.

We call a sequence Λ = (𝜆 𝑗 ) 𝑗∈N good if it is strictly increasing and tends to +∞, 
with 𝜆 𝑗 ≥ 1 for every 𝑗 ≥ 1 and 𝜆0 = 0.

Theorem 1. Consider the random variables (𝑅𝑛)𝑛≥1 and assume that there exists a 
good sequence Λ = (𝜆 𝑗 ) 𝑗∈N such that, for every 𝑥 ∈ Λ and for every 𝑛, 𝑥𝜑𝑛 (𝐵𝑛) +

(𝑥 − 1)𝑄𝑛𝜑𝑛 (𝐵𝑛) is an integer. Moreover, assume the following:

(i)
sup
𝑛
(𝜆𝑛+1 − 𝜆𝑛) = ℓ < +∞;
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(ii) 𝐹𝑛 ≡ 𝐹 for all integers 𝑛 and there exists a constant 𝛼 > 0 such that

lim 
𝑡→0

𝐹 (𝑡)

𝑡
= 𝛼. (1)

Then
𝑆𝑛 − 𝑀

(1)
𝑛

𝑛 log 𝑛 
→ 𝛼 a.s.,

where 𝑆𝑛 =
∑︁𝑛

𝑖=1 𝑅𝑖 and 𝑀 (1)
𝑛 = max{𝑅1 . . . , 𝑅𝑛}.

Remark 1. It is important to identify functions 𝜑𝑛 for which the conditions imposed 
in Theorem 1 are satisfied. First, recall that the notation 𝑞𝑛 stands for the sequence 
of nonnegative numbers such that 𝑞𝑛(𝐵1, . . . , 𝐵𝑛) = 𝑄𝑛. As a first example, consider 
positive integers 𝑎1, . . . , 𝑎𝑝 and assume that

𝜑𝑘𝑝+ 𝑗−1 = 1/𝑎 𝑗 , for 𝑘 ∈ N, 𝑗 = 1, . . . , 𝑝.

Define 𝜅 = 𝐿.𝐶.𝑀.(𝑎1, . . . , 𝑎𝑝) and Λ = (𝜅𝑛)𝑛≥1 and assume that 𝑞𝑛 ≡ 𝑐𝑛 where 
(𝑐𝑛)𝑛≥1 is a sequence of positive numbers chosen from the set Λ. Then, for any 𝑥 ∈ Λ,

𝑥𝜑𝑛 (𝐵𝑛) + (𝑥 − 1)𝑄𝑛𝜑𝑛 (𝐵𝑛)

is an integer.
Moreover, the conditions of the Theorem are satisfied if Λ = N

∗, 𝑞𝑛 ≡ 0 and 
𝜑𝑛 (ℎ) =

∑︁𝑚
𝑘=1 ℎ

𝑘 for some integer 𝑚. Note that for 𝑚 = 1 we get the corresponding 
𝜑 function for the Engel series while for 𝑚 = 2 we have the Sylvester expansion. If 
𝜑𝑛 (ℎ) =

∑︁𝑚
𝑘=0 ℎ

𝑘 , the case of 𝑚 = 0 covers the Lüroth case (see [7] for details). Notice 
that also Theorem 3 of [6] also covers these three cases (see Remark 6) and [2] studies 
the Lüroth case, but our theorem is more general than the ones provided in [6] and [2] 
because we make no assumptions on the involved distributions.

The proof of Theorem 1 is given in Section 4.

2.2 A general upper bound

In Theorem 1 we consider the case in which only the largest summand is deleted from 
the sum of Oppenheim random variables that satisfy a specific condition. Although 
Theorem 1 covers a large subclass of Oppenheim random variables and well-known 
expansions, we are interested in studying if convergence can be established in the 
general framework. To this end, we drop any assumption concerning the structure of 
the Oppenheim expansions and we present an upper bound concerning trimmed sums 
when at least two summands are trimmed, i.e. in Theorem 2 we provide conditions 
under which convergence is established for the trimmed partial sums of any generalized 
Oppenheim expansion.

As a direct consequence of Theorem 2 we obtain another asymptotic result (Theo-
rem 3) for the particular case where 𝑟 = 1. The fact that Theorems 2 and 3 are proven 
without imposing any constraints on the structure of the Oppenheim random variables 
leads to convergence to zero rather than to a positive constant and as a result Theorem 2
and Theorem 3 are most probably far from being optimal; our aim is merely to get 
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some kind of information anyway and, if possible, to indicate a new line of research, 
see the discussion in Remark 5.

We start with some notation and state some assumptions that are crucial for 
obtaining the desired results. For every integer 𝑛 we denote 𝑚𝑛 = ⌊log2 𝑛⌋ (where ⌊𝑥⌋
is the greatest integer less than or equal to 𝑥), for a given positive increasing function 
ℎ we set 𝑡 (ℎ)𝑛 = ℎ(2𝑚𝑛 ), while 𝜙 will denote a fixed positive function such that:

(A1) for some 𝛽 ∈ [0, 1) we have

lim sup
𝑥→∞ 

𝜙(𝑥) 

log𝛽 𝑥
< ∞;

(A2) 𝑥 ↦→ log 𝑥 
𝜙 (𝑥 ) is ultimately nondecreasing.

