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1 Introduction

We consider a frictionless financial market with d + 1 assets. We assume the first
asset is a risk-free asset with risk-free interest rate rf and the remaining d assets are
risky assets with returns modeled by a d-dimensional random vector X. In this note,
we assume that X follows a normal mean-variance mixture (NMVM) distribution,

X
d= μ + γZ + √

ZAN, (1)

where μ ∈ R
d is location parameter, γ ∈ R

d controls the skewness, Z ∼ G is a
nonnegative random variable with distribution function G, A ∈ R

d×d is a symmetric
and positive definite d × d matrix of real numbers, N ∼ N(0, I ) is a d-dimensional
Gaussian random vector with identity covariance matrix I in R

d × R
d , and N is

independent of the mixing distribution Z.
In this paper we use the following notations. For any vectors x = (x1, x2, . . . , xd)T

and y = (y1, y2, . . . , yd)T in R
d , where the superscript T stands for the transpose of

a vector, <x, y> = xT y = ∑d
i=1 xiyi denotes the scalar product of the vectors x and

y, and |x| =
√∑d

i=1 x2
i denotes the Euclidean norm of the vector x. We sometimes

use the short-hand notation X ∼ N(μ+γ z, z�)◦G for (1), where � = AT A. R de-
notes the set of real numbers and R+ = [0,+∞) denotes the set of nonnegative real
numbers. Following the notations of [13], J denotes the family of infinitely divisible
random variables on R+, S denotes the set of self-decomposable random variables
on R+, and G denotes the class of generalized gamma convolutions (GGCs) on R+
that will be introduced later. The Laplace transformation of any distribution G is de-
noted by LG(s) = ∫

e−syG(dy). A gamma random variable with density function
f (x) = 1

�(α)βα xα−1e−x/β is denoted by G = G(α, β).
A prominent example of the NMVM models is generalized hyperbolic (GH) dis-

tributions, where the mixing distribution Z follows a generalized inverse Gaussian
(GIG) distribution denoted as GIG(λ, a, b). The probability density function of a
GIG distribution, denoted by fGIG(λ, a, b), takes the form

fGIG(x; λ, a, b) =
(

b

a

)λ 1

Kλ(ab)
xλ−1e− 1

2 (a2x−1+b2x)1(0,+∞)(x), (2)

where Kλ(x) denotes the modified Bessel function of third kind with index λ and the
allowed parameter ranges for λ, a, b in (2) are (i) a ≥ 0, b > 0 if λ > 0, (ii) a > 0,
b ≥ 0 if λ < 0, (iii) a > 0, b > 0 if λ = 0. Here the case a = 0 in (i) or the case
b = 0 in (ii) above need to be understood in limiting cases of (2) and in these special
cases we have

fGIG(x; λ, 0, b) =
(

b2

2

)λ
xλ−1

�(λ)
e− b2

2 x1(0,+∞)(x), λ > 0,

fGIG(x; λ, a, 0) =
(

2

a2

)λ
xλ−1

�(−λ)
e− a2

2x 1(0,+∞)(x), λ < 0,

(3)

where �(x) denotes the Gamma function. Here fGIG(x; λ, 0, b) is the density func-
tion of a Gamma distribution G(λ, 2

b2 ) and fGIG(x; λ, a, 0) is the density function of

an inverse Gamma distribution iG(λ, a2

2 ).
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The GH distribution in dimension d is denoted by GHd(λ, α, β, δ, μ,�) and
it satisfies GHd(λ, α, β, δ, μ,�) ∼ N(μ + z�β, z�) ◦ GIG(λ, δ,

√
α2 − βT �β).

The parameter ranges of this distribution are λ ∈ R, α, δ ∈ R+, β,μ ∈ R
d and

(i′) δ ≥ 0, 0 ≤ √
βT �β < α if λ > 0, (ii′) δ > 0, 0 ≤ √

βT �β < α if λ = 0,
(iii′) δ > 0, 0 ≤ √

βT �β ≤ α if λ < 0. The class of GH distributions includes two
popular models in finance: if λ = − 1

2 we have a normal inverse Gaussian distribution
which is denoted by NIGd(α, β, δ, μ,�), and when λ = 1+d

2 we have the class of
hyperbolic distributions denoted by HYPd(α, β, δ, μ,�). As in the case of the GIG
distributions, the case δ = 0 in (i′) above and the case

√
βT �β = α or α = 0 in

(iii′) above need to be understood as limiting cases of the GH distributions. If λ > 0,
δ → 0 in case (i′) above then

GHd(λ, α, β, δ, μ,�)
w→ Nd(μ + z�β, z�) ◦ G

(
λ,

α2 − βT �β

2

)
=: V Gd(λ, α, β, μ,�), (4)

where
w= denotes weak convergence of distributions and VGd represents the class of

variance gamma distributions. If λ < 0 and α → 0 as well as β → 0 in case (iii′)
above we have the shifted t distributions with degrees of freedom −2λ

GHd(λ, α, β, δ, μ,�)
w→ N(μ, z�) ◦ iG

(
λ,

δ2

2

)
=: td (λ, δ, μ,�). (5)

If α → ∞, δ → ∞ and δ
α

→ σ 2 < ∞, we have the following relation that shows
that the normal random vectors are limiting cases of the GH distributions,

GHd(λ, α, β, δ, μ,�)
w→ N(μ + z�β, z�) ◦ εσ 2 =: N

(
μ + σ 2�β, σ 2�

)
, (6)

where εσ 2 is the Dirac function that equals to 1 when z = σ 2 and equals to zero other-
wise, see Chapter 2 of [10] for the details. All of normal inverse Gaussian, hyperbolic,
variance gamma, and Student t distributions are very popular models in finance, see
[12], [1], [3], [8], [11], [21], [20], [14], [22] for this.

The class of GIG distributions belongs to the class of GGCs. A positive random
variable Z is a GGC, without translation term, if there exists a positive Radon measure
ν on R+ such that

LZ(s) = Ee−sZ = e− ∫ ∞
0 ln(1+ s

z
)ν(dz), (7)

with ∫ 1

0
|lnx|ν(dx) < ∞,

∫ ∞

1

1

x
ν(dx) < ∞. (8)

The measure ν is called Thorin’s measure associated with Z. For the definition of the
GGCs, see the survey paper [13]. In Proposition 1.1 of [13], it was shown that any
GGC random variable can be written as the Wiener-Gamma integral

Z =
∫ ∞

0
h(s)dγs, (9)
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where h(s) : R+ → R+ is a deterministic function with
∫ ∞

0 ln(1 + h(s))ds < ∞
and {γs} is a standard Gamma process with the Lévy measure e−x dx

x
, x > 0.

Proposition 1.23 of [10] shows that the class of GIG random variables belongs
to the class GGC. It provides the description of the corresponding Thorin’s measures
(in terms of the functions UGIG in the proposition) for all the cases of parameters of
GIG. The class of GGC distributions is rich as stated in the introduction of [13] and
we have the relation G ⊂ S ⊂ J . In our model (1) the mixing distribution Z can be
any distribution in J . In fact, Z can be any nonnegative random variable.

Given an initial endowment W0 > 0, the investor must determine the portfolio
weights x on the d risky assets to maximize the expected utility of the next period
wealth. The wealth that corresponds to the portfolio weight x on the risky assets is
given by

W(x) = W0
[
1 + (

1 − xT 1
)
rf + xT X

]
= W0(1 + rf ) + W0

[
xT (X − 1rf )

]
(10)

and the investor’s problem is

max
x∈D

EU
(
W(x)

)
, (11)

for some domain D of the portfolio set D. Note here that x represents the portfolio
weights on the risky assets and 1−xT 1 is the proportion of the initial wealth invested
on the risk-free asset. The portfolio weights x on risky assets are allowed to be any
vector in D.

The main goal of this paper is to discuss the solution to the problem (11) for an
exponential utility function U when the returns of the risky assets have an NMVM
distribution as in (1). This type of utility maximization problems in one period mod-
els were studied in many papers in the past, see [17], [18], [15], [29], [2]. Especially,
the recent paper [3] made an interesting observation that, with generalized hyperbolic
models and with exponential utility, the optimal portfolios of the corresponding ex-
pected utility maximization problems can be written as a sum of two portfolios that
are determined by the location and skewness parameters of the model (1) separately.
The present paper extends their result to a more general class of NMVM models as a
compliment.

The paper is organized as follows. In Section 2 below we present a closed-form
solution for an optimal portfolio when the utility function U is exponential. In Sec-
tion 3 we show that the optimal expected utilities in small financial markets converge
to an overall best-expected utility in a large financial market. In Section 4 we present
examples as applications of our results.

