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Abstract Despite the fact that the theory of stability of continuous-time difference equations
has a long history, is well developed and very popular in research, there is a simple and clearly
formulated problem about the stability of stochastic difference equations with continuous time
and distributed delay, which has not been solved for more than 13 years. This paper offers to
readers some generalization on this unsolved problem in the hope that it will help move closer
to its solution.
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1 Introduction

The theory of stability for difference equations with continuous time has a long his-
tory in both deterministic and stochastic cases, it is well developed and very popular
in research. See, for instance, [1–4, 6–18, 20, 21, 24, 25] and references therein.

However, there is a problem of stability of stochastic difference equations with
continuous time and distributed delay, simply and clearly formulated more than 13
years ago [19], the solution of which has not yet been found. This problem was in-
cluded also in the group of other unsolved problems that require solutions [22, 23].
Some generalization of this unsolved problem is offered here in the hope that it will
help solve it.
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Let {�,F, P} be a complete probability space with the space of events �, the
σ -algebra F and the probability P, {Ft , t ≥ 0} be a nondecreasing family of sub-σ -
algebras of F, i.e. Ft1 ⊂ Ft2 for t1 < t2, E be the expectation with respect to the
probability P [5].

Consider the scalar stochastic difference equation with continuous time [18]

x(t + h) = a0x(t) + a1x(t − h) + b

∫ t

t−h

x(s)ds + σx(t)ξ(t + h),

t > −h, x(θ) = φ(θ), θ ∈ � = [−2h, 0],
(1.1)

where a0, a1, b, σ , h > 0 are known constants, ξ(t) is Ft -measurable stationary
stochastic process [5] such that

Eξ(t) = 0, Eξ2(t) = 1. (1.2)

Below the following definitions of stability for Equation (1.1) are considered.

Definition 1.1. The zero solution of Equation (1.1) is called:

– mean square stable if for any ε > 0 there exists a δ > 0 such that E|x(t; φ)|2 <

ε for all t ≥ 0 if
‖φ‖2 = sup

θ∈�

E|φ(θ)|2 < δ;

– asymptotically mean square stable if it is mean square stable and for each initial
function φ

lim
t→∞ E|x(t; φ)|2 = 0;

– asymptotically mean square quasistable if it is mean square stable and for each
t ∈ [0, h), each initial function φ and a positive integer j

lim
j→∞ E|x(t + jh; φ)|2 = 0.

Remark 1.1. Note that the asymptotic mean square quasistability follows from the
asymptotic mean square stability but the converse statement is not true [18].

It is known [18] that in the case b = 0, h = 1 the necessary and sufficient condi-
tions for asymptotic mean square quasistability of the zero solution of Equation (1.1)
are

|a1| < 1, |a0| < 1 − a1, σ 2 <
1 + a1

1 − a1

[
(1 − a1)

2 − a2
0

]
. (1.3)

The problem to get the necessary and sufficient stability conditions for Equa-
tion (1.1) in the case a1 = 0 was first formulated more than 13 years ago (see
[19, 22]), but it is unsolved until now. Although it is quite close to the known re-
sults, but, nevertheless, it seams that it cannot be solved by known methods. It is
possible that to solve this problem it is necessary to use some principally new ideas.

Below some results on the stability of Equation (1.1) and some possibilities for
their improvement are considered.
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2 Characteristic equation and regions of stability

Substituting the solution x(t) of Equation (1.1) in the form x(t) = Ceλt , where C

and λ are constants, into Equation (1.1) with σ = 0, i.e. in the deterministic case, we
get the so-called characteristic equation of Equation (1.1):

eλh = a0 + a1e
−λh + b

λ

(
1 − e−λh

)
. (2.1)

The characteristic Equation (2.1) can be presented (see Appendix A.1) in the form of
the system of two equations (ω ∈ R):

(1 − a1) cos ωh = a0 + b

ω
sin ωh,

(1 + a1) sin ωh = − b

ω
(1 − cos ωh).

(2.2)

The system (2.2) defines (see Appendix A.2) three parts of the bound of the exact
region of asymptotic stability of the zero solution of Equation (1.1) in the determi-
nistic case (σ = 0):

a0 + a1 + bh = 1,

a0 + a1 = 1, b = −a0ω tan
ωh

2
,

a0 = 1 + a1 + 2 cos ωh, b = −(1 + a1)ω cot
ωh

2
.

(2.3)

Immediately from (1.1) it follows (see Appendix A.3) that

Ex2(t + h) ≤
[
(|a0| + |a1| + |b|h)2 + σ 2

]
sup

s∈[t−h,t]
Ex2(s). (2.4)

From (2.4) the following sufficient condition for asymptotic mean square stability of
the zero solution of Equation (1.1) follows:

(|a0| + |a1| + |b|h)2 + σ 2 < 1

or
|a0| + |a1| + |b|h <

√
1 − σ 2. (2.5)

Remark 2.1. Note that in the case b = 0 the sufficient stability condition (2.5) for
arbitrary σ 2 < 1 coincides with the necessary and sufficient stability condition (1.3)
if a1 = 0, i.e. a2

0 + σ 2 < 1, or if a0 = 0, i.e. a2
1 + σ 2 < 1.