Let
𝛽0 = inf

{︁
𝛽 ≥ 0 : (A1) holds

}︁
and define

𝑟𝛽0 = min
{︃
𝑟 ∈ N : 𝑟 >

1 
1 − 𝛽0

}︃
=

⌊︃
1 

1 − 𝛽0

⌋︃
+ 1. (2)

Remark 2. Obviously 𝑟𝛽0 ≥ 2. If 𝜙(𝑥) = 𝑜(log𝛽 𝑥) for every 𝛽 ∈ [0, 1), then 𝛽0 = 0
and 𝑟𝛽0 = 2. Examples are 𝜙(𝑥) = log log · · · log 𝑥 or any bounded 𝜙.
Remark 3. Observe that assumption (A1) implies that

∞ ∑︂
𝑘=1 

(︃
𝜙(2𝑘)

𝑘

)︃𝑟

< ∞ ∀𝑟 ≥ 𝑟𝛽0 . (3)

We shall denote ℎ0(𝑥) =
𝑥 log 𝑥
𝜙 (𝑥 ) and

𝑎𝑛 := ℎ0(𝑛) =
𝑛 log 𝑛
𝜙(𝑛) 

. (4)

Theorem 2. Consider the random variables (𝑅𝑛)𝑛≥1 and assume that for the involved 
distribution functions (𝐹𝑛)𝑛≥1 the following condition is satisfied:

sup
𝑛≥1 

lim sup
𝑥→0 

𝐹𝑛 (𝑥)

𝑥
< ∞. (5)

Then, for every 𝑝 > 2 and for every 𝑟 ≥ 𝑟𝛽0 ,

lim 
𝑛→∞

(𝑟 )𝑆𝑛

𝑎
𝑝
𝑛

= 0, 𝑃-a.s.

where 𝑎𝑛 is defined in (4) and 𝑟𝛽0 in (2).
Theorem 3. Let the assumptions of Theorem 2 hold. Then, for every 𝑝 > 2,

𝑆𝑛 − 𝑀
(1)
𝑛

(𝑛 log 𝑛) 𝑝
𝜙(𝑛) 𝑝 → 0, 𝑃-a.s.



278 R. Giuliano, M. Hadjikyriakou

Remark 4. As mentioned at the beginning of this subsection, although the last result 
is weaker than the one presented in 2.1 (the convergence is to zero and not to a 
positive constant), it is obtained without imposing any conditions on the structure of 
the random variables 𝑅𝑛. Moreover, the involved variables are not assumed to follow 
the same law and condition (1) is relaxed to condition (5).
Remark 5. Notice that in Theorem 2 (and Theorem 3) we can take any 𝑝 > 2 and 
𝜙(𝑥) = log𝛾 𝑥, with any 𝛾 < 1. If Theorem 2 were true also for 𝛾 = 1 and 𝑝 = 2, we 
would get that 

(𝑟 )𝑆𝑛
𝑛2 → 0. This observation may suggest that the “correct” equivalent 

to (𝑟 )𝑆𝑛, i.e. 
(𝑟 )𝑆𝑛

𝑞 (𝑟 )
𝑛

→ 1, might be some 𝑞 (𝑟 )𝑛 = 𝑜𝑟 (𝑛2) (at least in some instances), but 
at present this remains an open problem.

3 Preliminaries for Theorem 1

For the random variables (𝑅𝑛)𝑛≥1 defined above, the following two relations were 
proven (see Lemma 2 relation (5) and Lemma 3, respectively, in [8]): for 𝑥, 𝑦 ≥ 1 and 
𝑚 < 𝑛,

𝑃(𝑅𝑚 > 𝑥) = 𝐸

[︃
𝐹𝑚

(︃
𝜑𝑚 (𝐵𝑚)(1 +𝑄𝑚) 

⌈𝑥𝜑𝑚 (𝐵𝑚) + (𝑥 − 1)𝑄𝑚𝜑𝑚 (𝐵𝑚)⌉ +𝑄𝑚𝜑𝑚(𝐵𝑚)

)︃]︃
,

𝑃(𝑅𝑚 > 𝑥, 𝑅𝑛 > 𝑦)

= 𝐸

[︃
𝐼 (𝑅𝑚>𝑥 )𝐹𝑛

(︃
𝜑𝑛 (𝐵𝑛)(1 +𝑄𝑛) 

⌈𝑦𝜑𝑛 (𝐵𝑛) + (𝑦 − 1)𝑄𝑛𝜑𝑛 (𝐵𝑛)⌉ +𝑄𝑛𝜑𝑛 (𝐵𝑛)

)︃]︃
,

(6)

where ⌈𝑥⌉ denotes the least integer greater than or equal to 𝑥. Then the following 
proposition is obvious.
Proposition 1. For the random variables (𝑅𝑛)𝑛≥1, the following results hold true:

(a) Assume that 𝑥 ≥ 1 and 𝑚 ∈ N are such that 𝑥𝜑𝑚(𝐵𝑚) + (𝑥 − 1)𝑄𝑚𝜑𝑚(𝐵𝑚) is 
an integer. Then

𝑃(𝑅𝑚 > 𝑥) = 𝐹𝑚

(︃
1
𝑥

)︃
.

(b) Assume in addition that 𝑦 ≥ 1 and 𝑛 ∈ N are such that 𝑦𝜑𝑛 (𝐵𝑛) + (𝑦 −
1)𝑄𝑛𝜑𝑛 (𝐵𝑛) is an integer. Then

𝑃(𝑅𝑚 > 𝑥, 𝑅𝑛 > 𝑦) = 𝐹𝑚

(︃
1
𝑥

)︃
𝐹𝑛

(︃
1 
𝑦

)︃
.

