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Abstract In this paper, the distribution function

o) = ]P’<sup Z(Xi —Kk) < u)

n2li—q

and the generating function of ¢(u + 1) are set up. We assume that u € N U {0}, k € N, the
random walk {Z?zl X;, n € N} involves N € N periodically occurring distributions, and the
integer-valued and nonnegative random variables X1, X», ... are independent. This research
generalizes two recent works where {«x = 1, N € N} and {«x € N, N = 1} were conside-
red respectively. The provided sequence of sums {Z?:l (X; — k), n € N} generates the so-
called multi-seasonal discrete-time risk model with arbitrary natural premium and its known
distribution enables to compute the ultimate time ruin probability 1 — ¢(u) or survival proba-
bility ¢ (u). The obtained theoretical statements are verified in several computational examples
where the values of the survival probability ¢ (1) and its generating function are provided when
{k =2, N=2},{« =3, N=2},{k =5, N =10} and X; adopts the Poisson and some
other distributions. The conjecture on the nonsingularity of certain matrices is posed.
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1 Introduction

Many probabilistic models estimating the likelihoods of certain events are based on
the sequence of sums {Z?zl Xi, n € N}, where X; are some random variables.
This sequence is called the random walk. Random walks are usually visualized as
branching trees or certain paths on the plane or space; their occurrence spreads from
pure mathematics to many applied sciences. For instance, one may refer to the Case—
Shiller home pricing index [9] or even more generally to the random walk hypothesis
[30]. From a pure mathematics standpoint, one may mention the random matrix the-
ory, see, for example, [3, 13, 31] and other related works. Perhaps the closest context
where the need to know the distribution of sup,, > Y ' (Xi — k) arises is insurance
mathematics. In the ruin theory one may assume that the insurer’s wealth W, (n) in
discrete time moments n € N consists of incoming cash premiums and outgoing
payoffs (claims), and W, (n) admits the representation:

Wu(n)=u+Kn—2n:X,~=M—Xn:(X,-—K), (D)

i=1 i=l1

where u € Ny := NU {0} is interpreted as initial surplus W, (0) := u, ¥ € N, denotes
the arrival rate of premiums paid by customers and the subtracted sum of random vari-
ables represents claims. Here we assume that random variables X; are independent,
nonnegative, and integer-valued but not necessarily identically distributed. More pre-

cisely, we assume that X; 4 Xi+n foralli € Nandsome fixed N € N. The model (1)
can be visualized as a “race” between deterministic line u +«n and the sum of random
variables Y 7, X; when n varies, see Figure 1.1
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Fig. 1. Lines 1 + n, 1 + 22, 1 + 3n, and random walk > 7, X;1{; mod 2=1} +
Z:’l:l Y; 14i mod 2=0}, Where P(X; =0) =03,PX; =1) = 0.1, P(X; =5) = 0.6 and
P(Y; =0)=0.8,P(Y; = 1) = 0.1, P(Y; = 10) = 0.1, and n varies from 1 to 20

1Implemented using the RandomChoice function in Wolfram Mathematica [22].
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We say that the fixed natural number N is the number of periods or seasons and
call the model (1) N-seasonal discrete-time risk model. The model (1) with N = 1
is a discrete version of the continuous-time Cramér—Lundberg model (also known as
the classical risk process)

P
W) =x+ct =) & 120, )
i=1

where, analogously as in model (1), x > O represents initial surplus, ¢ > 0 premium,
&; are independent and identically distributed nonnegative random variables, and P,
is the counting Poisson process with intensity A > 0. The model (2) can be further
extended, cf. E. Spare Andersen’s model [2] or models considered in [6, 7].

Being curious whether initial surplus and collected premiums can always cover
incurred claims, for the N-seasonal discrete-time risk model (1) we define the finite
time survival probability

T n

o, T) = P(m{Wu(n) > O}) = ]P’( sup Z(Xi —K) < u), 3)
n=1 Isn<T ;o
where T is some fixed natural number, and the ultimate time survival probability
oo n
o) = P(ﬂ{Wu(n) > 0}> = P(sup Z(X,- —k) < u> 4)
n=1 nzliog

Computation of finite time survival (or ruin, ¥ (u, T) := 1 — ¢(u, T)) probabili-
ty (3) is far easier than the computation of ultimate time survival (or ruin, ¥ (u) :=
1 — ¢(u)) probability (4), see Theorem 4 for the precise expressions of ¢(u, T). Dif-
ficulties computing ¢ () arise due to ¢(k N), ¢(k N + 1), ... being expressible via
©(0), (1), ..., o N — 1) which are initially unknown, see the formula (5) in the
next section. Therefore, the essence of the problem we solve is nothing but finding
these initial values ¢(0), ¢(1), ..., o(k N — 1). In this work, we demonstrate that the
required values of ¢(0), ¢(1), ..., ¢(k N — 1) satisfy a certain system of linear equa-
tions (see the system (16)) whose coefficients are based on certain polynomials and
the roots of s*N = G sy (s), where s € C and Gy, (s) is the probability-generating
function of Sy = X1 +--- + Xy.

