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Abstract In this paper, we provide strong L,-rates of approximation of the integral-type
functionals of Markov processes by integral sums. We improve the method developed in [2].
Under assumptions on the process formulated only in terms of its transition probability density,
we get the accuracy that coincides with that obtained in [3] for a one-dimensional diffusion
process.
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1 Introduction

Let X¢, t > 0, be a Markov process with values in R4, Consider the following ob-
jects:

1) the integral functional
T
It (h) = / h(X,)dt
0
of this process;

2) the sequence of integral sums

n—1

T
Ir(h) = =Y h(Xgrym). n> 1
n
k=0
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In this paper, we establish strong Lo-approximation rates, that is, the bounds for

2

E|Ir(h) — IT n(h)|".

The current research is mainly motivated by the recent papers [2] and [3].

In [3], strong L ,-approximation rates are considered for an important particular
case where X is a one-dimensional diffusion. The approach developed in this paper
contains both the Malliavin calculus tools and the Gaussian bounds for the transition
probability density of the process X, and relies substantially on the structure of the
process.

Another approach to that problem has been developed in [2]. This approach is, in
a sense, a modification of Dynkin’s theory of continuous additive functionals (see [1],
Chap. 6) and also involves the technique similar to that used in the proof of the classi-
cal Khasminskii lemma (see, e.g., [4, Lemma 2.1]). This approach allows us to obtain
strong L ,-approximation rates under assumptions on the process X formulated only
in terms of its transition probability density.

For a bounded function &, the strong L ,-rates of approximation of the integral
functional I7 (k) obtained in [2] essentially coincide with those established in [3].
However, under additional regularity assumptions on the function 4 (e.g., when £ is
Holder continuous), the rates obtained in [3] are sharper (see [2, Thm. 2.2] and [3,
Thm. 2.3]).

In this note, we improve the method developed in [2], so that under the assumption
of the Holder continuity of &, the strong L;-approximation rates coincide with those
obtained in [3], preserving at the same time the advantage of the method that the
assumptions on the process X are quite general and do not essentially rely on the
structure of the process.

2 Main result

In what follows, P, denotes the law of the Markov process X conditioned by Xy = x,
and E, denotes the expectation with respect to this law. Both the absolute value of a
real number and the Euclidean norm in R? are denoted by |-|.

‘We make the following assumption on the process X.

A. The process X possesses a transition probability density p;(x, y) that is differen-
tiable with respect to # and satisfies the following estimates:

pe(x,y) < Crt™ Q™" (x —y)), t<T, (1)
|3 pe (e, | < Cre7 72 Q(e7 V¥ (x — y)), t<T, )
07 p e, )| < Crt= 2 Qe V¥ (x —y)), t<T, 3)

for some fixed o € (0,2] and some distribution density @ such that
fRd 1z1” Q(z) dz < oo. Without loss of generality, we assume that in (1)-(3) Cr > 1.
We assume that the function % satisfies the Holder condition with exponent y €
(0, /2], that is,
. |h(x) — h(y)|
Al = sup —————==
xX#y |x - .V|
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Now we formulate the main result of the paper.

Theorem 1. Suppose that Assumption A holds. Then

Dr,y,0,0Cyallhllyn=H20/® y 2 a2,

2
By |Ir(h) — Ira(h)|” < K
« () Dryaolhlin 2 Inn, y =a/2,

where

D1y =8CET>2/e /R , 1212 0(2) dz,

2
Cpo = max{(l — 2y /) 2y )7L, mai(<M> }

nl=2y/«

We provide the proof of Theorem 1 in Section 3.

Remark 1. Any diffusion process satisfies conditions (1)—(3) with « = 2, Q(x) =

cre—e2x |2, and properly chosen c1, ¢ (see [2]). In the case where X is a one-dimen-
sional diffusion, Theorem 1 provides the same rates of convergence as those obtained
in [3] (see Theorem 2.3 in [3]).

Remark 2. Similarly to [2], we formulate the assumption on the process X only in
terms of its transition probability density. Condition A, compared with condition X
(cf. [2]), contains the additional assumption (3).

3 Proof of Theorem 1
Proof. Fort € (kT /n, (k 4+ 1)T/n), denote

kT k+ 1T
nn(t) = s Ln(t) = k+D s
n n

and put A, (s) := h(Xs) — h(Xy,5), s € [0, T].
By the Markov property of X, for any r < s, we have

E¢|Xs — X, | =E, fR Ps—r(Xr, 2)|X, — 2| dz
< CrE, fd<s — )" Q((s — VX, - 2) X, — 21?7 dz
R

= Cr(s —r)?/® / 1zI*Y Q(z) dz.
]Rd

Therefore, using the inequality s — n,(s) < T/n, s € [0, T] and the Holder
continuity of the function 4, we obtain:

Ec|An(s)|* < CrT2/® ( /R 0@ dz) |5 n =277, 4)

Split

T T
Ex!1r<h>—lr‘n<h>!2=21@x/0 / M)Aty dids = Ty + Jo + s (5)
s
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where

T (Lu()+T/n
Ji = 2E, / / An($)An(2) dt ds,
0 s

T/n T
Jy = 2, / / An(s)An (1) dt ds,
0 Cn(s)+T/n

T T
J3 = Z]Ex/ / An(s)An(t)dtds.
T/n J&(s)+T/n

For |J1| and |J>|, the estimates can be obtained in the same way. Indeed, using the
Cauchy inequality and (4), we get