The following result provides a generalization of relation (6) which will be used 
for obtaining Proposition 3.
Proposition 2. Consider the random variables (𝑅𝑛)𝑛≥1 and assume that 𝑥𝑖 ≥ 1, 
∀𝑖 = 1, 2, . . . , 𝑛. Then,

𝑃(𝑅1 > 𝑥1, . . . , 𝑅𝑛 > 𝑥𝑛)

= 𝐸

[︃
𝐹𝑛

(︃
𝜑𝑛 (𝐵𝑛)(1 +𝑄𝑛) 

⌈𝑥𝑛𝜑𝑛 (𝐵𝑛) + (𝑥𝑛 − 1)𝑄𝑛𝜑𝑛 (𝐵𝑛)⌉ + 𝜑𝑛 (𝐵𝑛)𝑄𝑛

)︃
𝐼 (𝑅1>𝑥1 ,...,𝑅𝑛−1>𝑥𝑛−1 )

]︃
.
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Proof. The proof follows by applying similar steps as in the case of 𝑛 = 2 (Lemmas 2 
and 3 in [8]). □

Proposition 3. Consider the random variables (𝑅𝑛)𝑛≥1. Then, for every integer 𝑛
and for every finite set of numbers 𝑥𝑖 ≥ 1, ∀𝑖 = 1, 2, . . . , 𝑛, such that 𝑥𝑘𝜑𝑘 (𝐵𝑘) +

(𝑥𝑘 − 1)𝑌𝑘𝜑𝑘 (𝐵𝑘) is an integer for every 𝑘 = 1, 2, . . . , 𝑛, we have

𝑃(𝑅1 > 𝑥1, . . . , 𝑅𝑛 > 𝑥𝑛) = 𝐹1

(︃
1 
𝑥1

)︃
. . . 𝐹𝑛

(︃
1 
𝑥𝑛

)︃
.

Proof. The result follows by induction. The case 𝑛 = 2 is discussed in Proposition 1. 
Assume that the statement is true for 𝑛 − 1. Then by Proposition 2 we can write

𝑃(𝑅1 > 𝑥1, . . . , 𝑅𝑛 > 𝑥𝑛)

= 𝐸

[︃
𝐹𝑛

(︃
𝜑𝑛 (𝐵𝑛)(1 +𝑄𝑛) 

⌈𝑥𝑛𝜑𝑛 (𝐵𝑛) + (𝑥𝑛 − 1)𝑄𝑛𝜑𝑛 (𝐵𝑛)⌉ + 𝜑𝑛 (𝐵𝑛)𝑄𝑛

)︃
𝐼 (𝑅1>𝑥1 ,...,𝑅𝑛−1>𝑥𝑛−1 )

]︃

= 𝐹𝑛

(︃
1 
𝑥𝑛

)︃
𝑃(𝑅1 > 𝑥1, . . . , 𝑅𝑛−1 > 𝑥𝑛−1)

which leads to the conclusion, by the induction hypothesis. □

Let Λ = (𝜆 𝑗 ) 𝑗∈N be a good sequence (defined in Subsection 2.1) and, for 𝑢 ∈

[1, +∞), let 𝑗𝑢 be the only integer such that 𝜆 𝑗𝑢−1 < 𝑢 ≤ 𝜆 𝑗𝑢 (i.e. 𝜆 𝑗𝑢 is the minimum 
element in Λ larger than or equal to 𝑢).

The proposition that follows will be a “key” result for obtaining the convergence 
theorem of this section: by employing a subclass of Oppenheim expansions that 
satisfies a particular condition we define a sequence of discrete random variables that 
is proven to consist of independent random variables the densities of which can be 
easily calculated.
Proposition 4. Consider the random variables (𝑅𝑛)𝑛≥1 and assume that there exists 
a good sequence Λ such that, for every 𝑥 ∈ Λ and for every 𝑛, 𝑥𝜑𝑛 (𝐵𝑛) + (𝑥 −
1)𝑄𝑛𝜑𝑛 (𝐵𝑛) is an integer. For every 𝑛, denote

𝑇𝑛 = 𝜆 𝑗𝑅𝑛
. (7)

Then 𝑇𝑛 takes values in Λ, and the sequence (𝑇𝑛)𝑛≥1 consists of independent random 
variables. Moreover, the discrete density of 𝑇𝑛 is given by the formula

𝐹𝑛

(︃
1 
𝜆𝑠−1

)︃
− 𝐹𝑛

(︃
1 
𝜆𝑠

)︃
, 𝑠 ∈ N

∗.

Proof. Observe the relation 𝜆 𝑗𝑟 > 𝜆𝑛 ⇔ 𝑟 > 𝜆𝑛, for any integer 𝑛. Thus, for every 
finite set of integers {𝑖1, . . . , 𝑖𝑘} and for every finite set of integers {𝑛𝑖1 , . . . , 𝑛𝑖𝑘} we 
have

𝑃(𝑇𝑖1 > 𝜆𝑛𝑖1 , . . . , 𝑇𝑖𝑘 > 𝜆𝑛𝑖𝑘 ) = 𝑃(𝑅𝑖1 > 𝜆𝑛𝑖1 , . . . , 𝑅𝑖𝑘 > 𝜆𝑛𝑖𝑘 )

= 𝐹𝑖1

(︃
1 
𝜆𝑛𝑖1

)︃
· · · · · 𝐹𝑖𝑘

(︃
1 
𝜆𝑛𝑖𝑘

)︃
,
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which proves the independence of the random variables (𝑇𝑛)𝑛. For the density, note 
that, for every integer 𝑠 ∈ N

∗, we have

𝑃(𝑇𝑛 = 𝜆𝑠) = 𝑃(𝑇𝑛 > 𝜆𝑠−1) − 𝑃(𝑇𝑛 > 𝜆𝑠) = 𝐹𝑛

(︃
1 
𝜆𝑠−1

)︃
− 𝐹𝑛

(︃
1 
𝜆𝑠

)︃
.

□

Remark 6. The result above is a generalization of Theorem 3 in Galambos [6], in 
which 𝑦𝑛 = 0, Λ = N and 𝐹𝑛 (𝑥) = 𝐹 (𝑥) = 𝑥𝐼[0,1] .