2 Closed-form solution for optimal portfolios under an exponential utility

In this section, we study the solution to the problem (11) when the utility function of
the investor is exponential,

U(W) = −e−aW , a > 0, (12)
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and when the investment opportunity set consists of the above-stated d + 1 assets.
Below we obtain an expression that relates EU(W) to the Laplace transformation of
the mixing distribution Z as in (14) below. First, observe that we have

W(x)
d= W0(1 + rf ) + W0

[
xT (μ − 1rf ) + xT γZ +

√
xT �x

√
ZN(0, 1)

]
. (13)

Lemma 2.1. For any portfolio x ∈ R
d such that EU(W(x)) is finite, we have

EU
(
W(x)

) = −e−aW0(1+rf )e−aW0x
T (μ−1rf )LZ

(
aW0x

T γ − a2W 2
0

2
xT �x

)
, (14)

where LZ(s) = Ee−sZ is the Laplace transformation of Z.

Proof. From (13), we have

EU
(
W(x)

) = − Ee−aW0(1+rf )−aW0[xT (μ−1rf )+xT γZ+√
xT �x

√
ZN(0,1)]

= − e−aW0(1+rf )e−aW0x
T (μ−1rf )

×
∫ +∞

0
Ee−aW0x

T γ z−aW0
√

xT �x
√

zN(0,1)fZ(z)dz

= − e−aW0(1+rf )e−aW0x
T (μ−1rf )

×
∫ +∞

0
e−aW0x

T γ zEe−aW0
√

xT �x
√

zN(0,1)fZ(z)dz

= − e−aW0(1+rf )e−aW0x
T (μ−1rf )

∫ +∞

0
e−aW0x

T γ ze
a2W2

0
2 xT �xzfZ(z)dz

= − e−aW0(1+rf )e−aW0x
T (μ−1rf )

∫ +∞

0
e−(aW0x

T γ− a2W2
0

2 xT �x)zfZ(z)dz

= − e−aW0(1+rf )e−aW0x
T (μ−1rf )LZ

(
aW0x

T γ − a2W 2
0

2
xT �x

)
.

Remark 2.2. If μ − 1rf = 0 in our model (1), from (14) we have

EU
(
W(x)

) = −e−aW0(1+rf )LZ

(
aW0x

T γ − a2W 2
0

2
xT �x

)
.

Since LZ(s) is a strictly decreasing function, the expected utility maximization
problem becomes the maximization problem of the quadratic function

aW0x
T γ − a2W 2

0
2 xT �x in this case. Especially, if the risk-free interest rate rf is

zero and our model (1) is such that the location parameter μ is zero, then the utility
optimizing portfolio can be found by optimizing a quadratic function. Therefore for
the rest of the paper, we assume that our model (1) is such that μ− 1rf 
= 0. Also we
assume that Z 
= 0 with positive probability.
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Remark 2.3. By using the relation (11) and by checking the first order condition for
optimality, it is easy to see that the optimal portfolio x� satisfies the relation

x� = 1

aW0

[
�−1γ − LZ(g(x�))

L′
Z(g(x�))

�−1(μ − 1rf )

]
, (15)

where g(x) is given in the expression (16) below. There are several questions that
one needs to address when applying the direct approach (15) in obtaining the optimal
portfolio x�: (i) if the function x → EU(W(x)) is continuously differentiable; (ii)
if the optimal portfolio is the interior point of the corresponding domain; (iii) if the
equation (15) has a unique solution. After these questions are addressed the next
challenge becomes how to compute x� numerically. This problem is not trivial if the
dimension d is a large number, i.e. x ∈ R

d for large d . To overcome these problems,
in this paper we take different approach and obtain x� in near closed form: to calculate
x� we only need to find the minimizing point of a convex function on the real line.

Lemma 2.1 expresses the expected utility in terms of the linear function xT (μ −
1rf ) and the quadratic function aW0x

T γ − a2W 2
0

2 xT �x of the portfolio x ∈ R
n. For

convenience, we introduce the notations

g(x) =: aW0x
T γ − a2W 2

0

2
xT �x,

G(x) =: e−aW0x
T (μ−1rf )LZ

(
aW0x

T γ − a2W 2
0

2
xT �x

)
,

= e−aW0x
T (μ−1rf )LZ

(
g(x)

)
. (16)

Then the relation (14) becomes

EU(W) = −eaW0(1+rf )G(x) = −eaW0(1+rf )e−aW0x
T (μ−1rf )LZ

(
g(x)

)
. (17)

Therefore we have the obvious relation

arg max
x∈D

EU(W) = arg min
x∈D

G(x) (18)

for any domain D ∈ R
d of the portfolio set. Note here that the equality in (18) means

the equality of two sets if there is more than one optimizing point.
Our goal in this section is to give a closed-form solution to the problem (11) for

some domains of the portfolio set. Before we start our analysis, we first present the
following example.

Example 2.4. Consider the model (1) with γ = 0 and with the mixing distribution
Z ∼ eN(0,1). Then for any x 
= 0 we have

EU
(
W(x)

) = −∞.

To see this, assume that there is x 
= 0 such that EU(W(x)) is finite. Then by
Lemma 2.1 we have

EU
(
W(x)

) = −e−aW0(1+rf )e−aW0x
T (μ−1rf )LZ

(
−a2W 2

0

2
xT �x

)
.
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For any x 
= 0 we have xT �x > 0 as � is positive definite by the assumption
of the model (1). Now it is well known that when Z ∼ eN(0,1) we have LZ(s) =
+∞ whenever s < 0. Therefore LZ(− a2W 2

0
2 xT �x) = +∞ whenever x 
= 0 and

this contradicts the finiteness assumption of EU(W(x)) made above. Thus we have
EU(W(x)) = −∞ whenever x 
= 0. Therefore the problem (11) does not have a
solution when the domain D does not include the zero vector. But if 0 ∈ D, then
x = 0 is the optimal portfolio and maxx∈D EU(W(x)) = −e−aW0(1+rf ). This case
corresponds to investing all the initial wealth W0 on the risk-free asset as an optimal
portfolio. We remark here that since γ = 0 by Jensen’s inequality we have

EU
(
W(x)

) ≤ U
(
EW(x)

) = U
(
W0(1 + rf ) + W0x

T (μ − 1rf )
)
.

From this relation it is difficult to see that 0 is the expected utility optimizing port-
folio when Z ∼ eN(0,1). But with the assistance of Lemma 2.1 it becomes trivial to
determine that 0 is the optimal portfolio as discussed earlier.

Example 2.4 shows that when the model (1) satisfies the conditions in the example
and when 0 ∈ D, the zero portfolio x = 0 is an optimal portfolio as when x 
= 0 one
has EU(W(x)) = −∞ always. It is obvious that, in this case, the function x →
EU(W(x)) is not differentiable at x = 0. Therefore we call x = 0 an irregular
solution to the optimization problem (18). Before we give the formal definition of
irregularity, we first introduce the following definition.

Definition 2.5. For any mixing distribution Z, if LZ(s) < ∞ for all s ∈ R, we set
ŝ = −∞ and if LZ(s) < ∞ for some s ∈ R and LZ(s) = +∞ for some s ∈ R, we
let ŝ be the real number such that

LZ(s) = Ee−sZ < ∞, ∀s > ŝ and LZ(s) = Ee−sZ = +∞, ∀s < ŝ. (19)

We call ŝ the critical value (CV) of Z under the Laplace transformation. We use the
acronym CV-L from now on, where L means that CV is in the context of the Laplace
transformation. One can also define this CV in the context of moment-generating
functions and in this case an acronym CV-M can be used. Observe that since Z is a
nonnegative random variable we always have ŝ ≤ 0.

Remark 2.6. In Definition 2.5, the value of LZ(s) at s = ŝ is not specified. Both
the cases LZ(ŝ) < ∞ and LZ(ŝ) = +∞ are possible. For example, if Z ∼ eN(0,1),
then ŝ = 0 and clearly LZ(0) = 1 < ∞. If Z ∼ xα−1e−x/β/[�(α)βα] is a Gamma
distribution, then LZ(s) = 1/[(1 + βs)α]. In this case ŝ = −1/β and we have
LZ(ŝ) = +∞.

Below we define some domains for the portfolio set.

Sa =:
{
x ∈ R

d : aW0x
T γ − a2W 2

0

2
xT �x > ŝ

}
,

∂Sa =:
{
x ∈ R

d : aW0x
T γ − a2W 2

0

2
xT �x = ŝ

}
,

S̄a =: Sa ∪ ∂Sa.

(20)
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Remark 2.7. Our main objective in this section is to find a closed-form solution for
the optimal portfolio for the problem

max
x∈Rd

EU
(
W(x)

)
. (21)

The following relations are easy to see:

max
x∈Rd

EU
(
W(x)

) = max
x∈Sa

EU
(
W(x)

)
, (22)

if LZ(ŝ) = +∞, and

max
x∈Rd

EU
(
W(x)

) = max
x∈S̄a

EU
(
W(x)

)
, (23)

if LZ(ŝ) < +∞. Observe here that if ŝ < 0, then Sa is a nonempty set as the zero
vector x = 0 is in it. If ŝ = 0, then the set S̄a is nonempty as x = 0 is in it.