Let us briefly overview the history and some fundamental works on the subject
and mention a few recent papers. The foundation of ruin theory dates back to 1903
when Swedish actuary Filip Lundberg published his work [29], which was repub-
lished in 1930 also by Swedish mathematician Harald Cramér, while the random
walk formulation, as such, was first introduced by English mathematician and bio-
statistician Karl Pearson [33]. The Cramér—Lundberg risk model (2) was extended
by Danish mathematician Erik Sparre Andersen by allowing claim inter-arrival times
to have arbitrary distribution [2]. The next famous works were published in the late
eighties by Hans U. Gerber and Elias S. W. Shiu, see [16, 15, 38, 39]. Equally, in
the second half of the twentieth century, there were many sound studies regarding the
random walk by such authors as William Feller, Frank L. Spitzer, David G. Kendal,
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Félix Pollaczek and others, see [14, 40, 41, 23, 35] and related works. Scrolling
across the timeline in recent decades, one may reference a notable survey [27]. Var-
ious assumptions on random walk’s structure in models (1) or (2) (cf. [20, 37]), the
variety of other numerical characteristics of renewal risk models than the defined
ones in (3) and (4) (cf. [28, 24]), and the research methods (cf. [42]) are the reasons
which make the recent literature voluminous. Next to the mentioned references, see
[11, 36,4, 12, 10, 34, 26, 25, 32, 8] as the recent ones on the subject, too.

2 Recursive nature of ultimate time survival probability, basic notations, and
the net profit condition

This section starts by deriving the basic recurrent relation for the ultimate time sur-
vival probability. The definition (4), the law of total probability and rearrangements

imply

o) = P(ﬂ{Wu(n) > 0})
n=1
N n o] n
:P(ﬂ{u+Kn—ZX,~ >0}ﬂ ﬂ {u—i—Kn—ZXi >O})
n=1 i=1 n=N+1 i=1
N n
=P<ﬂ{2Xi <u-+«kn— 1} N
n=1"i=1
00 N n
n N {u+KN—ZXi+K(n—N)— > X >o}>
n=N+1 i=1 i=N+1
N
- > ]P’(Xlzil)]P’(XQ:ig)-~-IP’(XN:iN)<p<u+/<N—Zij>. 5)
i1<utx—1 j=1

il+in<u+2k—1

i1+io++iy<Sut+k N—1

Substituting # = 0 into the recursive formula (5), we notice that in order to find
¢(kN) we need to know the values of ¢(0), ¢(1),..., (kN — 1). Moreover, if we
know the values of ¢(0), ¢(1),..., (k N — 1), the same recurrence (5) allows us to
compute ¢(u) for any u > « N by substitutingu = 0, 1, ... there. Thus, as mentioned
in the introduction, all we need is a way to compute these initial values.

We now define a series of notations. Recalling that we aim to know the distribu-
tion of sup, > > (X; — k), we define N random variables:

n + n +
M= sup(Z(X,- —K)) , My = sup< (X; — /c)) e,
2

nz21\;2; nz22\;_

n +
My := sup (Z(X,- - K>) : 6)

nZN\i=N
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where xT = max{0, x}, x € R, is the positive part function. Obviously, same as
X1, X2, ..., XN, every random variable M, Ma, ..., My attains the values from
the set {0, 1,...}.

Let us denote the probability mass functions of M ;, their generators X ; and the
sum Sy = X1+ Xo+ -+ Xn:

m? =PWM; =i), 27 =PX; =), sN =Py =1i), 7

where j € {1, 2,..., N} andi € Ny. Let F X; (i) be the distribution function of the
random variable X ;, i.e.

u
Fx,)=PX; <w)y=Y x’ jef{l, 2.....N}, ueN,.
i=0

In addition, let S;(0) := {s € C : |s|] < 1}, S1(0) := {s € C : |s|] < 1} be
the circles in the complex plane centered at the origin with radius one and denote
the probability-generating function of some nonnegative and integer-valued random
variable X,

o0
Gx(s) =Y s'P(X =i) =Es*, 5€5,0.
i=0
The definition of the survival probability (4) and the definition of random variable
M imply

u
pu+1)=PM; <u)y=)» m" forallu e No. (8)
i=0
Thus, the survival probability computation turns into the setup of the distribution
function of M. It is simple to explain the core idea of the paper, i.e. how the proba-
bilities mgl), i € Ny, are attained. Let us refer to Feller’s book [14, Theorem on page
198]. The referenced Theorem states that if N = 1 in model (1), i.e. the random walk
{37, Xi, n € N} is generated by independent and identically distributed random

variables, which are the copies of X, then (M| + X — k)t 4 M. For arbitrary
number of periods N € N the mentioned distribution property is as follows:

(M1+}?N—K)+iMN and (Mj+Xj71_K)+iMj71a (&)

forall j = 2, 3,..., N, where X N 1s an independnet copy of X y; see Lemma 2 in
Section 5. Metaphorically, the distributions’ equalities in (9) mean that the random
variables M|, Ma, ..., My “can see each other”, and, more precisely, based on the
equalities in (9), we can set up a system of corresponding equalities of probability-
generating functions

EsMi+Xy—0" _ peMn
EsWMe+X1—0t _ peMi
(10)

EsMny+Xn_1—0% _ geMn-1
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The system (10) contains the desired information on m(l), i € Np.

In general, the random variables M|, Mj,..., My can be extended, i.e.
limy 0o PM; =u)>0,j=1,2,...,N. However, limy 00 P(M; < u) =1 for
allj=1,2,..., Nif ESy < kN, see Lemma | in Section 5.

The condition ESy < «N is called the net profit condition and it is crucially
important for the survival probability ¢(u). Intuitively, an insurer has no chance to
survive in long-term activity, if threatening amounts of claims on average are greater
or equal to the collected premiums. This can also be well illustrated by the expected
value of W, (n) in (1). For instance,

EW,(nN) =u+n(—ESy +«N) <0

if ESy > « N and n is sufficiently large. Consequently, the negative value of W, (n)
is unavoidable. See Theorem 3 in Section 3 for the precise expressions of the survival
probability ¢(u#), u € Ny when the net profit condition is violated, i.e. ESy > «N.