Last we present, without proof, the result which is part of Theorem 1 in [12], and 
it is instrumental for the proof of the convergence result we are interested in.
Theorem 4. Let (𝑋𝑛)𝑛≥1 be a sequence of i.i.d. random variables and (𝑟 )𝑆𝑛 denote 
the 𝑛-th sample sum with the first 𝑟 largest terms removed. Let 𝐴 be an absolutely 
continuous increasing function defined on [0,+∞), with 𝐴(0) = 0 and satisfying

(i) 𝐴(𝑥 )

𝑥
1 
𝛼

is non decreasing for some 𝛼 ∈ (0, 2),

(ii) sup𝑥>0
𝐴(2𝑥 )
𝐴(𝑥 ) < ∞,

and let 𝐵 be its inverse function. For every 𝑠 > 0, denote

𝐽𝑠 =
∫ ∞

1

[︁
𝑃(𝑋1 > 𝑥)

]︁𝑠d𝐵𝑠 (𝑥)

and assume that 𝐽𝑟+1 < +∞; then there exists a sequence (𝑐𝑛)𝑛∈N of numbers such 
that

lim 
𝑛→∞

(𝑟 )𝑆𝑛
𝐴(𝑛) 

− 𝑐𝑛 = 0, 𝑃-a.s.

Moreover, the constants 𝑐𝑛 can be chosen to be

𝑐𝑛 =
𝑛 
𝐴(𝑛)

∫
|𝑥 | ≤𝜏𝐴(𝑛)

𝑥d
(︁
𝑃(𝑋1 ≤ 𝑥)

)︁
,

where 𝜏 > 0 is an arbitrary constant.

4 Proof of Theorem 1

By utilizing the results proved in Section 3, we are now ready to prove Theorem 1
presented in Section 2.

Proof. Following the notation introduced in (7), let 𝑇𝑛 = 𝜆 𝑗𝑅𝑛
and define �̃� (1)

𝑛 =
max{𝑇1 . . . , 𝑇𝑛}. Then,

𝑇𝑛 − ℓ ≤ 𝑅𝑛 ≤ 𝑇𝑛 and �̃� (1)
𝑛 − ℓ ≤ 𝑀 (1)

𝑛 ≤ �̃� (1)
𝑛 .

Thus, ∑︁𝑛
𝑘=1 𝑇𝑘 − �̃�

(1)
𝑛 − ℓ𝑛

𝑛 log 𝑛 
≤
𝑆𝑛 − 𝑀

(1)
𝑛

𝑛 log 𝑛 
≤

∑︁𝑛
𝑘=1 𝑇𝑘 − (�̃� (1)

𝑛 − ℓ)

𝑛 log 𝑛 
,
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so it is sufficient to study the convergence of
∑︁𝑛

𝑘=1 𝑇𝑘 − �̃�
(1)
𝑛

𝑛 log 𝑛 
.

By Proposition 4, the sequence (𝑇𝑛)𝑛≥1 defined in (7) consists of independent and 
identically distributed random variables and therefore Theorem 4 can be employed; to 
this extent, since we are interested in the case 𝑟 = 1 and 𝐴(𝑥) = 𝑥 log 𝑥, first we have 
to check that

𝐽2 =
∫ ∞

1

[︁
𝑃(𝑇1 > 𝑥)

]︁2d𝐵2(𝑥) < ∞,

where 𝐵(𝑥) is the inverse of 𝐴(𝑥) = 𝑥 log 𝑥.
Note that d𝐵2(𝑥) = 2𝐵(𝑥)𝐵′ (𝑥)d𝑥 while 𝑃(𝑇1 > 𝑥) = 𝐹 ( 1 

𝑥 ) (by Proposition 4). 
Hence, due to (1), we have that

𝐽2 =
∫ ∞

1
𝐹2

(︃
1
𝑥

)︃
2𝐵(𝑥)𝐵′ (𝑥)d𝑥 ≤ 𝐶1 + 𝐶2

∫ ∞

1

(︃
1 
𝑥2

)︃
𝐵(𝑥)𝐵′ (𝑥)d𝑥.

Now use the change of variables 𝐵(𝑥) = 𝑦; since 𝑥 = 𝐴(𝑦) and d𝑦 = 𝐵′ (𝑥)d𝑥, we have 
that

𝐽2 ≤ 𝐶1 + 𝐶2

∫ ∞

𝐵(1)

𝑦

𝐴2(𝑦)
d𝑦 =

𝐶1 + 𝐶2
log 𝐵(1)

< ∞.

Hence, by Theorem 4, there is 𝑐𝑛 such that as 𝑛→ ∞

∑︁𝑛
𝑘=1 𝑇𝑘 − �̃�

(1)
𝑛

𝑛 log 𝑛 
− 𝑐𝑛 → 0, 𝑃-a.s.,

where

𝑐𝑛 =
𝑛 
𝐴(𝑛)

∫ 𝐴(𝑛)

1
𝑥d
(︁
𝑃(𝑇1 ≤ 𝑥)

)︁
= −

1 
log 𝑛

∫ 𝑛 log 𝑛

1
𝑥d
(︁
𝑃(𝑇1 > 𝑥)

)︁
= −

1 
log 𝑛

∫ 𝑛 log 𝑛

1
𝑥d𝐹

(︃
1
𝑥

)︃
.

Using integration by parts we have that

𝑐𝑛 = −
1 

log 𝑛

(︃
𝑛 log 𝑛𝐹

(︃
1 

𝑛 log 𝑛

)︃
− 1

)︃
+

1 
log 𝑛

∫ 𝑛 log 𝑛

1
𝐹

(︃
1
𝑥

)︃
d𝑥

which can be equivalently written as

𝑐𝑛 = −
1 

log 𝑛

(︃𝐹 ( 1 
𝑛 log 𝑛 )

1 
𝑛 log 𝑛

)︃
+

1 
log 𝑛

+
1 

log 𝑛

∫ 𝑛 log 𝑛

1
𝐹

(︃
1
𝑥

)︃
d𝑥 = 𝐼1 + 𝐼2 + 𝐼3.