In this section we attempt to give closed-form solutions to the problems (22) and
(23) above. Our approach for this is based on the following idea: we fix the term
xT (μ − 1rf ) at some constant level c and optimize the quadratic term aW0x

T γ −
a2W 2

0
2 xT �x in (14). More specifically, we solve the optimization problem

max
x

aW0x
T γ − a2W 2

0

2
xT �x,

s.t. xT (μ − rf 1) = c

(24)

first, and plug in the solution, which we denote by xc, into the expression (14) so that
the utility maximization problem becomes an optimization problem of a function of
one variable c.

Lemma 2.8. Consider the optimization problem (21). Let x̄ ∈ R
d be a solution to

this problem. Then x̄ solves (24) for some c.

Proof. Define c̄ =: x̄T (μ − 1rf ). Let x̃ be the solution to the problem (24) with c

replaced by c̄ (here the solution is unique as � is positive definite by assumption).
By the optimality of x̃, we have g(x̄) ≤ g(x̃). Since LZ(s) is a decreasing function,
we have LZ(g(x̃)) ≤ LZ(g(x̄)). Since c̄ = x̄T (μ − lrf ) = x̃T (μ − lrf ), we have
G(x̃) ≤ G(x̄). This shows that EU(W(x̃)) ≥ EU(W(x̄)). But x̄ is optimal for (11)
with D = R

d . Therefore we should have EU(W(x̃)) = EU(W(x̄)). This implies
G(x̃) = G(x̄) and this in turn implies g(x̄) = g(x̃) again due to c̄ = x̄T (μ −
lrf ) = x̃T (μ − lrf ). The uniqueness of the optimization point for (24) then implies
x̄ = x̃.

Remark 2.9. Lemma 2.8 gives a characterization of the optimal portfolios for the
problem (11). But it doesn’t tell us if the optimal portfolio for the problem (2.8)
is unique. It shows only that any optimal portfolio for the problem (11) solves a
quadratic optimization problem (24) for some appropriate c. Now consider the case of
Example 2.4. In the setting of this example, consider the utility maximization problem
(11). Since 0 ∈ R

d , as explained in Example 2.4, the vector x̂ = 0 is the solution to
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the optimization problem (11). Now let x� be the optimal solution to the problem (24)
with c = 0 (which means (x�)T (μ−rf 1)) = 0). Then we should have g(x�) ≥ g(x̂).
But if g(x�) > g(x̂), then x̂ = 0 cannot be an optimal solution to (11). Therefore we
should have g(x�) = g(x̂). The uniqueness of the optimal solution to (24) with c = 0
then implies x� = x̂ = 0.

Definition 2.10. Consider the optimization problem (11) for some given model (1)
and for some domain D ⊂ R

d . Let ŝ denote the CV-L of the mixing distribution
Z. Let x� ∈ D be a solution to (11). We say that x� is irregular if g(x�) = ŝ. If
g(x�) > ŝ, we call the solution x� regular.

Remark 2.11. Clearly, the definition of irregular and regular solutions depends on the
CV-L number ŝ of the mixing distribution Z in (1). If LZ(ŝ) = +∞, then the solution
to (11) cannot be irregular. Therefore, the irregularity can happen only when LZ(ŝ) <

+∞. Observe that the solution x = 0 in Example 2.4 is an irregular solution.

Remark 2.12. Consider the optimization problem (11). From Lemma 2.8, any opti-
mal portfolio x� is a solution to the quadratic optimization problem (24) with xT (μ−
rf 1) = c� for some fixed c�. If x� is irregular, then g(x�) = ŝ. The optimality
and uniqueness (on the hyperplane xT (μ − rf 1) = c�) of x� implies that we have
g(x) < g(x�) = ŝ for all x 
= x� on the hyperplane xT (μ − rf 1) = c�. Therefore
we have EU(W(x)) = −∞ for all x 
= x� on the hyperplane xT (μ − rf 1) = c�.
From this we conclude that if the optimal portfolio for the problem (24) is irregular,
then any small neighborhood of this portfolio contains some portfolios with infinite
expected utility. In comparison, if the optimal portfolio is regular, then it has a small
ball around it with finite expected value for each portfolio in this small ball.

As it was shown in Lemma 2.8, the solutions to the utility maximization problem
(11) can be obtained by solving the quadratic optimization problem (24). For a given
optimization problem (11), if we know the corresponding c in (24) such that the
solution to (24) is the solution to (11), then we just need to solve the optimization
problem (24) to obtain the optimal portfolio. But figuring out such an c is not a trivial
issue. We first prove following lemma.

Lemma 2.13. For any real number c, when xT (μ − 1rf ) = c, the maximizing point
xc of g(x) is given by

xc = 1

aW0

[
�−1γ − qc�

−1(μ − 1rf )
]
, (25)

and we have

g(xc) = 1

2
γ T �−1γ − q2

c

2
(μ − 1rf )T �−1(μ − 1rf ), (26)

where

qc = γ T �−1(μ − 1rf ) − aW0c

(μ − 1rf )T �−1(μ − 1rf )
. (27)

Proof. We form the Lagrangian L = g(x)+λ(c−xT (μ−1rf )) with the Lagrangian
parameter λ. Denoting the maximizing point by xc, the first order condition gives

xc = 1

aW0
�−1γ − λ

a2W 2
0

�−1(μ − 1rf ). (28)
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We plug xc into xT
c (μ − 1rf ) = c and obtain

c = 1

aW0
γ T �−1(μ − 1rf ) − λ

a2W 2
0

(μ − 1rf )T �−1(μ − 1rf ). (29)

From this we find λ as

λ = aW0γ
T �−1(μ − 1rf ) − ca2W 2

0

(μ − 1rf )T �−1(μ − 1rf )
. (30)

Then we plug λ into the expression (28) of xc above and obtain (25). To obtain (26),
we plug xc into g(x) in (16). After doing some algebra, we obtain

g(xc) = 1

2
γ T �−1γ − 1

2
q2
c (μ − 1rf )T �−1(μ − 1rf ), (31)

with qc given as in (27). This completes the proof.

For the rest of the paper, as in [3], for convenience, we use the notations

A = γ T �−1γ, C = (μ − 1rf )T �−1(μ − 1rf ), B = γ T �−1(μ − 1rf ). (32)

We first observe that C > 0 due to the assumption in Remark 2.2 and the assumption
on positive definiteness of �. With these notations we have

g(xc) = A
2

− q2
c

2
C, qc = B

C − aW0

C c. (33)

From the relation (33), we express c as a function of qc as

c = 1

aW0
[B − Cqc]. (34)

We define the function

Q(θ) = eCθLZ

[
1

2
A − θ2

2
C
]
, (35)

and we define θ̂ =:
√

A−2ŝ
C , where ŝ is the IN of Z. If ŝ = −∞, the θ̂ is understood

to be equal to +∞. Note here that ŝ ≤ 0 as Z is a nonnegative random variable.

Therefore θ̂ is well defined. If LZ(ŝ) < +∞, Q(θ) is finite iff 1
2A − θ2

2 C ≥ ŝ and

this translates into: Q(θ) is finite iff θ ∈ [−θ̂ , θ̂ ]. If LZ(ŝ) = +∞, Q(θ) is finite iff
1
2A − θ2

2 C > ŝ and this translates into: Q(θ) is finite iff θ ∈ (−θ̂ , θ̂ ).
Next we prove the following lemma that relates Q to G.

Lemma 2.14. Let xc be the solution to the problem (24) for a given c. Assume xc ∈ Sa

if LZ(ŝ) = +∞ and xc ∈ S̄a if LZ(ŝ) < +∞. Then, for any x with xT (μ−1rf ) = c,
we have

e−BQ(qc) ≤ G(x), (36)

where qc is given by (27) and B is given by (32). We also have e−BQ(qc) = G(xc).
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Proof. Note that G(x) = e−aW0x
T (μ−1rf )LZ(g(x)). The conditions stated on xc in

the lemma ensure that G(xc) = e−aW0cLZ(g(xc)) is finite. Since g(x) ≤ g(xc) for
any x with xT (μ − 1rf ) = c by the definition of xc (the optimizing point) and also
since LZ(s) is a decreasing function of s, we have

G(xc) ≤ G(x) (37)

for any x with xT (μ − 1rf ) = c. We plug c in (34) into the expression of G(xc) and
obtain

G(xc) = e−BeCqcLZ

[
1

2
A − q2

c

2
C
]

= e−BQ(qc). (38)

Remark 2.15. Lemma 2.14 shows that the function G(x) achieves its unique (as
the solution to (24) is unique in a hyperplane) minimum value on the hyperplane
xT (μ − rf 1) = c at xc and its minimum value is given by e−BQ(qc) with qc in
(33). For any θ0 ∈ [−θ̂ , θ̂ ], we can let c0 be such that qc0 = θ0. Let x0 be the
optimal solution to (24) with c replaced by c0. From Lemma 2.13, we have g(x0) =
1
2A − q2

c0
2 C. If |qc0 | = θ̂ , then g(x0) = ŝ. If |qc0 | < θ̂ , then g(x0) > ŝ.