3 Main results

In this section, based on the previously introduced notations and explanation that
our goal is to know the probability mass function of M/, we formulate two main
theorems for the ultimate time survival probability computation under the net profit
condition. Theorem 1, being implied by system (10), provides the relations between
mgl), ml@, e, mEN) and x(l) xl.(z), ... ,xl.(N) for all i € Ny and lays down the foun-
dation for the computation of the ultimate time survival probability p(u + 1) =
Yo mlgl), u € Np.

Theorem 1. Suppose that the N-seasonal discrete-time risk model (1) is generated
by random variables X1, X, ..., Xn and the net profit condition ESy < kN is
satisfied. Then the following statements are correct:

1. The probability mass functions of random variables My, M», ..., My and

X1, X2, ..., Xy satisfy the relation
Kk—1—i k—1 k—1—i
1 N . 2 1 . .
DN IO WD SISy
i=0 j=0
- Kk—1—i Kk—1—i
T S i TS A i
i=0 j=0 j=
— kN —ESy. (11)
2. Ifs € 51(0)\ {0}, then
Kk—1—i Kk—1 Kk—1—i

Zmu) 3 x(N)( Si+j)+GX1:/((S)Zml{2) 3 x;l)(sx_si+j)
S

Jj=0 i=0 j=0
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G (s) <! <

Xn+Xi 3 (2) i+j ..

= m Z —s'T) +
=0 j=0

G Xy+X1++Xy_2(5) § (N)K = (N— 1) it+]
- D) Z Z =)

= Gy (s)<l = GSZS”), (12)
N

and, ifa € S51(0) \ {0, 1}, is a root of Gs), (5) = s*N then

Kk—1 k—1 Gy (@) k—1 Kk—1
1 i . . X 2 j . .
S ™S ad Fxy (- i) + Ojiksz "N alFx, (- )

i=0 j=i i=0 j=i

G (a)/(—l k—1

Xy+X 3 ; .

+%§ m® > ol Fx,(j — i) + -+
i=0 Jj=i

Gxyix ¥ (@) k=1 Kk—1
X1+ Xy ; o
S (XIK(N—l)N =y el Py (= =0, (13)

i=0 j=i

3. Ifa € S1(0)\ {0, 1}, is a root of Gsy(s) = SN of multiplicity r, r =
2,3,...,kN — 1, then

Kk—1 (l)Kil " )
Zmi Z ﬁ(s])
i=0 j=i

Fxy (G —1)

FX](]_Z)

S=o

Kk—1 k—1 d" ‘
+ Z ml@ Z e (Gxy(s)s'7¥)
i=0 j=i

Kk—1

3 .
+Zm”2d —(Gxytx, s/ Fx,(j—i) 4+
i=0 Jj=i s=o
k—1
+2m (N)Z T (Gxyaxitesxy TV D) (= D)=0, (14)
i=0 Jj=i s=0o
foralln € {1,2,...,r — 1}, where %(. . )|s=a denotes the n-th derivative

with respectto s at s = «.
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4. Forn = k, k + 1, ..., the probability mass functions of random variables
My, Mgy, ..., My and X1, X3, ..., Xy satisfy the following system of equa-
tions

1) (V) ) (V) _ O )
my X = Zm X, Zm Zx Lin=x)
0 :
@ () n @ (1) ) i ()
my X Zm Zm Zx Lin=x)
i=0 j
-1 K— 1 —i
3. @ @ v,0.@ 8 @ 2 )
my, x(()) = mn_)K — Z ml( )x’g_i - Y m @) > X L= (15)
i=0 i=0 j=0
mx N gy D = ) (N=1) _ WK v Dy
My Xi) i Xn—i Xg)m Z X {n=x}

Let us comment on how Theorem 1 is used to obtain the distribution of M, i.e.
mlgl), i € Np. First, we note that the equation sV = G,y (s) has exactly k N — 1
roots in s € S1(0) \ {1} counted with their multiplicities, see Lemma 4 in Section 5.
We denote these roots by a1, a2, ..., o.ny—1. We then create the system of linear
equations (see eq. (16)) by replicating the equation (13) k N — 1 times over the roots
ar, a2, ..., a:N—1 and include (11) as the last equation. To illustrate that explicitly,
we define the matrices M|, M5, ..., My and G, G3, ..., Gy:

, k—1 .
. N
Z(x Fxy()) X%a{FxN(]—l) xé )a’f !
Jj=0 Jj=
M, = k=1 . ) k=1 . ) N 1 ,
ZoaliN—lFXN(J) Zl Ay Fxy(G =1 ... x(() )“EN 1
Jj= Jj=
k—1 K—2
Zx;N)(K—j) Z)C;N)(K—j—l) V)
j=0 j=0 kN xk
k—1 Kk—1
j . j . 1
Y o Fx, (j) Yol Fr, -1 . x{Pas!
=0 j=1
M; = j L . 1 ,
z ainaFuG) T ey PG =1 g e
Jj=0 Jj=
Kk—1 K—2
1 . 1 . 1
Jgox]()(/c—j) Jgox;)(i(—]—l) x(())

kN XK
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S . & . (N=1) -1
ayFxy_ () 2o Fxy (G—1D X0 o]
Jj=0 Jj=1
My = k=1 . k=1 . -~
J ; J ; (N-1) «—1
: O[/(N—IFXN—I(J) Z aKN—lFXN—l(J Y X0 %eN—1
j=0 J=1
b v-n . k=2 (N—1) . (N-1)
ij Kk — J) ij k—j—1 Xy
i=0 j=0 -
Gy (1) Gxy (1)
o ... o
G, = : : ,
Gxy (en-1) Gxy (en—1)
.. A
FeN—-1 FeN-1
1 ... 1 N xk
Gxy+x, (@) Gxy+x, (1)
—x - —a
G; = : : : e
Gxy+x(@n-1) Gxy+x;(@n-1)
A= ... A=
al(llchl aK']‘V*]
1 .. 1 N X
GXpn+X +-+Xy_p @1) GXpy+X+-+Xy_s@1)
©(N=T) e KN=T)
9 &)
Gy = : . : 7
GXy+X 4+ +Xy_n @cN-1) GXN+X]+-+Xy_p @cN-1)
N=1) e KN=D)
FeN-1 FeN—-1
1 ... 1 NxK
and set up the system
(1)
g
(1)
my
(€9)
me_1
(2)
mo2
mg ) 0
(M1 MyoG, ... MNOGN)KNXKN : = :
e 0
/c.fl kN —ESN/  nxi
(N)
m%W
my
n™