T n($)+T/n
ni=2 [ (E:| ) ) (& | 80 )) 2 dr as
S
T
< 2cTT2V/“||h||i( / 120w dz>n2”/“ / (T/n+tu(s) —s)ds
R 0

<4Cr T |n2 ( / 120G dz)n_(1+27’/“).
R

In the last inequality, we have used the inequality ¢,(s) —s < T/n,s € [0,T].
Similarly,

] < ZCTT“zy/“nhni( / 217 Q(2) dz>n—<1+2wa>_
R4

Now we proceed to the estimation of | J3|, which is the main part of the proof. Observe
that the following identities hold:

/ 92 Pu(x, V) po—u(y,2)dz = vapu(x,y)/ Po—u(y,2)dz
R4 R4
=8%,pu(x.y) =0, yeR? (6)
f 92, Pu(x, V) po—u(y, 2) dy = 3,31,/ Pu(x, Y)pyv—u(y,2)dy
R4 R4
_ a2 _ d
=0,,pv(x,2) =0, zeRY, @)
where in (6) we used that fRd pr(y,20)dz=1,r >0,y € R4, and in (7) we used the

Chapman—Kolmogorov equation.
We have:

T T
Ji=2 / / / / B[ ps (5 Y Pr—s (7. 2)
T/n Ju(s)+T/n JRY JRA

= Pu(s) X5 V) Pr—u(9) (V> 2) — Ps (X, ¥) Pru)—s (V5 2)
+ Prn(s) (X0 Y) P t)=nu(s) (v, 2) | dzdy di ds
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T T s +
- 2/ / / / / / h(h(@)0p, (pulx, y)
T/n JEn(s)+T/n R4 JR4 NOEZN0)

X pu—u(y,2))dvdudzdydtds

T T K t
2
—/ / / / / / (h(y) — h(2)) 37, (Pulx. »)
T/n Ju(s)+T/n R4 JRA Nu(s) Jnu (1)

X pv_u(y,z)) dvdudzdydtds, 8)

where in the last identity we have used (6) and (7).
Further, we have

Oy Pu (X V) ot (¥, 2) = pu ., ) pr (v, 2|,y + 0uPu . )0 pr (3. 2)|, -
Then, using condition A and the Holder continuity of the function &, we obtain

/R d /R (h) = @)1, (ulx, 1)Pv-a (v, D)l dedy

< c%uhni( /R 0@ dz)((v — ) -/ (9)

Therefore, according to (8) and (9),

3] < c%nhni(f IZIZVQ(z)dz>
R4

T T K t
X / / / / ((v—u)zy/a*z—i-(v —u)zy/"‘flu*l)dvdudtds.
T/n JEn(s)+T/n Jnn(s) Ina(t)
(10)

Denote aq,y (1, v) := (v — w)2r/e=2 4 (v — y)?v/*=1y=1 Then

T T K t
/ f f / Ao,y (u,v)dvdudtds
T/n Jn(s)+T/n Jnn(s) I nu(t)

" ! " L pG+DT/n (DT /0
/ / f ag,y(u,v)dvdudtds
jT/n iT/nJjT/n

i+0D)T/n p(G+DT/n pGE+DT/n p(G+D)T/n
/ / / ag,y(u,v)dtdsdvdu
P 1] l+2 iT/n jT/n u v

i= 1] l+2 iT/n

n—1 n 1 (i+D)T/n p(+D)T/n
f g,y (u, v)dvdu

< T2n—2 Z

i=1 j=i+2

n—1 .G4+)T/n T
- T%*Z/ / A,y (u, v) dv du,
i1 JiT/n i+2)T/n

where in the fourth line we used that, foru € [iT/n, (i + 1)T/n) and v € [jT/n,
(j+ 1)T/n), we alwayshave i + )T /n —u <T/nand (j + 1)T/n—v < T/n.

iT/n jT/n
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Thus, from (10) we obtain

3] < C%Tznhni(/Rd 217 Q(2) dz)n%sl +$2), (11)

where

n—l G+D)T/n /T
S| = Z/ / (v —uw)?*"2 qv du,
(

i=1 YiT/n i+D)T/n
n=l LG4+D)T/n T

S =Z/ / (w—w?* Wy dvdu.
iz JiT/n i+2)T/n

We estimate each term separately. In what follows, we consider the case y < «/2;
the case of y = «/2 is similar and therefore omitted. We have

n—1
Si=a-27/07 Y |
i=171

(
T/n

(+)T/n ot
G+ DT/n—u)?"*" du

n—1

= (1= 2y/0) ' Qy/e) 'Y (G + DT/n —iT/n)""®
i=1
< (1 =2y/) ' Qy )y T I < ¢ (THIE(12)

Finally, sincev —u < T forO <u < v < T, we have

n—l .G4+)T/n ,T
S < Tz”/O‘Z/ / w—w'udvdu
(

i JiT/n i+2)T/n

n—1 (i+DT/n

T
< sz/“Z(/ u‘du> </ (v—G+ 1)T/n)‘dv)
iT/n +2)T/n

i=1
G+1)T/n
/ u"! du) = T?/%(Inn)?
iT/n

n—1
< T%/*nn (
=1

< Cy’aTZy/oznlfh//a' (13)

Combining inequality (11) with (12) and (13), we derive

3] < 2C, o CFTHH2/% 1|1} ( / P0G dz>n—<l+2ww. O
R
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