Theorem 2.16. Consider the optimization problem (21). A portfolio x� is a solution
to (21) if and only if

x� = 1

aW0

[
�−1γ − qmin�

−1(μ − 1rf )
]

(39)

for some
qmin ∈ arg min

θ∈�
Q(θ), (40)

where � = [−θ̂ , θ̂ ] if θ̂ =
√

A−2ŝ
C < ∞ and � = (−∞,+∞) if θ̂ = +∞. Here ŝ is

the CV-L of the mixing distribution Z.

Proof. First we show that if x̂ is a solution to (21), then x̂ is given by (39). By
Lemma 2.8, x̂ is a solution to the optimization problem (24) with some c = ĉ. By
Lemma 2.13, x̂ takes the form

x̂ = 1

aW0

[
�−1γ − q̂�−1(μ − 1rf )

]
,

with q̂ = B/C − (aW0/C)ĉ. Again by Lemma 2.13 we have (see (33))

g(x̂) = A
2

− (q̂)2

2
C.

Since x̂ is a solution to (21) we have G(x̂) < ∞ and this implies g(x̂) ≥ ŝ if ŝ is
finite and g(x̂) > ŝ if ŝ = −∞ (note that g(x̂) = −∞ implies G(x̂) = +∞ due
to the assumption Z 
= 0 in Remark 2.2 and G(x̂) = e−aW0x̂

T (μ−rf 1)LZ(g(x̂))). The
expression of g(x̂) above then implies q̂ ∈ � (note here that for the case θ̂ = +∞,
we can’t have q̂2 = +∞ as g(x̂) is finite as explained above).
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Now we need to show q̂ ∈ arg minθ∈� Q(θ). From Lemma 2.14, we have G(x̂) =
e−BQ(q̂). Take any θ0 ∈ � (including the case � = (−∞,+∞)). Let c0 be such that
θ0 = qc0 (see Remark 2.15). Let x0 be the solution to (24) with c replaced by c0. By

Lemma 2.13 we have g(x0) = A
2 − (qc0 )2

2 C. Since θ0 = qc0 ∈ �, we have g(x0) ≥ ŝ

if ŝ is finite and g(x0) > ŝ if ŝ = −∞. Therefore, either x0 ∈ Sa or x0 ∈ S̄a . Then
by Lemma 2.14 we have G(x0) = e−BQ(qc0). Since x̂ is the optimal portfolio, it
is the minimizing point for the function G(x) (see (18) for this). Therefore we have
G(x̂) ≤ G(x0). This implies Q(q̂) ≤ Q(qc0) = Q(θ0). Since θ0 is arbitrary, we
conclude that q̂ ∈ arg minθ∈� Q(θ).

Next we show that any portfolio of the form (39) is an optimal portfolio for (21).
Fix an arbitrary qm ∈ arg minθ∈� Q(θ). Then qm ∈ [−θ̂ , θ̂ ] if θ̂ is finite and qm ∈
(−∞,+∞) if θ̂ = +∞. Let cm be such that qm = qcm and let xm be the solution to
(24) with c replaced by cm. By Lemma 2.13, we have

xm = 1

aW0

[
�−1γ − qm�−1(μ − 1rf )

]
,

and g(xm) = A
2 − q2

m

2 C. The condition on qm above implies g(xm) ≥ ŝ if ŝ is finite and
g(xm) > −∞ if ŝ = −∞. Therefore, either xm ∈ Sa or xm ∈ S̄a . By Lemma 2.14
we have G(xm) = e−BQ(qm) which is a finite number. To show xm is an optimal
portfolio we need to show G(xm) ≤ G(x) for any x that G(x) is finite (note that
either G(x) = +∞ or it is finite). Fix an arbitrary x̄ with G(x̄) < +∞. Let c̄ =
x̄T (μ − rf 1). Let xc̄ be the solution to (24) with c replaced by c̄. Since G(x) < ∞,
we either have x ∈ S̄a or x ∈ Sa . This means that xc̄ ∈ S̄a . By Lemma 2.13 we have

g(xc̄) = A
2 − q2

c̄

2 C, where qc̄ is given by (33) with c replaced by c̄. Therefore, we have

qc̄ ∈ [−θ̂ , θ̂ ] if θ̂ is finite and qc̄ ∈ (−∞,+∞) if θ̂ = +∞. By the definition of qm,
we have Q(qm) ≤ Q(qc̄). Therefore, we have G(xm) = e−BQ(qm) ≤ e−BQ(qc̄) =
G(x̄).

Proposition 2.17. Consider the optimization problem (21). If x� is a regular solution
to (21) then

x� = 1

aW0

[
�−1γ − qmin�

−1(μ − 1rf )
]
, (41)

for some
qmin ∈ arg min

θ∈(−θ̂ ,θ̂ )

Q(θ), (42)

where θ̂ =:
√

A−2ŝ
C and ŝ is the CV-L of the mixing distribution Z.

Proof. Let x̂ be a regular solution. By Lemma 2.8, x̂ is a solution to the optimization
problem (24) with some c = ĉ. By Lemma 2.13, x̂ takes the form

x̂ = 1

aW0

[
�−1γ − q̂�−1(μ − 1rf )

]
with q̂ = B/C − (aW0/C)ĉ. Again by Lemma 2.13 we have (see (33))

g(x̂) = A
2

− (q̂)2

2
C.
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Since x̂ is regular, we have g(x̂) > ŝ. From this we conclude q̂ ∈ (−θ̂ , θ̂ ). From
Lemma 2.14, we have G(x̂) = e−BQ(q̂). Note that q̂ = qĉ. Now we show that
q̂ ∈ arg min

θ∈(−θ̂ ,θ̂ )
Q(θ). Take any θ0 ∈ (−θ̂ , θ̂ ). Let c0 be such that θ0 = qc0 (see

Remark 2.15). Let x0 be the solution to (24) with c replaced by c0. By Lemma 2.13

we have g(x0) = A
2 − (qc0 )2

2 C. Since θ0 = qc0 ∈ (−θ̂ , θ̂ ), we have g(x0) > ŝ.
Therefore x0 ∈ Sa . Then by Lemma 2.14 we have G(x0) = e−BQ(qc0). Since x̂ is
the optimal portfolio, it is the minimizing point for the function G(x) (see (18) for
this). Therefore, we have G(x̂) ≤ G(x0). This implies Q(q̂) ≤ Q(qc0) = Q(θ0).
Since θ0 is arbitrary, we conclude that q̂ ∈ arg min

θ∈(−θ̂ ,θ̂ )
Q(θ).

Remark 2.18. Let us look at the case of Example 2.4. From the analysis in this exam-
ple the optimal solution to the problem (21) is x� = 0 and it is unique. Here we would
like to check that this optimal portfolio x� = 0 can also be derived from (39). To see

this, note that in this example γ = 0. Therefore we have Q(θ) = eCθLZ(− θ2

2 C) and

qc = − aW0
C c. Observe that 0 ∈ {xT (μ − 1rf ) : x ∈ R

n}. Also for any θ 
= 0 we
have Q(θ) = +∞ as the CV-L of Z ∼ eN(0,1) is ŝ = 0. Therefore arg minθ∈� Q(θ)

has only one element qmin = 0. Then (39) gives x̄� = 0 as the only optimal solu-
tion. Observe that in fact in this example we have A = 0 and therefore θ̂ = 0. Thus
q̄min = arg minθ∈{0} Q(θ) = 0.

Remark 2.19. We remark here that our closed-form formula (39) expresses the opti-
mal portfolio in terms of the critical value (see Definition 2.10) of the mixing distri-
bution Z and its Laplace transformation which is hidden in the function Q(θ). This
has some advantage in determining the optimal portfolio for some cases of models
(1), see our Corollary 4.5 below for this.

3 Large financial markets

In the previous section we gave a closed-form solution for the optimal portfolio for
an exponential utility maximizer in a market that contains one risk-free asset and
finitely many risky assets with return vector that follow (1). Our Theorem 2.16 gives
the complete characterization of the optimal portfolio in such small markets.

The next natural question to ask is what happens if the consumer with an expo-
nential utility wants to increase her expected utility as much as possible by adding as
many as necessary assets into her portfolio. We can best investigate this possibility
by working in mathematical models with countably infinitely many assets.

In this section we consider a sequence of economies with increasing number of
assets. In the nth economy, there are n risky assets and one riskless asset. The return
vector of the risky assets in the nth economy satisfies (1). A consumer with an expo-
nential utility maximizes her expected utility based on the n + 1 assets in each nth
economy. Our main concern in this section is to investigate if the optimal expected
utility of the consumer converges to a limit as n → ∞, and we would like to identify
this limit as the optimizer in the market with infinitely many assets.