k=17 kNx1

331

kN Xk
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where o denotes the Hadamard matrix product, also known as the element-wise pro-
duct, entry-wise product, or Schur product, i.e. two elements in corresponding posi-
tions in two matrices are multiplied, see, for example, [21].

Clearly, the solution of (16) (see Section 4 on solvability and modifications of

1 (1) m®

(16)) givesmyy*, my°, ..., m,, while using the system (15) (note that we can have

m(()’), gj),... Wi e {2,3,...,N}, from (16), too) we can compute m\",

K 1’
m,((lJ)rl, ... ,m,((lji,_l and consequently <p(1), ©(2),...,9pkN).Having o(1), (2), ...,

¢(k N) we can obtain ¢(0) by setting u = 0 in recurrence (5) and use the same recur-
rence (5) to proceed computing ¢ (k N + 1), o(k N + 2), .. .. Of course, the survival
probabilities ¢ (k N + 1), ¢(k N 42), ... can be cumputed by system (15), too. More-
over, we can set up the ultimate time survival probability-generating function. Let

E(s):=Y ¢li+1Ds'. s5e5/0). 17)

i=0

In view of (8), it is easy to observe that, for s € S;1(0),

2(s) = Z¢(1+1)s—z Zm“) Z g.l)s—j:%. (18)

1—=5
i=0 j=0 Jj=0

Then, the ultimate time survival probability-generating function E(s) admits the fol-
lowing expression.

Theorem 2. Let us assume that the probabilities m(()”, mgj),.. /((])1’

j €l{l,2,..., N}, are known beforehand. Then, the survival probability-generating
function B(s), for s € §1(0) and s*N # G sy (s) admits the following representation

T (9)v(s)
u(S)—m, where

i O i py (- 1)
j l

>;~
.—O

3
GK(N=1) ( ) Z sIFx,(j — i)
KN DGy, (5) o

NGy ox,(s) m® Z sTFx,(j — 1)
u(s) = . , V() = j=i

= o~
Il
L

||M

SKGX1+X2+'“+XN72(S)
Gxi+Xo++Xy_1 (5) Z I’l’l(N) Z S/FxN (G =D
—0 J =i

1 ; .
Z ml() _Z_SJFXN(-] —1i)
j=i

i=0

The next theorem states that if the net profit condition is unsatisfied, the ultimate
time survival is impossible except in some cases when Sy is degenerate.
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Theorem 3. Suppose that N-seasonal discrete-time risk model (1) is generated by
random variables X1, X2, ..., Xn, and the net profit condition is not satisfied. In
this case:

1. IfESy > &N, then ¢(u) = 0 for all u € Ny.
2. IfESy = kN and P(Sy = «N) < 1, then ¢(u) = 0 for all u € Ny.

3. If P(Sy = «kN) = 1, then random variables X1, X3, ..., Xy are degenerate

and
n*
utien* =Y Xp <0 = o) =0,
k=1
n*
u+ kn* —ZXk >0= o) =1,
k=1
here n* is equal to suchn € {1,2, ..., N} for which xn — Zzzl X attains its
minimum.

The last theorem provides an algorithm for the computation of finite time survival
probability ¢(u, T). Let us define

n

o, T) =1P’< sup Y (X —k) < u) (19)
1<n<T
where j € {l,2,...,N} and Xi(j) = Xjyj-1. It is easy to observe that

oWV (u, T) = W (u, T).

Theorem 4. For the finite time survival probability (3) of the N-seasonal discrete
time risk model defined in (1), the following holds:

1 1) (2
o, = Y x' ew2= > xx?, ...,

i<utrk—1 i1 <u+x—1
i1ty <u+2k—1
1 @2 (N)
o, N) = > a2 (20)
i1 <u+r—1

i+ <ut2i—1

i it iy S<utcN—1

and
.= Y x"xP axNow kN —ij = —iy, T-N), Q1)
i1 <utx—1

i1 <u+2k—1

i)+t tiy SutcN—1
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ifTe{N+1, N+2,...}.
Moreover, for the defined probabilities (19), it holds that
¢ (u, 1) = Fx,(u+x = 1), (22)
‘ u+x—1 A )
P, Ty= Y ¢V Vu+k—i, T-Dx?, T=23... @3

i=0
The formulated Theorems 1, 2, 3 and 4 are proved in Section 6

4 Notes on the solution of linear system involving probabilities of M1, M3,

’MN

In general, it is not easy to give an explicit solution of system (16) or even to prove
that the system’s determinant of size k N x x N never equals zero. For instance, if

= 1 and x¥ € N, then the system (16) is

k=1 .
. 1 . _
> af Fx(j) Z a” Fx(j) ..o 'x
j=0 ) .
k=1 . = (24)
. 1 )
Y ol Fx(j) Za’* Fx(j) ..o ixo S)z
=0 M) K —EX
k—1 K— 2 mK_l
Yxjk—j) Y xjkk—j—1... x
j=0 j=0
<= Gx(s)

o,—1 are the simple roots of s

where X 4 X1, x;i = xi(l) and oy, oy, ...,
when s € §1(0) \ {1}. Then, if xo > 0, the determinant of the system’s matrix in (24)

is the Vandermonde-like one,
- 1>K+1 H(aj [T (—a)#o0,

1<i<j<e—1
() (1) | together with the survival probabilities

and the probabilities m(() ), my, ...
, ¢(k) admit neat closed form expressions, see [17, Thm. 4]. On the