Obviously, 𝐼2 → 0 and by employing (1) we have that 𝐼1 → 0 for 𝑛→ ∞. For 𝐼3, we 
start by observing that

∫ 𝑛 log 𝑛

1
𝐹

(︃
1
𝑥

)︃
d𝑥 =

∫ 1 
𝑛 log𝑛

1
−
𝐹 (𝑦)

𝑦2 d𝑦 =
∫ 1

1 
𝑛 log𝑛

𝐹 (𝑦)

𝑦2 d𝑦.
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By (1), for fixed 𝜖 > 0 let 𝛿 ∈ (0, 1) be such that, for 𝑦 ∈ (0, 𝛿),

𝛼 − 𝜖 ≤
𝐹 (𝑦)

𝑦
≤ 𝛼 + 𝜖

and let 𝑛0 be sufficiently large such that 1 
𝑛 log 𝑛 < 𝛿 for ∀𝑛 ≥ 𝑛0. Then

∫ 𝛿

1 
𝑛 log𝑛

(𝛼 − 𝜖)

𝑦
d𝑦 <

∫ 𝛿

1 
𝑛 log𝑛

𝐹 (𝑦)

𝑦2 d𝑦 <
∫ 𝛿

1 
𝑛 log𝑛

(𝛼 + 𝜖)

𝑦
d𝑦

which leads to

(𝛼 − 𝜖) log 𝛿 − (𝛼 − 𝜖) log
(︃

1 
𝑛 log 𝑛

)︃
<

∫ 𝛿

1 
𝑛 log𝑛

𝐹 (𝑦)

𝑦2 d𝑦

< (𝛼 + 𝜖) log 𝛿 − (𝛼 + 𝜖) log
(︃

1 
𝑛 log 𝑛

)︃
.

Hence, due to the arbitrariness of 𝜖 ,
∫ 𝛿

1 
𝑛 log 𝑛

𝐹 (𝑦)

𝑦2 d𝑦 ∼ 𝛼
(︁
log 𝑛 + log(log 𝑛)

)︁
. (8)

Moreover, for 𝑛→ ∞,
1 

log 𝑛

∫ 1

𝛿

𝐹 (𝑦)

𝑦2 d𝑦 → 0. (9)

Relations (8) and (9) together give that 𝐼3 → 𝛼 as 𝑛 → ∞. This concludes the 
proof. □

5 Preliminaries for Theorems 2 and 3

Before proving Theorems 2 and 3, we prove some preliminary results.
Lemma 1. Consider the random variables (𝑅𝑛)𝑛≥1, and let the related distributions 
(𝐹𝑛)𝑛≥1 satisfy assumption (5). Moreover, assume that ℎ is a positive increasing 
function with the following property: there exists an integer 𝜌 (that depends on ℎ) 
such that

∞ ∑︂
𝑚=1

(︃
2𝑘

ℎ(2𝑘)

)︃𝑟

=
∞ ∑︂
𝑘=1 

(︃
2𝑘

𝑡 (ℎ)2𝑘

)︃𝑟

< ∞, ∀𝑟 ≥ 𝜌. (10)

Then, for 𝑟 ≥ 𝜌, we have

𝑃
(︁
𝑀 (𝑟 )

𝑛 > 𝑡 (ℎ)𝑛 i.o.
)︁
= 0.

Proof. In the proof we write simply 𝑡𝑛 in place of 𝑡 (ℎ)𝑛 . Let 𝑟 ≥ 𝜌. For any integer 
𝑗 ≥ 0 we define the event

𝐴 𝑗 =
{︁
𝑅𝑖 > 𝑡2 𝑗 for at least 𝑟 indices such that 𝑖 < 2 𝑗+1}︁
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and, for any integer 𝑛 ≥ 1,
𝐵𝑛 =

{︁
𝑀 (𝑟 )

𝑛 > 𝑡𝑛
}︁
.

Let 𝑗 be fixed and note that, for every 𝑛 such that 2 𝑗 ≤ 𝑛 < 2 𝑗+1, we have 𝐵𝑛 ⊆ 𝐴 𝑗 ; 
thus ⋃︂

{𝑛:𝑚𝑛= 𝑗}

𝐵𝑛 ⊆ 𝐴 𝑗 ,

which implies that

{︁
𝑀 (𝑟 )

𝑛 > 𝑡𝑛 i.o.
}︁
=
⋂︂
𝑠

⋃︂
𝑛≥𝑠

𝐵𝑛 ⊆
⋂︂
𝑠

⋃︂
{𝑛:𝑚𝑛≥𝑚𝑠}

𝐵𝑛 =
⋂︂
𝑠

⋃︂
𝑗≥𝑚𝑠

(︃ ⋃︂
{𝑛:𝑚𝑛= 𝑗}

𝐵𝑛

)︃

⊆
⋂︂
𝑠

⋃︂
𝑗≥𝑚𝑠

𝐴 𝑗 =
⋂︂
𝑘

⋃︂
𝑗≥𝑘

𝐴 𝑗 = {𝐴 𝑗 i.o.}.

The first “⊆” holds true since for 𝑠 ≥ 1 we have that {𝑛 : 𝑛 ≥ 𝑠} ⊂ {𝑛 : 𝑚𝑛 ≥ 𝑚𝑠}, 
while the third equality is valid based on the observation

∞ ⋂︂
𝑠=1 

(︃ ⋃︂
𝑗≥𝑚𝑠

𝐴 𝑗

)︃
= 

∞ ⋂︂
𝑘=0 

{︄2𝑘+1−1⋂︂
𝑠=2𝑘

(︃ ⋃︂
𝑗≥𝑚𝑠

𝐴 𝑗

)︃}︄
= 

∞ ⋂︂
𝑘=0 

{︄2𝑘+1−1⋂︂
𝑠=2𝑘

(︃⋃︂
𝑗≥𝑘

𝐴 𝑗

)︃}︄
= 

∞ ⋂︂
𝑘=0 

(︃⋃︂
𝑗≥𝑘

𝐴 𝑗

)︃
.