Such “stability” of optimal investment problems was proved in [7] for a wide
range of models. The methods of [7], however, cannot deal with exponential utilities.
So we need to apply somewhat different, new arguments.
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Our main result in this section shows that the consumer can achieve the maximum
possible (in a market where she can trade on countably infinitely many risky assets)
expected utility by following the sequence of optimal trading strategies in each nth
economy, which are shown to converge to a limit (see our Lemma 3.6 below). We call
this limit portfolio the “overall best optimal portfolio” in this paper.

An economy that allows to trade on countably infinitely many risky assets is called
a large financial market in the literature. They serve well to describe, e.g., bonds
of various maturities. The first model of this type, the “Arbitrage Pricing Model”
(APM), goes back to [26]. We consider a slight extension of that model in the present
section. As the main result of this section, we will show that the exponential utiliy
maximization problem in a large financial market can be approximated by similar
problems for finitely many assets (and the latter can be solved by the results of the
previous sections).

Before we state and prove our main result of this section, we first specify the
structure of our nth economy for all n. The return on the bank account is R0 :=
rf where rf ≥ 0 is the risk-free interest rate. For simplicity we assume rf = 0
henceforth. For i = 1, R1 := γ1Z + μ1 + β̄1

√
Zε1 is the return on the “market

portfolio”, which may be thought of as an investment into an index. For i ≥ 2, let the
return on risky asset i be given by

Ri = γiZ + μi + βi

√
Zε1 + β̄i

√
Zεi. (43)

Here (εi)i≥1 are assumed to be independent standard Gaussian variables, Z is a posi-
tive random variable, independent of εi , βi , i ≥ 2, β̄i 
= 0, γi, μi , i ≥ 1 are constants.
The classical APM corresponds to Z ≡ 1. We refer to [26] for further discussions on
that model.

We consider investment strategies in finite market segments. A strategy invest-
ing in the first n assets is a sequence of numbers φ0, φ1, . . . , φn. For simplicity, we
assume 0 to be initial capital and also that every asset has price 1 at time 0. Self-
financing imposes

∑n
i=0 φi = 0, so a strategy is, in fact, described by φ1, . . . , φn

which can be arbitrary real numbers. The return on the portfolio φ is thus

V (φ) =
n∑

i=1

φiRi,

noting also that R0 = 0 is assumed.
For a utility maximization problem to be well-posed, one should assume a certain

arbitrage-free property for the market. Notice that a probability Qn ∼ P is a martin-
gale measure for the first n assets (that is, EQn[Ri] = 0 for all 1 ≤ i ≤ n) provided
that

EQn[ε1|Z = z] = b1(z) := −γ1
√

z

β̄1
− μ1√

zβ̄1
, z ∈ (0,∞), (44)

and, for each i ≥ 2,

EQn[εi |Z = z] = bi(z) := −γi
√

z

β̄i

− μi√
zβ̄i

− βib1(z)
√

z

β̄i

, z ∈ (0,∞). (45)
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Now notice that, in fact, the set of such V (φ) coincides with the set of

V (h) :=
n∑

i=1

hi

√
Z

(
εi − bi(Z)

)
where h1, . . . , hn are arbitrary real numbers. We denote by Hn the set of all n-tuples
(h1, . . . , hn). It is more convenient to use this “h-parametrization” in the sequel.

Assumption 3.1. There are finite real numbers 0 < c < C, such that c ≤ Z ≤ C.

Let us define di := supz∈[c,C] |bi(z)|, i ≥ 1. The next assumption is similar in
spirit to the no-arbitrage condition derived in [26], see also [25].

Assumption 3.2. We stipulate
∑∞

i=1 d2
i < ∞.

Fact. If X is standard normal then E[e−θX−θ2/2] = 1 and E[Xe−θX−θ2/2] = θ , for
all θ ∈ R. Notice also that, for all p ≥ 1,

E
[
e−pθX−pθ2/2] = e(p2−p)θ2/2. (46)

Let us now define

fn(z) := exp

(
−

n∑
i=1

[
bi(z)εi + bi(z)

2]).

Clearly, E[fn(z)] = 1 and E[fn(z)εi] = bi(z) for i = 1, . . . , n. Then Qn defined
by dQn/dP := fn(Z) will be a martingale measure for the first n assets. Indeed,

E
[
fn(Z)

] =
∫

[c,C]
E

[
fn(z)

]
Law(Z)(dz) = 1

and

E
[
fn(Z)εi |Z = z

] = E
[(

εi − bi(z)
)
e−bi (z)εi−bi (z)

2/2] = 0, 1 ≤ i ≤ n.

It follows from (46) and from Assumption 3.2 that supn E[(dQn/dP )2] < ∞ hence
dQ/dP := limn→∞ dQn/dP exists almost surely and in L2, and this is a martin-
gale measure for all the assets, that is, EQ[Ri] = 0 for all i ≥ 1. Note also that
E[(dQ/dP )2] < ∞.

Using the previous sections, we may find h∗
n ∈ Hn such that

Un := E
[
e−V (h∗

n)
] = min

h∈Hn

E
[
e−V (h)

]
.

If we wish to find (asymptotically) optimal strategies for this large financial market,
then we also need to verify that Un → U := infh∈∪n≥1Hn E[e−V (h)] as n → ∞.

Let us introduce

�2 :=
{
(hi)i≥1, hi ∈ R, i ≥ 1,

∞∑
i=1

h2
i < ∞

}

which is a Hilbert space with the norm ||h||�2 :=
√∑∞

i=1 h2
i . We may and will iden-

tify each (h1, . . . , hn) ∈ Hn with (h1, h2, . . .) ∈ �2 for all n ≥ 1. Also define
d := (d1, d2, . . .) ∈ �2.
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Theorem 3.3. Under Assumptions 3.1 and 3.2, one has Un → U , n → ∞.

Proof. It follows from Lemma 3.6 below that there is h̄∗ ∈ �2 such that U =
E[e−V (h̄∗)]. Define now h̃n := (h̄∗

1, . . . , h̄
∗
n) ∈ Hn. It is clear that Un ≥ U and

E[e−V (h̃n)] ≥ Un for all n ≥ 1. Hence it remains to establish E[e−V (h̃n)] → U .
Noting that V (h̃n) → V (h∗) almost surely, it suffices to show that

supn∈N E[e−2V (h̃n)] < ∞. This follows from

E
[
e−2V (h̃n)

] ≤ e2
√

C||h̃n||2||d||2E
[
e2

√
C||h̃n||2|N |] ≤ e2

√
C||h∗||2||d||2E

[
e2

√
C||h∗||2|N |],

where N is a standard normal random variable.

Remark 3.4. The main message of Theorem 3.3 is that the sequence of optimal
expected utilities in the small markets defined above is a convergent sequence, the
limit being a finite number. This means that after the consumer increases the number
of assets in her/his portfolio to a certain level, a further increase of the number of
assets will not bring significant increments of the expected utility. It is not trivial to
have some estimations on the number of assets needed for the optimal expected utility
to be sufficiently close to the overall best utility level. It would be interesting to see
how fast this sequence converges to the overall best utility level U . We leave this for
further discussions.

Lemma 3.5. There exists α > 0 such that, for all h ∈ �2 with ‖h‖�2 = 1, P(V (h) ≤
−α) ≥ α holds.

Proof. We follow closely the proof of Proposition 3.2 in [7], see also [6]. We argue by
contradiction. Assume that for all n ≥ 1, there is gn = (gn(1), gn(2), . . .) ∈ ∪n≥1Hn

with ‖gn‖�2 = 1 and P(V (gn) ≤ −1/n) ≤ 1/n.
Clearly, V (gn)

− → 0 in probability as n → ∞. We claim that EQ[V (gn)
−] → 0.

By the Cauchy–Schwarz inequality

EQ

[
V (gn)

−] ≤ ‖dQ/dP‖L2(P )

(
E

[(
V (gn)

−)2])1/2
.

However,
V (gn)

− ≤ |V (gn)| ≤ √
C[|N | + ||d||2] (47)

for some standard normal N . This implies E[(V (gn)
−)2], n → ∞, and hence our

claim.
Since EQ[V (gn)] = 0 by the martingale measure property of Q, we also get

that EQ[V (gn)
+] → 0. It follows that EQ[|V (gn)|] → 0, hence V (gn) goes to

zero Q-a.s. (along a subsequence) and, as Q is equivalent to P , P -a.s. Using that
|V (gn)|2, n ∈ N, is uniformly P -integrable by (47), we get E[V (gn)

2] → 0. An
auxiliary calculation gives

E
[
V (gn)

2] = ‖gn‖2
�2

E[Z] +
∞∑
i=1

g2
n(i)E

[
b2
i (Z)Z

] ≥ E[Z] > 0,

a contradiction proving our lemma.
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Lemma 3.6. There is h∗ ∈ �2 such that U = E[e−V (h∗)].
Proof. There are hn ∈ ∪j∈NHj , n ∈ N, such that E[e−V (hn)] → U . If we had
supn ||hn||�2 = ∞, then (taking a subsequence still denoted by n), ||hn||�2 → ∞,
n → ∞. By Lemma 3.5,

P
(
V (hn) ≤ −α||hn||�2

) ≥ α

and this implies E[e−V (hn)] → ∞, which contradicts E[e−V (hn)] → U ≤ E[e0] =
1.