0, ¢(1), ...
other hand, if x = 1 and N € N, then the system (16) is

1 N-1
Ny x(() )GxN (a1) x5 )GXN+X1+«~+XN_2 (a1)
_—r ... ]
0 W “ -1 L (1)
M) X Gxy (@) Yo Gxy+X 44Xy o (@2) (()2)
0 ) ce o1 mg
o
. . N-1 ’ 1\}—1
M) X(()I)GXN(UN—I) X(() )GXN+X1+ +Xy_p@N—-1) (()N )
. =T
0 oN-1 AN_1 m(() )
(N) () (N—-1)
0 Xo
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0
0
= : . (25)
0
N —ESy
where a1, o2, ..., ay—1 are the simple roots of sV = Gsy(s)ins € S 0)\ {1}, see
[19]. If N = 3, the main matrix in (25) is
(3) xr()])ze(O‘l) x(()Z)GX3+X1(°")
X0 aj oz,z
A= 3 x"6xz@) x”Gxyix, (@) (26)
*o a a%
©

and one may check that for s(()3) = P(X| + X2 + X3 = 0) > 0 the matrix A is
nonsingular iff

G x5 (o) (Gx3+x1(012) ) (Gx3(062) )(Gx3+xl(011) )
—1 —1 oxle) ) (EXeexa e
( aq ) a% 7 o a%

where o1, o are the simple roots of §3 = Gx,4+X,4x5(s)ins € S (O)\{1}. Computer
computations with some chosen random variables X1, X»,..., Xy, N > 3, do not
reveal any examples that the system’s matrix in (16) is singular. The listed thoughts
raise the following conjecture.

Conjecture 1. Assume thats(()N) =PXi+Xo+---+Xy=0)>0anday, ay, ...,
e N—1 are the simple roots ofs"N = Ggy(s)ins € 51(0) \ {1}. Then, the system’s
matrix in (16) is nonsingular for all k, N € N. In particular, if N = 3 and k = 1,

then
Gsy(1)  Ggyap) )
of o3
implies

G x5 (o) Gx;+x, (a2) ) (GX3 (a2) )(GX3+X1 (1) )
1 1 T ) (ZXaxie)
( a1 )( 05% ” a2 ozf

and consequently det A # Q.

Let us comment on how the system (16) gets modified if there are multiple roots
among o, a2, ..., & N—1 and/or the random variable Sy does not attain its “small”
values. It is clear that P(Sy > j) = 1 for some j € {1, 2,..., kN — 1} implies
at least one column of zeros in the main matrix of (16). Note that P(Sy > «N) =
1 violates the net profit condition ESy < «N. Also, P(Sy > j) = 1 for some
Jj € {l,2,...,kN — 1} always implies fewer terms in the right-hand side of the
recurrence (5) as some values of the probability mass function equal zero then. For
instance, if P(Xy > kN — 1) = 1, then (0) = s\ ¢(1) and there is only ¢(0)
that we must know in order to find ¢ (1), ¢(2), ... by the recurrence (5). Thus, when
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P(Sy = j) = 1l forsome j € {1, 2,..., kN — 1}, we have to adjust the main matrix
in (16) according to the equalities (13) and (11) not including any columns of zeros.

In addition, when some roots of s*¥ = G sy () are of multiplicity r € {2, 3, ...,
kN — 1}, then, to avoid identical lines in (16), we must replace the corresponding
lines with derivatives as provided in equality (14).

Once again, computational examples with some chosen random variables
X1,X2,...,Xn, N > 3,and ¢ > 1 do not reveal any examples showing that such
a modified (due to multiple roots and/or Sy not attaining “small” values) system’s
matrix in (16) is singular.

5 Lemmas

In this section, we formulate and prove several auxiliary lemmas that are later used
to prove theorems formulated in Section 3. Some of the presented lemmas are direct
generalizations of statements from [19, Sec. 5], where they are proved for X; — 1,
Jj €11, 2,..., N}, while here we need them for X; —«, j € {1, 2,..., N}, k e N.

Lemma 1. [f the net profit condition is satisfied, i.e. ESy < kN, then

lim P(M; <u) =1,
u—>00

forall j € {1,2,...,N}.
Proof. We prove the case j = 1 only and note that the other cases can be proven
similarly.

According to the strong law of large numbers

1 n 1 N n N n
;;(Xi_K)zﬁ(; Z_; (Xi_K)+"'+; Z_; (Xi—K)>
= i=Imod N i=N mod N
1 ESN — kN
— N((EXI —K)+~~+(]EXN—K)) = = —u < 0as.
Therefore,
1 / uw
P{ sup|- Xi—kK)+pn <—>—>l.
(j?n J ; l 2 ) n—o0

Consequently, for any arbitrarily small ¢ > 0, there exists number N, € N such that

(Afgn-o )

j=nti=1

\Y
)
N
3
! e,
N
=
|
g
A
|
|
niz
N———"
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< E) >1—¢
2
foralln > Ng.

It follows that for any such ¢ and any u € N we have

0 ¢ J
PM; <u) = ]P(m{Z(X,- —K) < u})
j=1"%i=1

| J
:P(sup Y Xi—0) +p
jzn J i=1

(g | A g <o)
> p<:{§(x ) < }) +p(i{§(xi —o< o}) .
()50 +])

The last inequality implies
lim P(M; <u) > 1 —c¢,
u—00

where ¢ > 0 is arbitrarily small, and the assertion of lemma follows. O

Lemma 2. If the net profit condition is satisfied, i.e. ESy < kN, it holds that (M ; +

Xj—1—x)t 4 My, forall j =2,3,...,N,and (Mi+Xy—k)* 4 My, where
Xy is an independent copy of X n.