Now, for every integer 𝑘 ,

𝑃(𝐴𝑘) ≤
∑︂

1≤𝑖1<𝑖2<· · ·<𝑖𝑟<2𝑘+1

𝑃(𝑅𝑖1 > 𝑡2𝑘 , . . . , 𝑅𝑖𝑟 > 𝑡2𝑘 )

≤
∑︂

1≤𝑖1<𝑖2<· · ·<𝑖𝑟<2𝑘+1

𝑟∏︂
𝑗=1 
𝐹𝑖 𝑗

(︃
1 
𝑡2𝑘

)︃

≤ 𝐶
∑︂

1≤𝑖1<𝑖2<· · ·<𝑖𝑟<2𝑘+1

1 
(𝑡2𝑘 )𝑟

≤ 𝐶

(︃
2𝑘+1

𝑟

)︃
1 

(𝑡2𝑘 )𝑟
≤ 𝐶

(︃
2𝑘

𝑡2𝑘

)︃𝑟

,

where the second inequality is due to Proposition 3 and the third one to condition (5). 
Thus,

∞ ∑︂
𝑘=1 
𝑃(𝐴𝑘) ≤ 𝐶

∞ ∑︂
𝑘=1 

(︃
2𝑘

𝑡2𝑘

)︃𝑟

,

which is finite because of (10). The result follows by the Borel–Cantelli lemma. □

Remark 7. Lemma 1 is satisfied in particular by ℎ0 since for this function we have 
𝑟 (ℎ0 ) = 𝑟0 and

∑︂
𝑘

(︃
2𝑘

ℎ0(2𝑘)

)︃𝑟

∼
∑︂
𝑘

(︃
𝜙(2𝑘)

𝑘

)︃𝑟

< ∞, 𝑟 ≥ 𝑟𝛽0 ,

by (3).
The corollary that follows studies the asymptotic behavior of the 𝑟-th maximum 

term of the Oppenheim expansion.
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Corollary 1. For every 𝑟 ≥ 𝑟𝛽0 we have

lim
𝑛

𝑀 (𝑟 )
𝑛

𝑎𝑛
= 0, 𝑃-a.s.

Proof. We prove that, for every 𝜀 > 0,

𝑃
(︁
𝑀 (𝑟 )

𝑛 > 𝜀𝑎𝑛 i.o.
)︁
= 0, ∀𝑟 ≥ 𝑟𝛽0 .

Assuming that 𝜀 < 1 (which is not restrictive), this can be derived by the previous 
Lemma 1 by choosing ℎ(𝑥) = 𝜀ℎ0 (𝑥), for 𝑥 ≥ 1 (recall Remark 7), since for this 
function we can easily obtain 𝑡 (ℎ)𝑛 ≤ 𝜀𝑎𝑛 due to (A2), and therefore

𝑃
(︁
𝑀 (𝑟 )

𝑛 > 𝜀𝑎𝑛 i.o.
)︁
≤ 𝑃

(︁
𝑀 (𝑟 )

𝑛 > 𝑡 (ℎ)𝑛 i.o.
)︁
. (11)

The conclusion follows by observing that

∞ ∑︂
𝑚=1

(︃
2𝑚

𝑡 (ℎ)2𝑚

)︃𝑟

≤

∞ ∑︂
𝑚=1

(︃
𝜙(2𝑚)
𝑚

)︃𝑟

< ∞, 𝑟 ≥ 𝑟𝛽0 . □

Lemma 2. Assume the conditions of Lemma 1 and, additionally, ℎ(𝑥) ≥ 𝑥 ultimately. 
For every 𝑚, denote by 𝑁𝑚 the number of indices 𝑗 < 2𝑚+1 for which 𝑅 𝑗 > 𝑡

(ℎ)
2𝑚 . Then, 

for every integer 𝑠 such that 𝑠 ≥ 𝑟 ,

𝑃(𝑁𝑚𝑛 ≥ 𝑠 i.o.) = 0.

Proof. Observe that

𝑃(𝑁𝑚𝑛 ≥ 𝑠 i.o.) ≤ 𝑃
(︁
𝑀 (𝑠)

𝑛 ≥ 𝑡 (ℎ)𝑛 i.o.
)︁
,

and we can apply the Borel–Cantelli lemma because of Lemma 1: in fact, ultimately,(︃
2𝑚

ℎ(2𝑚)

)︃𝑠

≤

(︃
2𝑚

ℎ(2𝑚)

)︃𝑟

,

whence
∞ ∑︂

𝑚=1

(︃
2𝑚

ℎ(2𝑚)

)︃𝑠

< ∞,

due to Lemma 1. □

Lemma 3. Let ℎ(𝑥) = 𝑥 log𝛼 𝑥, 𝛼 > 0, and 𝑡 (ℎ)𝑛 = ℎ(2𝑚𝑛 ) = 2𝑚𝑛 (log 2𝑚𝑛 )𝛼. Let 
𝑝, 𝑞 > 0 be fixed with 𝑝 > 2 + 1 

2𝑞 . Then the series

∑︂
𝑛

(𝜙(𝑛))2𝑝𝑞

𝑛2𝑞𝑝−2𝑞+1(log 𝑛)2𝑝𝑞

𝑛∑︂
𝑗=1 

(︁
𝑡 (ℎ)𝑗

)︁2𝑞

converges.
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Proof. For the sake of simplicity, we shall drop the superscript and write 𝑡𝑛 in place 
of 𝑡 (ℎ)𝑛 . Observe that

𝑛∑︂
𝑗=1 
𝑡
2𝑞
𝑗 ≤ 

𝑚𝑛+1∑︂
𝑘=0 

(︄2𝑘+1−1∑︂
𝑗=2𝑘

ℎ2𝑞(︁2𝑘
)︁)︄

= 
𝑚𝑛+1∑︂
𝑘=0 

2𝑘 (2𝑞+1)(︁log 2𝑘
)︁2𝛼𝑞

= 𝐶
𝑚𝑛+1∑︂
𝑘=0 

2𝑘 (2𝑞+1) 𝑘2𝛼𝑞 .