Then necessarily supn ||hn||�2 < ∞ and the Banach–Saks theorem implies that
convex combinations h̄n of hn converge to some h∗ ∈ �2 (in the norm of �2). By
Fatou’s lemma,

E
[
e−V (h∗)] ≤ lim inf

n→∞ E
[
e−V (h̄n)

] ≤ lim inf
n→∞ E

[
e−V (hn)

] = U,

using also convexity of the exponential function. This proves the statement.

4 Applications and examples

Our Theorem 2.16 gives a closed-form expression for the optimal portfolios for the
problem (21) by using the function Q(θ) defined in (35). In this section, we first study
some properties of this function. Then we present some examples.

Let MZ(s) = EesZ and KZ(s) = lnMZ(s) denote the moment generating func-
tion (MGF) and the cumulant generating function (CGF) of the mixing distribution
Z, respectively. We have the obvious relation

Q(θ) = eCθMZ

(C
2
θ2 − A

2

)
, ln Q(θ) = Cθ + KZ

(C
2
θ2 − A

2

)
.

Therefore the minimizing points of Q(θ) in (40) can also be found by using the MGF
or KGF of Z. In the following lemma we state some properties of the function Q(θ).

Lemma 4.1. Consider the model (1) with a nontrivial mixing distribution Z. Let ŝ

denote the CV-L of Z and θ̂ be defined as in Section 2. Let the function Q(θ) be
defined by (35). Assume our model (1) is such that either A 
= 0 or ŝ 
= 0 which
ensures θ̂ = √

(A − 2ŝ)/C 
= 0 and hence (−θ̂ , θ̂ ) is a nonempty open interval. Then
we have the following.

a) The function Q(θ) is infinitely differentiable on (−θ̂ , θ̂ ). If ŝ is finite and
LZ(ŝ) = +∞ or if ŝ = −∞, we have

lim
θ→θ̂−

Q(θ) = +∞, lim
θ→−θ̂+

Q(θ) = +∞. (48)

When ŝ is finite and LZ(ŝ) < ∞ we have Q(θ̂) < ∞ and Q(−θ̂ ) < ∞. When
ŝ is finite and θ /∈ [−θ̂ , θ̂ ] we have Q(θ) = +∞.

b) The function Q(θ) is strictly increasing on [0, θ̂ ] when ŝ is finite. It is strictly
increasing on [0,+∞) when ŝ = −∞. We have Q′(0) 
= 0 which implies qmin

in (39) cannot be zero under the stated conditions.
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c) The function Q(θ) is strictly convex on the open interval (−θ̂ , θ̂ ) when ŝ is
finite and L(ŝ) = +∞ or when ŝ = −∞. Q(θ) is strictly convex on [−θ̂ , θ̂ ]
when ŝ is finite and L(ŝ) < ∞.

Proof. a) It is sufficient to prove that the function θ → LZ(A2 − C
2 θ2) is infinitely

differentiable when θ ∈ (−θ̂ , θ̂ ). This function is a composition of two functions
s → LZ(s) and θ → A

2 − C
2 θ2. So it is sufficient to prove the infinite differentiability

of s → LZ(s) in the corresponding domain. If LZ(s) is k-times differentiable then we
will have L(k)

Z (s) = (−s)kE[Zke−sZ]. To justify the change of the order of derivative
with expectation for this we need to show E[Zke−sZ] < ∞. Let us look at the case
ŝ 
= 0 first. In this case we have EesZ < ∞ in (−∞, |ŝ|). Thus all the moments
of Z are finite. This implies E[Zke−sZ] < ∞ for any positive integer k and all s ∈
(ŝ,+∞). If θ ∈ (−θ̂ , θ̂ ), then A

2 − C
2 θ2 ∈ (ŝ, A

2 ). Therefore, when ŝ 
= 0, the infinite

differentiability of Q(θ) follows. Now let us look at the case ŝ = 0. In this case θ̂ =√
A
C and for any θ ∈ (−θ̂ , θ̂ ) we have A

2 − C
2 θ2 ∈ (0, A

2 ). Therefore, it is sufficient

to prove infinite differentiability of LZ(s) on (0, A
2 ). Fix an arbitrary positive integer

k. When s ∈ (0, A
2 ) we have Zk/esZ = (Zk/esZ)1{Z≤M} + (Zk/esZ)1{Z>M} for any

positive number M . For sufficiently large M = M0, we have (Zk/esZ)1{Z>M0} ≤ 1
and Zk/esZ = (Zk/esZ)1{Z≤M0} is a bounded random variable. Thus E(Zke−sZ) <

∞ for any positive integer k when s ∈ (0, A
2 ). This shows that θ → LZ(A2 − C

2 θ2)

is infinitely differentiable when ŝ = 0 also.
When ŝ is finite and when θ → θ̂ from the left-hand side or when θ → −θ̂

from the right-hand side, the function A
2 − C

2 θ2 decreasingly converges to ŝ (in some
neighborhood of ŝ). Then the monotone convergence theorem gives the claim (48).
Now assume ŝ = −∞ which happens when the mixing distribution Z is a bounded
nontrivial random variable. The result limθ→+∞ Q(θ) = +∞ is clear as both eCθ and

LZ(A2 − θ2

2 C) go to +∞. The limit limθ→−∞ Q(θ) = +∞ is less clear as eCθ → 0

and LZ(A2 − θ2

2 C) → +∞ in this case. But since Z 
= 0 with positive probability,
we have a positive number δ > 0 with P(Z ≥ δ) > 0. We have

Q(θ) = Ee[C2 θ2−A
2 ]Z+Cθ ≥ e[C2 θ2−A

2 ]δ+CθP (Z ≥ δ) (49)

for all θ with C
2 θ2 − A

2 > 0. Then, since the right-hand side of (49) goes to +∞
when θ → −∞, the claim follows. The remaining property of Q in part a) above is
obvious by the definition of θ̂ .

b) For any θ ∈ (−θ̂ , θ̂ ) we have

Q′(θ) = CeCθLZ

[A
2

− θ2

2
C
]

− θCeCθL′
Z

[A
2

− θ2

2
C
]
. (50)

Observe that 0 ∈ (−θ̂ , θ̂ ) always (in both cases ŝ 
= 0 and ŝ = 0). Therefore, Q′(0)

always exists and from (50) we see that Q′(0) 
= 0. Now since LZ(s) is a strictly
decreasing function, we have L′

Z(s) < 0. Therefore, Q′(θ) is finite and Q′(θ) > 0
when θ ∈ (0, θ̂ ). At θ = 0, we have Q(0) = CLZ(A/2) and clearly we have Q(0) <

Q(θ) for all θ ∈ (0, θ̂ ). At θ = θ̂ , we have Q(θ) = LZ(ŝ) which is either +∞ or
finite. When it is finite we have Q(θ) < Q(θ̂) for all θ ∈ [0, θ̂ ) also.
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c) Define fz(θ) =: e
C
2 zθ2+Cθ−A

2 z for any real number z ≥ 0 and for all θ ∈ R.

We have f ′
z(θ) = (Czθ + C)e

C
2 zθ2+Cθ−A

2 z and f ′′
z (θ) = Cze

C
2 zθ2+Cθ−A

2 z + (Czθ +
C)2e

C
2 zθ2+Cθ−A

2 z > 0 for any z ≥ 0. Therefore, fz(θ) is a strictly convex function
for any fixed z ≥ 0. Therefore, we have

fz

(
λθ1 + (1 − λ)θ2

)
< λfz(θ1) + (1 − λ)fz(θ2)

for any λ ∈ [0, 1] and for all θ1, θ2 ∈ R for each fixed z ≥ 0. This strict inequality
also holds when z = Z. Also, observe that when ŝ is finite and LZ(ŝ) = +∞ or
when ŝ = −∞, for θ1, θ2 ∈ (−θ̂ , θ̂ ) we have EfZ(θ1) < ∞ and EfZ(θ2) < ∞.
When ŝ is finite and LZ(ŝ) < ∞, for all θ1, θ2 ∈ [−θ̂ , θ̂ ] we have EfZ(θ1) < ∞ and
EfZ(θ2) < ∞. We take expectation to the above inequality when z = Z and obtain
Q(λθ1 + (1 − λ)θ2) < λ1Q(θ1) + (1 − λ)Q(θ2). This shows the strict convexity of
Q(θ) stated in the lemma.