In Figure 1 the stability regions defined by the condition (1.3) (the regions 1 and
3) and by the condition (2.5) (the regions 2 and 4) are shown in the space (a0, a1) for
b = 0, h = 1 and different values of σ 2:

1) σ 2 = 0 (the regions 1 and 2); 2) σ 2 = 0.7 (the regions 3 and 4).

One can see that in correspondence with Remark 2.1 on the coordinate axes the bound
of stability region, defined by the condition (2.5), coincides with the bound of stability
region, defined by the condition (1.3).
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Fig. 1. Stability regions in the space (a0, a1) for b = 0, h = 1, defined by the condition (1.3)
(the regions 1 (σ = 0) and 3 (σ = 0.7)) and by the condition (2.5) (the regions 2 (σ = 0) and
4 (σ = 0.7))

Fig. 2. Stability regions in the space (a0, b) for h = 1, defined by the condition (2.3) (the
regions 1 (a1 = 0.5) and 2 (a1 = −0.5)) and by the condition (2.5) (the region 3, |a1| = 0.5,
σ 2 = 0.2)
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Consider now stability regions given by the conditions (2.3) and (2.5) in the space
(a0, b) by the fixed a1.

In Figure 2 the stability regions defined by the condition (2.3) (the regions 1 and
2) and the condition (2.5) (the line 3, σ 2 = 0.2) are shown in the space (a0, b) for
h = 1 and a1 = 0.5 (the line 1), a1 = −0.5 (the line 2). One can see that even for
small level of stochastic perturbations (σ 2 = 0.2) the stability region obtained by the
condition (2.5) is essentially less than in the deterministic case (the regions 1 and 2),
in particular, for negative a1 (the region 2).

The unsolved problem: to get the necessary and sufficient stability conditions for
Equation (1.1) or at least to improve the existing sufficient stability condition (2.5) by
increasing the region of stability defined by it.

3 Conclusions

Trying to solve a problem unsolved for many years, one does not know whether it
can be solved by known methods or whether it is necessary to find a new, unknown
until now ideas and methods to solve it. But in any case any success in this direction
generates both new problems and new methods and leads to the development of the
theory. So, all potential readers are invited to participate in the discussion and in the
solution of the offered here unsolved problem.

A Appendix

A.1 Appendix 1. Proof of the system (2.2)

Rewrite the characteristic Equation (2.1) in the form

eλh = a0 + b

λ
+

(
a1 − b

λ

)
e−λh.

Putting here λ = iω, i2 = −1, and using Euler’s formula eiθ = cos θ + i sin θ , we
obtain

cos ωh + i sin ωh = a0 + b

iω
+

(
a1 − b

iω

)
(cos ωh − i sin ωh)

or

cos ωh + i sin ωh = a0 − bi

ω
+

(
a1 + bi

ω

)
(cos ωh − i sin ωh)

or

(1 − a1) cos ωh − a0 − b

ω
sin ωh + i

(
(1 + a1) sin ωh + b

ω
(1 − cos ωh)

)
= 0,

from where the system (2.2) follows.
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A.2 Appendix 2. Proof of the Equations (2.3)
1) If ω = 0 then from the first Equation (2.2) it follows that a0 + a1 + bh = 1.
2) If 1 − a1 = a0 then from the first Equation (2.2) it follows

−a0(1 − cos ωh) = b

ω
sin ωh,

−a02 sin2 ωh

2
= b

ω
2 sin

ωh

2
cos

ωh

2
,

b = −a0ω tan
ωh

2
.

3) From the second Equation (2.2) we have

(1 + a1)2 sin
ωh

2
cos

ωh

2
= − b

ω
2 sin2 ωh

2
,

from where it follows

b = −(1 + a1)ω cot
ωh

2
and via the first Equation (2.2)

a0 =(1 − a1) cos ωh + (1 + a1) cot
ωh

2
sin ωh

=(1 − a1) cos ωh + (1 + a1)2 cos2 ωh

2
=(1 − a1) cos ωh + (1 + a1)(1 + cos ωh)

=1 + a1 + 2 cos ωh.

A.3 Appendix 3. Proof of the inequality (2.4)
Using (1.1) and (1.2), we obtain

Ex2(t + h) = E
(

a0x(t) + a1x(t − h) + b

∫ t

t−h

x(s)ds

)2

+ σ 2Ex2(t)

≤ a2
0Ex2(t) + a2

1Ex2(t − h) + b2h

∫ t

t−h

Ex2(s)ds

+ 2|a0a1|E|x(t)x(t − h)| + 2|a0b|
∫ t

t−h

E|x(t)x(s)|ds

+ 2|a1b|
∫ t

t−h

E|x(t − h)x(s)|ds + σ 2Ex2(t). (A.1)

Note that for t1 = t or t1 = t − h and s ∈ [t − h, t] we have

E|x(t1)x(s)| ≤
√

Ex2(t1)Ex2(s) ≤ sup
s∈[t−h,t]

Ex2(s). (A.2)

Substituting (A.2) into (A.1), we obtain (2.4):

Ex2(t + h) ≤ [a2
0 + a2

1 + b2h2 + 2|a0a1| + 2|a0b| + 2|a1b| + σ 2] sup
s∈[t−h,t]

Ex2(s)

=
[
(|a0| + |a1| + |b|h)2 + σ 2

]
sup

s∈[t−h,t]
Ex2(s).
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