Proof. We prove the equality (M) + Xy — x)T 4 M ~ only and note that the other
ones can be proved by the same arguments. According to Lemma 1, P(M; < o0) =
1. Let us denote )A(j = X; —«forall j € {1, 2,..., N — 1} and say that XN is an
independent copy of X — k. Then

My + Xp)T
i (max{O, max{)A(l, )Afl —l—)%z, )%1 +)22 +§3, }} +52N)+
d A A A A A A A
< (max{0, X1, X1+ X2, X1+ Xo+ %3, .. )+ Xy) "

d A A A A A A A A A A
< (max{Xy, Xy + X1, Xv + X1+ X0, Xn + X1+ X0+ X3, .) T

[~

5 s 5 B 5 5 +
(max{Xy, Xy + Xn41. Xn + Xng1 + Xng2....))

I~

max {0, max{Xy, Xy + Xnt1, Xn + Xnt1 + Xngo, - 3}
M. O

=
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Lemma 3. Let s € S1(0) \ {0} and say that the net profit condition holds. Then
the probability-generating functions of X1, X2, ..., Xy and M, Mj ..., My are
related in the following way:

Kk—1—i

Zm(l) Z x(N)(s s = $Gay (5) — Gxy ()G ag, (5)

§:m9 Z:x”@“—vﬂd = G, () — Gx, ()G Ay (5)
K— 1 —i
Zm“) _Z XK =5 =Gy (9) — Gy ()G oy (5) - @D

Kk—1—i

Zm(N) Z x(N D (5% — sy = G pgy_, () — Gxy_y ()G gy (5)
=0

Proof. Let us demonstrate how the first equality in (27) is derived and note that the
remaining ones follow the same logic.

By Lemma 2, the equality of distributions (M; + Xy — k) L M ~ implies the
equality of probability-generating functions G a4, (s) = G( M+ %y —k)+ (s), where

X denotes an independent copy of X . Then, applying the law of total expectation
for the last equality, we obtain

Gay(s) = EsMi+Xn—0" _ E(E(S(M‘J“XN_K)JrIMl))

[ee) k—1 00
= ngl)Es(XN_K+i)+ = X:mgl)IES(XN_'H'Z-)Jr +Gx,(s)s™™ ngl)si
i=0 i=0 i=Kk

k—1
= ngl)(ES(XN_K+i)+ - s[_KGxN(S)) +57Gxy ()G M, (5).
i =0

Multiplying both sides of the last equality by s when s # 0 and observing that

Kk—1 xk—1 Kk—1—i
ngl)(sK]Es(XN*K+i)+ _ siGXN(s)) _ Zmlgl) Z x;N) (sl( _ Si+j)
i=0 i=0 j=0

we get the desired result. O

The next lemma provides the quantity and location of the roots of sN =G sy (5).

Lemma 4. Assume that the net profit condition G’SN (1) = ESy < kN isvalid. Then

there are exactly k N — 1 roots, counted with their multiplicities, of s*N = Gsy (s) in
s € S1(0) \ {1}.

Proof. We follow the proof of [18, Lemma 9]. Due to the estimate

|Gy ()] < 1< Als|N
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on the boundary |s| = 1 when A > 1, Rouché’s theorem implies that both functions
Gsy (s) — As*N and As*"N have the same number of roots in |s| < 1 and this number
is k N due to the fundamental theorem of algebra. When A — 17 some roots of
Gy (s) — As© N remain in |s| < 1 and some migrate to the boundary points |s| = 1.
Obviously, s = 1 is always the root of s“V = G, (s) and it is the simple root because
the net profit condition holds, i.e.

(Gsy(s) — SKN)/Iszl =ESy —«kN < 0.

Thus, there remain « N — 1 roots of s*V = Gsy(s)ins € S1(0) \ {1} and
additionally one can say that s, such that |s| = 1, s # 1, is the root of sV = Ggy (s)
if the greatest common divisor of x N and all the powers of s in Gg,, (s) is greater
than one. O

6 Proofs

In this section, we prove all of the theorems formulated in Section 3.

Proof of Theorem 1. We first prove equality (12). To derive (12), we use the system
of equations (27) from Lemma 3. According to the conditions of Lemma 3, s # 0 and
we rearrange the system (27) by multiplying its first equality by 1, the second one by
Gx, (s)/s“, the third one by G x, +x,(s)/ s2¢ and so on till the last equality which is
multiplied by G x 4x,+-+Xy_, (5)/s*Y~D. We then add up all these equations and
obtain

k—1 Kk—1—i ' G (g —1 Kk—1—i o
Zml(_l) Z x](-N)(sK—Sl-H XN Z 2 Z x(l) sl+/)
i=0 =0 i=0 j=0
GXN+X1(S) Z 3 Z (2) Si+j)+.“
G Xy +X 44Xy (5) 3 gy
N 1 N=2 (N) (N 1) i+
+ K(N—1) Z Z —s'")
()
=5Gpy () — Gxy ()G Aq, (5) + L( “G M, () — Gx, ()G pmy (5))

G
+ XNS+X1(S)(sKGM2(s) — Gx, ()G s (5)) +
Gxy XN K
: +§ll<—(~_N——~_l))( () (S GMy_,(8) = Gxy ()G My (s))
G G
= G g, (5) — SKZ”;—ESSGMN(S) :s"GMN(s)(l _ :5;,”). (28)

Here we have used the fact that if any random variables X are Y independent, then
their probability generating functions satisfy

Gxyy(s) = Gx(s)Gy(s).
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Thus, the equality (12) is proved. We now derive (13).