Remark 4.2. The main message of Lemma 4.1 is that the optimal solution to the
problem (21) is always unique. Now assume LZ(ŝ) < ∞. In this case, if the optimal
portfolio x� for the problem (21) is irregular then qmin in (39) satisfy qmin = −θ̂ . This
means that −θ̂ is the minimizing point of Q(θ) in [−θ̂ , θ̂ ]. As Q(θ) is a strictly con-
vex function on [−θ̂ , θ̂ ] as shown in Lemma 4.1, we conclude that Q(θ) is a strictly
increasing, strictly convex function on [−θ̂ , θ̂ ]. In comparison, when the solution to
(21) is regular, then the corresponding Q(θ) is strictly convex but not strictly increas-
ing on [−θ̂ , θ̂ ].
Example 4.3. Assume the mixing distribution Z in our model (1) takes finitely many
values {zi}1≤i≤m with corresponding probabilities (pi)1≤i≤m. Then X in (1) is a mix-
ture of normal random vectors

X ∼
m∑

i=1

piNd(μ + γ zi, zi�). (51)

In this case, the function Q(θ) takes the form

Q(θ) =
m∑

i=1

pie
( θ2

2 C− 1
2 A)zi+θC. (52)

From part c) of the above Lemma 4.1 we know that the function Q(θ) is strictly
convex on (−∞,+∞). Thus the solution to the optimization problem (21) is unique
and it is given by (41) with qmin = arg minθ∈(−∞,0) Q(θ). Now, assume Z = 1 with
probability one instead. Then LZ(s) = e−s and in this case it is easy to see that

Q(θ) = e
C
2 (θ2+2θ)− A

2 .

The minimizing point of this function is θ = −1 and so qmin = −1. Then, from (39),
the optimal portfolio is given by

x� = 1

aW0
�−1(γ + μ − 1rf ).
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Note here that since we assumed Z = 1, X in (1) is a Gaussian random vector and
therefore one can obtain the above optimal portfolio by direct calculation as our utility
function is exponential. However, our above approach seems more convenient.

In the next example, we look at the case of GH models.

Example 4.4. Let us look at the case of the model (1) when the mixing distribu-

tion Z is given by GIG models. First assume Z ∼ iG(λ, a2

2 ), the inverse Gaussian
distribution. In this case, we have λ < 0 by the definition of inverse Gaussian ran-

dom variable. From Proposition 9 of [10] we have LZ(s) = ( 2
a
√

2s
)λ

2Kλ(a
√

2s)
�(−λ)

and

therefore Q(θ) = eCθ ( 2
a
√
A−Cθ2

)λ
2Kλ(a

√
A−Cθ2)

�(−λ)
. In this case, the CV-L is ŝ = 0

and θ̂ = √
A/C. If γ = 0, as discussed in Example 2.4, the optimal solution to

(21) is x� = 0. In this case, the solution x� = 0 is irregular. Note that in this
case A = 0 and therefore θ̂ = 0. If γ 
= 0, then θ̂ > 0 and in this case qmin in
(39) is given by qmin = arg min

θ∈[−√
A/C,0)

Q(θ) (due to Lemma 4.1). Note that ei-

ther by using the fact ŝ = 0 or by using the property (A. 8) in [10] directly, one

can easily check that ( 2
a
√
A−Cθ2

)λ
2Kλ(a

√
A−Cθ2)

�(−λ)
→ 1 when θ2 → A/C. Therefore

Q(−
√

A
C ) = e−√

AC . In this case, it is not clear if qmin = −
√

A
C (the solution x� is

irregular) or qmin ∈ (−
√

A
C , 0) (the solution x� is regular).

Now let us look at the case Z ∼ GIG(λ, a, b) when a > 0, b > 0. Again

from Proposition 9 of [10] we have LZ(s) = ( b√
b2+2s

)λ
Kλ(a

√
b2+2s)

Kλ(ab)
and Q(θ) =

eCθ ( b√
b2+A−Cθ2

)λ
Kλ(a

√
b2+A−Cθ2)
Kλ(ab)

. In this case ŝ = −b2/2 and θ̂ =
√

A+b2

C . One

can easily check that LZ(ŝ) = +∞ in this case. Therefore the unique optimal solution
to (21) is given by (41) and it is regular.

Corollary 4.5. Consider the model (1) with γ = 0. In this case the distribution of
X is Elliptical distribution. Assume the CV-L of the mixing distribution Z is ŝ = 0.
Then the corresponding optimization problem (21) has a unique solution x� = 0. The
CV-L of Z is ŝ = 0 if EZn = +∞ for some positive integer n.

Proof. Observe that in this case A = 0 and therefore θ̂ = 0. Then [−θ̂ , θ̂ ] = {0}.
Therefore qmin in (39) is qmin = 0. As γ = 0 also by assumption, we have x� = 0 by
(39). It is clear that this solution is unique. If ŝ 
= 0, then the Laplace transformation
of Z is finite in (−∞, |ŝ|) and this would imply that all the moments of Z are finite.
Therefore infiniteness of one of the moments of Z implies ŝ = 0.

Example 4.6 (Stable distributions). Let us look at the case of α-stable distributions.
Here we look at the 1-parametrization of the stable distributions (see Definition 1.5
of [24]). For other parameterizations, see [24]. A distribution W follows α-stable
distribution with parameters α ∈ (0, 2], β ∈ [−1, 1], σ > 0, u ∈ R, and we write
W ∼ S(α, β, σ, u) if its characteristic function is given by

φ(t) = EeitW =
{

e−σα |t |α[1−iβsign(t)tan( πα
2 )]+itu, α 
= 1,

e−σ |t |[1+iβ 2
π

sign(t) ln |t |]+itu, α = 1.
(53)
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When α = 2, a stable distribution is a normal distribution. When α ∈ (0, 2), EW 2 =
+∞ for all β ∈ [−1, 1], σ > 0, u ∈ R. Therefore, for the mixing distributions
Z = |W |, α ∈ (0, 2), β ∈ [−1, 1], σ > 0, u ∈ R, the corresponding CV-L is ŝ = 0.
Thus when γ = 0 and when Z = |W |, α ∈ (0, 2), β ∈ [−1, 1], σ > 0, u ∈ R,
in the model (1), the optimization problem (21) has a unique solution x� = 0. This
means that when the mixing distribution Z in (1) is equal to the absolute value of a
stable distribution with α ∈ (0, 2) and when γ = 0, then the optimal portfolio for an
exponential utility maximizer is to invest all her/his wealth into the risk-free asset.

Remark 4.7. Stable distributions are infinitely divisible. The characteristic functions
(53) of the stable laws can be obtained directly from their Lévy–Khintchine repre-
sentations. The generelized central limit theorem states that stable laws are the only
nontrivial limits of normalized sums of independent identically distributed random
variables. As such they were proposed to model many empirical (heavy tails, skew-
ness, etc.) financial phenomena in the past. The heavy-tailedness of them is related
with the CV-L of them being ŝ = 0. Example 4.6 shows that time-changed Brownian
motion models with stable subordinators (the ones with Elliptical marginal distribu-
tions) always give the trivial portfolio, investing everything on the risk-free asset, as
the optimal portfolio for an exponential utility maximizer.

As pointed out in Remark 4.2, our Lemma 4.1 shows that the solution to the
problem (21) is unique. Part b) of this lemma shows that θ = 0 is not the minimizing
point of the function Q(θ) under the condition that A 
= 0 or ŝ 
= 0. For this unique
minimizing point θ 
= 0 of Q(θ) the first order condition (50) can equivalently be
written as

L′
Z(A2 − C

2 θ2)

LZ(A2 − C
2 θ2)

= 1

θ
. (54)

A change of variable η = A/2 − (C/2)θ2, which gives θ = −√
(A − 2β)/C due to

θ < 0 by Lemma 4.1, then gives

L′
Z(β)

LZ(β)
= −√

C/(A − 2β), ŝ < β < A/2. (55)

From this we can conclude that if x� is a regular solution to (21), then βmin =: A/2−
(C/2)q2

min with qmin in (41) satisfies the relation (55). This observation is useful if it
can be confirmed that the solution to the equation (55) is unique. Then this unique
solution equals to βmin. Consider, for example, the case Z = 1 in the model (1). As
discussed in Example 4.3, in this case we have LZ(s) = e−s . Then L′

Z(β)/LZ(β) =
−1 and it is clear that the equation 1 = √

C/(A − 2β) has a unique solution β =
A/2−C/2. This implies q2

min = 1 which then shows that qmin = −1 is the minimizing
point of Q(θ).

A positive random variable Z is a GGC with a generating pair (τ, ν) if

LZ(s) = Ee−sZ = e−τ−∫ ∞
0 ln(1+ s

z
)ν(dz). (56)

If Z is a GGC with a generating pair (τ, ν), then
L′

Z(β)

LZ(β)
= −τ − ∫ +∞

0
1

t−β
ν(dt). So
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if the solution to (21) is regular, then βmin defined above satisfies the equation

−τ −
∫ +∞

|ŝ|
1

t − β
ν(dt) = −√

C/(A − 2β),

where ŝ is the CV-L of the GGC random variable Z.
Now consider the case of positive α-stable random variables Z = S(α, 1, σ, u),

0 < α < 1, u > 0. Here we took β = 1 (see Lemma 1.1 of [24]). After normalization
these mixing distributions have the Laplace transformation LZ(s) = e−sα

(see Propo-
sition 1 of [4] and also see [28]). Thus we have L′

Z(s)/LZ(s) = −sα ln s. Assume
the problem (21) has a regular solution (a necessary condition for this is γ 
= 0, see
Corollary 4.5). Let βmin = A/2− (C/2)q2

min with qmin in (41). Then 0 < βmin < A/2
and due to (55) it satisfies the equation

βα ln β = √
C/(A − 2β).