By an application of the Cesaro theorem, it is not difficult to see that

𝑁∑︂
𝑘=0 

2𝑘 (2𝑞+1) 𝑘2𝛼𝑞 ∼ 𝐶 · 2𝑁 (2𝑞+1)𝑁2𝛼𝑞 , 𝑁 → ∞.

Hence, ultimately,

𝑛∑︂
𝑗=1 
𝑡
2𝑞
𝑗 ≤ 𝐶 · 2(2𝑞+1)𝑚𝑛𝑚

2𝛼𝑞
𝑛 ≤ 𝐶 · 2(2𝑞+1) log2 𝑛 (log2 𝑛)

2𝛼𝑞 = 𝐶 · 𝑛2𝑞+1 (log 𝑛)2𝑞𝛼,

and

(𝜙(𝑛))2𝑝𝑞

𝑛2𝑞𝑝−2𝑞+1(log 𝑛)2𝑞𝑝

𝑛∑︂
𝑗=1 
𝑡2𝑗 ≤

𝐶 (𝜙(𝑛))2𝑝𝑞

𝑛2𝑝𝑞−4𝑞 (log 𝑛)2𝑞𝑝−2𝑞𝛼

≤
𝐶

𝑛2𝑝𝑞−4𝑞 (log 𝑛)2𝑞𝑝−2𝑞𝛼−2𝛽𝑝𝑞

due to (A1). The claim follows by known results on the Bertrand series. □

Corollary 2. Let (𝑡 (ℎ)𝑛 )𝑛≥1 be the sequence defined in Lemma 3 and consider the 
random variables (𝑅𝑛)𝑛≥1. Then, for every 𝑝 > 2,

1 
𝑎𝑝𝑛

𝑛∑︂
𝑗=1 
𝑅 𝑗 𝐼

(︁
𝑅 𝑗 ≤ 𝑡

(ℎ)
𝑗

)︁
→ 0, 𝑃-a.s.

Proof. We write 𝑡𝑛 in place of 𝑡 (ℎ)𝑛 ; we set 𝑅′
𝑗 = 𝑅 𝑗 𝐼 (𝑅 𝑗 ≤ 𝑡 𝑗 ) and 𝑆′𝑛 =

∑︁𝑛
𝑗=1 𝑅

′
𝑗 . 

Let 𝑝 > 2 and 𝑞 be large enough so that 2𝑞(𝑝 − 2) > 1 (which means 𝑝 > 2 + 1 
2𝑞 ). 

Then

𝑃
(︁
|𝑆′𝑛 − 𝑎𝑛 | ≥ 𝜀𝑎

𝑝
𝑛

)︁
= 𝑃

(︁
|𝑆′𝑛 − 𝑎𝑛 |

2𝑞 ≥ 𝜀2𝑞𝑎
2𝑝𝑞
𝑛

)︁
≤

1 

𝜀2𝑞𝑎2𝑝𝑞
𝑛

𝐸
[︁(︁
𝑆′𝑛 − 𝑎𝑛

)︁2𝑞]︁

≤
22𝑞−1

𝜀2𝑞𝑎2𝑝𝑞
𝑛

𝐸
[︁(︁
𝑆′𝑛

)︁2𝑞]︁
+

22𝑞−1

𝜀2𝑞𝑎2𝑞 (𝑝−1)
𝑛

=
22𝑞−1

𝜀2𝑞𝑎
2𝑝𝑞
𝑛

𝐸

[︄(︄
𝑛∑︂
𝑗=1 
𝑅′
𝑗

)︄2𝑞]︄
+

22𝑞−1

𝜀2𝑞𝑎2𝑞 (𝑝−1)
𝑛
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≤
22𝑞−1𝑛2𝑞−1

𝜀2𝑞𝑎2𝑝𝑞
𝑛

(︄
𝑛∑︂
𝑗=1 
𝐸
[︁(︁
𝑅′
𝑗

)︁2𝑞]︁)︄
+

22𝑞−1

𝜀2𝑞𝑎
2𝑞 (𝑝−1)
𝑛

≤
22𝑞−1

𝜀2𝑞

(︄
(𝜙(𝑛)2𝑝𝑞

𝑛2𝑞𝑝−2𝑞+1(log 𝑛)2𝑝𝑞

𝑛∑︂
𝑗=1 
𝑡2𝑞𝑗 +

(𝜙(𝑛)2𝑞 (𝑝−1)

(𝑛 log 𝑛)2𝑞 (𝑝−1)

)︄
.

The result follows by applying the Borel–Cantelli lemma, since

∑︂
𝑛

(𝜙(𝑛)2𝑝𝑞

𝑛2𝑞𝑝−2𝑞+1(log 𝑛)2𝑝𝑞

𝑛∑︂
𝑗=1 
𝑡2𝑞𝑗

converges by Lemma 3, and

∑︂
𝑛

𝜙(𝑛)2𝑞 (𝑝−1)

(𝑛 log 𝑛)2𝑞 (𝑝−1) ≤
∑︂
𝑛

1 
𝑛2𝑞 (𝑝−1) (log 𝑛)2𝑞 (𝑝−1) (1−𝛽)

converges, since 2𝑞(𝑝 − 1) > 2𝑞(𝑝 − 2) ≥ 1. □

6 The proofs of Theorems 2 and 3

By utilizing the results proven in the previous section we are ready for the proofs of 
Theorems 2 and 3; we start obviously with Theorem 2 which will serve as the source 
result for Theorem 3.

Proof. The proof is motivated by the proof of Theorem 1 in [12]. In detail: since 
𝑟𝛽0 >

1 
1−𝛽0

, there exists 𝛽 satisfying assumption (A2) such that 𝑟𝛽0 >
1 

1−𝛽 ; take 

𝛼 ∈ ( 1 
𝑟𝛽0
, 1 − 𝛽) and set ℎ(𝑥) = 𝑥 log𝛼 𝑥, for 𝑥 ≥ 1. Then 𝛼𝑟𝛽0 > 1 and Lemma 2 can 

be applied to ℎ. Recall the notation used before, i.e.