It is obvious that the right-hand side of (28) equals zero if we set s = «, where o
is the root of G, (s) = s*N s e §1(0) \ {1}. We then divide both sides of (28) by
oa—1,1e.

K _ oi+]
o o =0{j+i+(¥j+i+1+"'+(¥’(_lv 0[#1’
a—1
and get
Kk—1—i G (O[) Kk—1—i -
Zm(” Z 7 Z S " > Z
I=j+i =0 j=0 I=j

+WZ ® _zf @ X_:
A S

Gyt X+t Xy (@) ™) (N—1)
+ D Z Z Z o

I=j+i
K—1 K—1 G (a) _ _
1 ; . X 2 - .
=2 om Yl Fxy (=) + =5 me )ZaJFxl(J — i)
i=0 j=i i=0 j=i
—1 Kk—1
Gxyix,(@) 3 N
+ Nazkl Zm,()Za/FXZ(]—z)_F...
i=0 j=i
GX X x ((Y) k—1 Kk—1
NAXitF XN () j .
+ ok (N—1) Zmi ZOHFX,H(J —i) =0,
i=0 j=i

which is the claimed equality (13).
We now consider the equation (14). Since s # 1, we divide the both sides of (28)
by s — 1 and rewrite the right-hand side of it as

SKENG g (Y = Gy (9)) /(s = D).
Clearly, the derivatives

dI’L

(VG (N = Gy (9)/s = D) =0

S=a
foralln € {1, 2,...,r — 1} if a is the root of s*¥ = G, (s), s € S1(0) \ {1} and
root’s multiplicity is r € {2, 3, ..., «N — 1}. Thus, the equality (14) is nothing but
the n-th derivative with respect to s of equation (28) (divided by s — 1) at s = «.
We now prove equality (11) in Theorem 1. The derivatives by s of both sides of
equation (28) give

X_: (I)K_X: ) (=1 — (i + ysi+i=1)
i=0 j=0
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Kk—1 Kk—1—i

+ Zm(z) Z x(l) -+ j)si+j_l)
i=0 j=0
K— Kk—1—i

+3m 3w P s = G )
i=0 j=0
Kk—1 Kk—1—i

+Zml§N) Z x;N_l)(Ks'(*] e +j)si+jfl)
i=0 j=0

= G’MN ()(s" — Ggy (s)s’((l_N))
+ Gy ) (k5" = Gy () (1 = Nys<I=M=1— G (5)s*17V). (29)

We continue the proof by letting s — 17 in (29). Because the net profit condition
holds, i.e. ESy < kN, and P(My < 00) = 1, we obtain

k—1 Kk—1—i k—1 Kk—1—i
Zm}l) Z x;N)(K —({+ j)) + Zml@) Z (1)(16 —({+ ]))
i=0 j=0 i=0 j=0
Kk—1 Kk—1—i Kk—1—i
+y m? Y x P (e—G+ )+ +Zm(N) Y e =+ )
i=0 j=0 i=0 j=0
- linl1 Glry, ()(s* = Gy (9)s*™N)) 4 kN — ESy. (30)
s—>1-

To compute the limit in (30) there are two separate cases to examine: EMy < 0o
and EMy = oo. If EMpy < o0, then the limit in (30) is zero. However, this limit is
zero even if EMy = oo. Indeed, if EM y = oo, then by using L’Hospital’s rule we
get

1-N
lim Gf/\/[ (S)(S GSN (S)SK(I N)) — lim sk — GSN (S)SK( )
O =l /Gy, ()

. (s = Gy (5)s< =Ny
= lim ;
s—>1- (1/GMN(S))/

(Glpy,, (50

= lim (/cs"*1 — G, ()50 — G, (sl — N)SK(lfN)fl) t
_GMN (s)

s—>1-
=(kN—-ESy)-0=0,
because

G’ 2
1m1£;¥i§2-=0, 31)
s—>1- GMN (S)

see [19, Lem. 5].2 Thus, the limit in (30) is zero, and the equality (11) in Theorem 1
follows.

2proof’s direction of (31) was originally provided by Fedor Petrov.
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It remains to prove the equalities in system (15). In short, every equality in sys-
tem (15) is the corresponding equality from (27) expanded at s = 0. Let us demon-
strate the derivation of the first equality in (15) in detail and note that the remaining
ones are derived analogously. We need to show that the first equality in (27)

K— Kk—1—i
Yom? 37 2N (s =) = 5 G agy () — Gy (G, (5)  (3)
. =

implies (the first one in (15))

n— Kk—1—i
m;nxézv):m me (N) Zm(l) Z ) ]1{" q n=i, k41,
or, equivalently,
Kk—1—i
me Z * M1y =m), — me M ket (3

Equality (33) is implied by (32) because of the following equalities:

Kk—1—i Kk—1—i
) (N) i+j _ 1 (N)
,Msn(z > 6 =) zm % e
= s
n!ds" (" Gty ) -0 M=
L G )G (s)) = Zm(l) o)
nldsn M XN Tn—i>
whenn =k, k + 1, .... The proof of Theorem 1 is finished. O
Proof of Theorem 2. Let us rewrite the system (27) as
sk —Gx,(s) 0 ... 0 0 G, (s)
0 s —Gx,(s) ... 0 0 G, (5)
0 0 0 o 8 =Gxy_ (8) GMy_, ()
—Gxy(s) 0 0 ... 0 5% Gy ()
Z n® « Zl ’x<1>(s st
0
K— 1 —i

Zm(3) Z X(Z)(s si+j)

= : (34)
i (N)"Xl:’x(N D (s _ i)
i=0 i=0

= (1) SN P

Z > X (sF =)

i=0 /:O
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and denote this system by AB = C. Determinant of the main matrix in (34) is
det A = 5N — Gg, (s).