We square both sides of this equation and obtain

Aβ2α(ln β)2 − 2β2α+1(ln β)2 = C.

As discussed earlier, if this equation has a unique solution β then it is βmin.

Remark 4.8. We should mention here that the formula (39) for the optimal portfolio
for the problem (21) is related to the Laplace transformation of the mixing distribution
Z in the model (1) only. Namely, we don’t need to know the probability density
function of Z to find the optimal portfolio for the optimization problem (21). The
relation (55) gives a convenient approach to locating the unique optimal portfolio as
discussed earlier.

Next, we discuss the applications of our results in continuous time financial mod-
eling. First, we recall Lemma 2.6 of [10] here. According to this lemma, for each
model F = Nd(μ + γ z, z�) ◦ G in (1) there is a corresponding Lévy process

Yt = μt + γ τt + B̄τt , (57)

with Law(Y1) = F and Law(τ1) = G as long as G ∈ J (note that if G ∈ J then X ∈
J also from Lemma 2.5 of [10]). In the model (57), (B̄t )t≥0 = (ABt )t≥0 where Bt is
an n-dimensional standard Brownian motion independent from (τt )t≥0 and (τt )t≥0 is
a subordinator (a nonnegative Lévy process with increasing sample paths). We denote
the Lévy measure of this subordinator by ρ and its Laplace transformation by

Lτt (s) = e−t�(s), (58)

where �(s) = bs + ∫ ∞
0 (1 − e−sy)ρ(dy) with a constant b ≥ 0. As stated in Propo-

sition 2.3 of [16], the function �(s) is continuous, nondecreasing, nonnegative, and
convex. At each time point t > 0 we have

Yt
d= μt + γ τt + √

τtANd. (59)

Now consider a market with n risky assets with the price process St ∈ R
d and

one risk-free asset with price process Bt = etrf . Assume the log-return process Yt =
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(Y
(1)
t , Y

(2)
t , . . . , Y

(d)
t ), where Y

(i)
t = ln(S

(i)
t /S

(i)
0 ), has the dynamics as in (57). The

log-return in the risk-free asset is ln(Bt/B0) = rf t . An exponential utility maximizer
wants to determine the optimal portfolio at each time point t based on the log-return
vector of risky assets R ∈ R

d with components R(i) = ln(S
(i)
t+�/S

(i)
t ) and the log-

return of the risk-free asset R(0) = ln(Bt+�/Bt ) = �rf in the time horizon [t, t+�].
Assume the time increment is � = 1. Then we have

R
d= μ + γ τ1 + √

τ1ANd, (60)

and from our Theorem 2.16 the exponential utility maximizer’s optimal portfolio at
time t is

x�
t = 1

aW
(t)
0

[
�−1γ − q

(t)
min�

−1(μ − 1rf )
]
, (61)

where W
(t)
0 is its (initial) wealth that it invests in the n + 1 assets for the period

[t, t + �] and q
(t)
min in (61) is given by q

(t)
min = arg minθ∈� Q(θ) in the corresponding

domain θ . Here

Q(θ) = eCθ−�( 1
2 A− θ2

2 C), (62)

due to (58).

Example 4.9 (Variance-gamma model). Consider the financial market that was dis-
cussed in the paper [21]. The stock price is given by S(t) = S(0)emt+X(t; σS, νS, θS)+ωSt

in their equation (21), where m is the mean-rate of return on the stock under the sta-
tistical probability measure, ωS = 1

νS
ln(1 − θSνS − σ 2

S νS/2), and X(t; σS, νS, θS) =
b(γ (t; 1, νS); θS, σS) with b(t; θ, σ ) = θt + σW(t) being a Brownian motion with
drift θ and volatility σ . Here the gamma process γ (t; μ, ν) has mean rate μ and vari-
ance rate ν (note here that γ (t; μ, ν) ∼ G(μ2/ν, ν/μ) with our notation for gamma

random variables in this paper). The increment g0 =: γ (t + 1; 1, νS) − γ (t; 1, νS)
d=

γ (1; 1, νS) of this process has the Laplace transformation

Lg0(s) =
(

1

1 + sνS

) 1
νS

, (63)

which can be seen also from the characteristic function expression in (3) of [21] for
gamma processes. The risk-free asset in this financial market is given by Bt = B0e

trf .
The log-returns of these two assets in the time horizon [t, t + 1] are given by

R =: ln
(
S(t + 1)/S(t)

) d= m + ωS + θSγ (1; 1, ν) + σS

√
γ (1; 1, νS)N(0, 1),

R0 =: ln(Bt+1/Bt ) = rf .

An exponential utility maximizer with the utility function u(x) = −e−ax , a > 0,
and wealth W

(t)
0 at time t wants to decide on the optimal proportion x� on the risky

asset of his wealth for the period [t, t + 1]. His acceptable set for x� is given by

Sa =
{
x ∈ R : aW

(t)
0 θSx − a2(W

(t)
0 )2

2
σ 2

S x2 > − 1

νS

}
, (64)
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as ŝ = − 1
νS

in this case. The corresponding expressions for A, B, C in (32) are given
by

A =
(

θS

σS

)2

, C =
(

m + ωS − rf

σS

)2

,B = θS(m + ωS − rf )

σ 2
S

.

Since the mixing distribution is of a gamma random variable, the solution to the
corresponding problem (21) is regular. Our Theorem 2.16 shows that the optimal
portfolio is given by

x� = 1

aW0

[
1

σ 2
S

θS − qmin
1

σ 2
S

(m + ωS − rf )

]
. (65)

where qmin = arg min
θ∈(−θ̂ ,θ̂ )

Q(θ) with Q(θ) given by (35). Here θ̂ =
√

A+2/νS

C .

Next, we calculate qmin explicitly. We have Q(θ) = eCθLg0(A/2 − (C/2)θ2) and
from this we get ln Q(θ) = Cθ − 1

vS
ln(1 + A

2 vS − C
2 vSθ2). The first order condition

for the minimizing point of ln Q(θ) gives (θ + 1
CνS

)2 = 1+CνS(2+AνS)

C2ν2
S

. This gives two

solutions θ = − 1
CνS

± 1
CνS

√
1 + CνS(2 + AνS). But since θ needs to be negative due

to Lemma 4.1, we take qmin = θ = − 1
CνS

− 1
CνS

√
1 + CνS(2 + AνS). We then plug

this into (39) and obtain

x� = 1

aW
(t)
0 σ 2

S

[
θS + m + ωS − rf

CνS

+ m + ωS − rf

CνS

√
1 + CνS(2 + AνS)

]
. (66)

Therefore in this case we have a closed-form expression for the optimal portfolio. We
should mention that one can use similar calculations to obtain a closed-form expres-
sion for optimal portfolio in a market where risky assets are modeled by multidimen-
sional variance gamma (MVG) model, see [20] for the details of MVG models.

Remark 4.10. Price processes with log-returns of the type (57) have been quite pop-
ular in financial literature in the past. Such models include inverse Gaussian Lévy pro-
cesses, hyperbolic Lévy motions, variance gamma models, and CGYM models, and
all of these models were shown to fit empirical data quite well, see [5, 9, 27, 8, 19] and
the references therein for this. In fact, every semimartingale can be written as a time-
change of Brownian motion, see [23] for this. This means that all the Lévy processes
are time-changed Brownian motions. In all these cases, if the time-changing subordi-
nator is independent of the Brownian motion, then our Theorem 2.16 is applicable in
principle. However, it is not easy to find the time-change used for general semimartin-
gales. Recently, the paper [19] obtained the time-change used for the CGMY model
and Meixner processes. Our results in this paper can be applied to such processes to
determine optimal portfolios for an exponential utility maximizer in a market where
single or multiple risky asset dynamics follow such models.

5 Conclusion

The main result of this paper is Theorem 2.16 where we show that the problem of
locating the optimal portfolio for (11) when the utility function is exponential boils
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down to finding the minimum point of a real-valued function on the real line, im-
proving Theorem 1 of [3] for the case of GH models and in the meantime extending
it from the class of GH models to the general class of NMVM models. Our Theo-
rem 3.3 shows that an optimal exponential utility in small markets converge to the
overall best exponential utility in the large financial market. While optimal portfolio
problems under expected utility criteria for exponential utility functions have been
discussed extensively in the past financial literature, an explicit solution of the opti-
mal portfolio as in Theorem 2.16 above seems to be new. This is partly due to the
condition we impose on the return vector X of being an NMVM model. However, de-
spite this restrictive condition on X, asset price dynamics with NMVM distributions
in their log-returns often show up in financial literature like exponential variance
gamma and exponential generalized hyperbolic Lévy motions.
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