𝑡𝑛 = ℎ
(︁
2𝑚𝑛

)︁
, 𝑅′

𝑛 = 𝑅𝑛𝐼 (𝑅𝑛 ≤ 𝑡𝑛), 𝑎𝑛 =
𝑛 log 𝑛
𝜙(𝑛) 

and 𝑆′𝑛 =
𝑛∑︂
𝑖=1 
𝑅′
𝑗 .

Furthermore, for every 𝜀 > 0, put

𝑆𝑛 (𝜀) =
𝑛∑︂
𝑗=1 
𝑅 𝑗 𝐼 (𝑅 𝑗 ≤ 𝜀𝑎𝑛).

Since
𝑡𝑛 = ℎ

(︁
2𝑚𝑛

)︁
≤ ℎ

(︁
2log2 𝑛

)︁
= ℎ(𝑛) = 𝑛 log𝛼 𝑛,

and recalling that 𝛼 < 1 − 𝛽, we have that

lim 
𝑛→∞

𝑡𝑛
𝑎𝑛

= 0.

Thus, for fixed 𝜀 > 0, we can take 𝑛 sufficiently large such that 𝑡𝑛 < 𝜀𝑎𝑛. Then

⃓⃓
𝑆𝑛 (𝜀) − 𝑆

′
𝑛

⃓⃓
=

⃓⃓
⃓⃓
⃓
𝑛∑︂
𝑗=1 
𝑅 𝑗 𝐼 (𝑡 𝑗 < 𝑅 𝑗 ≤ 𝜀𝑎𝑛)

⃓⃓
⃓⃓
⃓ ≤ 𝜀𝑎𝑛𝑁𝑚𝑛 +

𝑚𝑛∑︂
𝑘=1 
𝜀𝑎2𝑚𝑛−𝑘+1𝑁𝑚𝑛−𝑘
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≤ 𝜀𝑎𝑛

(︄
𝑁𝑚𝑛+ 

𝑚𝑛∑︂
𝑘=1 

(︃
1
2

)︃𝑘−1
𝑁𝑚𝑛−𝑘

)︄
≤ 𝜀𝑎𝑝𝑛

(︄
𝑁𝑚𝑛+ 

𝑚𝑛∑︂
𝑘=1 

(︃
1
2

)︃𝑘−1
𝑁𝑚𝑛−𝑘

)︄

≤ 𝜀𝑎𝑝𝑛𝑁𝑚𝑛

(︄
1 +

𝑚𝑛∑︂
𝑘=1 

(︃
1
2

)︃𝑘−1
)︄
,

where the third relation is due to the inequality 𝑎𝑛
𝑎2𝑛

≤ 1
2 . Take any 𝑠 ≥ 𝑟; then, by 

Lemma 2, we obtain, ultimately,

⃓⃓
𝑆𝑛 (𝜀) − 𝑆

′
𝑛

⃓⃓
≤ 𝜀𝑎𝑝𝑛 𝑠

(︄
1 +

𝑚𝑛∑︂
𝑘=1 

(︃
1
2

)︃𝑘−1
)︄

≤ 3𝜀𝑎𝑝𝑛 𝑠, 𝑃-a.s.

Moreover,

⃓⃓
𝑆𝑛 (𝜀) −

(𝑟 )𝑆𝑛
⃓⃓
=

⃓⃓
⃓⃓
⃓
𝑛∑︂
𝑖=1 
𝑅 𝑗 𝐼 (𝑅 𝑗 > 𝜀𝑎𝑛) −

𝑟∑︂
𝑘=2 

𝑀 (𝑘 )
𝑛

⃓⃓
⃓⃓
⃓

≤

𝑛∑︂
𝑖=1 
𝑅 𝑗 𝐼 (𝑅 𝑗 > 𝜀𝑎𝑛) +

𝑟∑︂
𝑘=2 

𝑀 (𝑘 )
𝑛 .

By (11), the first summand is finite for sufficiently large 𝑛 while Corollary 1 ensures 
that 1 

𝑎𝑛

∑︁𝑟
𝑘=2 𝑀

(𝑘 )
𝑛 → 0. Then, as 𝑛→ ∞,

𝑎−1
𝑛

⃓⃓
𝑆𝑛 (𝜀) −

(𝑟 )𝑆𝑛
⃓⃓
→ 0

and so |𝑆𝑛 (𝜀) − (𝑟 )𝑆𝑛 | ≤ 𝜀𝑎𝑛. Finally,
⃓⃓
(𝑟 )𝑆𝑛 − 𝑆

′
𝑛

⃓⃓
≤
⃓⃓
𝑆𝑛 (𝜀) − 𝑆

′
𝑛

⃓⃓
+
⃓⃓
𝑆𝑛 (𝜀) −

(𝑟 )𝑆𝑛
⃓⃓
≤ 𝜀𝑎𝑝𝑛 (3𝑠 + 1)

and Corollary 2 gives the conclusion, by the arbitrariness of 𝜀. □

Now we give the proof of Theorem 3.

Proof. First, observe that for any 𝑟 ≥ 𝑟𝛽0 ≥ 2,

𝑆𝑛 − 𝑀
(1)
𝑛

(𝑛 log 𝑛) 𝑝
𝜙(𝑛) 𝑝 =

(𝑟 )𝑆𝑛
(𝑛 log 𝑛) 𝑝

𝜙(𝑛) 𝑝 +

𝑟∑︂
𝑘=2 

𝑀 (𝑘 )
𝑛

(𝑛 log 𝑛) 𝑝
𝜙(𝑛) 𝑝 .

The convergence of the latter expression is established by Theorem 2 and Corol-
lary 1. □
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