Thus, the main matrix in (34) is invertible for all s such that sV % G sy (s) and
B = A~!C. Therefore, the previous thoughts and equality (18) imply

G M, (5) 1 c
E(s) = = M M ..M —_—
(s) T— SKN—GSN(S)( 11 Mp N1) =
where M1, M»y, ..., My are the minors of A and C is the column vector of the
right-hand side of (34). |

Proof of Theorem 3. We first show that ESy > «N implies ¢(u) = 0 for all
u € Np. The recurrence (5) yields

@ (u)

N
- > P, =i1)]P’(X2=i2)~~~]P’(XN=iN)¢<u+KN—Zij>
ij<utr—1 j=1
i14ir <u+2k—1

i1+t iy Sutk(N—=1)—1
i1 Fip+-Fiy<Su+c N—1

u+xN

(N)
= Z u+/<N l(p(l)

i=1

N
1 2) N)
o Z xi(l )xi(z ’ ‘(N <u +rN Z )

i1 <u+tx—1
i1+ <u+2k—1

utk(N=1)<iy+io++iy-1 <ut+k N—1
i1+i++in<ut+k N—1

N
(1) 2 (N)
- Z Xip Xy utkN Z
Utk <igp<u+kN—1 j=1
i1+io<ut+kN—1

i1+io++iy—1 <ut+kN—1
i1+io++iy<ut+k N—1

u+xN Kk(N—1)
= Z ssien—i® @ = Y e, (35)
i=1
where w; (u) foreachi € {1, 2, ..., k(N —1)} are coefficients consisting of the prod-

ucts of probability mass functions of random variables X1, X5, ..., Xy. For instance,
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if N =2and «k = 1, then

u+2
1 2 . 1 2
o)=Y xVxPow+2—ii—i) = s, 0@ —x) 1 xPe1).
i1 <u i=1
i1+ <u+1

If wo(u) := su+/<N and pj(u) :== 0 when j > «(N — 1), then the equality in (35) is

u+xN KkN—1

o)=Y sy 0@ = Y wiwe).

i=0 i=0

By summing up both sides of the last equality over u, which varies from O to some
natural and sufficiently large v, we obtain

v v u+kN v kN—1
Yooy = "3 sy e =Y > miwe@). (36)
u=0 u=0 i=0 u=0 i=0
‘We now change the order of summation in (36),
v ut+xN kN—1 v v+k N v
22 0= 20+ 2 O
u=0 i=0 i=0 u=0 i=«kN u=i—kN
and obtain
v+ N v+k N
e — Y ew)
u=0 u=v+1
kN—1 v+k N kN—1 v
N N .
= (’)ZSLEJchN IR0 Z Seven—i = D (D) Y wiw).
i=0 u=0 i=xkN u=i—kN i=0 u=0

Subtracting "N o) YU slfl_\g( v—; from both sides of the last equation and
rearranging, we get

v+ N v v+ N
. N .
> oi(1= 3 sl) - X e
i=0 u=i—kN i=v+1
kN—1 KkN—1

= Z (p(z)(Zsﬁ,)(N_i —Zm(@) Z (i) Z ;I-Y-LN—i
u=0

u=0 u=i—kN

or

v+k N v+k N v+ N—i
ORTUED IR IR
i=v+1 i=0 u=0
kN—1 KkN—i—1

=) <p(i)< Z s<N>+Zu(u>)

i=0
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which implies

v+k N v+k N
D )= > 9)P(Sy > v+kN —i)
i=v+1 i=0
kN—1 v
=) w(i)(P(SN <kN —i—1+ Zm(u)>- (37)
i=0 u=0

Clearly, the definition of the survival probability (4) implies that ¢ (1) is a nondecreas-
ing function, i.e. ¢(u) < @(u + 1) for all u € Ny. Thus, there exists a nonnegative
limit ¢(00) := lim,_, » ¢(u) and ¢(oc0) = 1 if the net profit condition ESy < kN
holds, see Lemma 1. We now let v — o0 in both sides of (37). For the first sum
in (37) we obtain

v+ N
lim Z ¢@i) = lim (p(v+ 1) + -+ @@+ kN)) = p(c0)k N, (38)
‘l)—)OOi=U+1 V—> 00

and for the second

v+x N
lim Y~ @(i)P(Sy > v+kN —i) = ¢(c0)ESy. (39)
vV—>00 o

Indeed, let us recall that EX = Z?io P(X > i), when X is some nonnegative and
integer-valued random variable. Then, the upper bound of (39) is

v+ N vk N
lim Y~ @@OP(Sy > v+kN —i) < lim o +«N) > P(Sy>v+iN —i)
V—> 00 =0 vV—>00 P
v+k N
= lim o +«N) Y_ P(Sy > i) = p(c0)ESy,
V—>00 P

while the lower bound is the same due to inequality

v+ N
> 9P(Sy > v+kN —i)
i=0
M v+x N
=Y @OPSy >v+kN—i)+ Y  @@OPSy > v+xN—i)
j=0 i=M+1
v+ N—M—1
S . .
> nf @ ) Py,
i=0
where M is some fixed and sufficiently large natural number. Thus, when v — o0,
the equality in (37) is
kN—1

P(00) (kN —ESy) = Y w(i)(P(SN <KN—i— 1>+Zui<u)). (40)

i=0 u=0
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If ESy > kN, the nonnegative right-hand side of (40) implies ¢ (c0) = 0 and conse-
quently (1) = 0 for all u € Ny. Thus, the survival is impossible if ESy > «N.

Let us now consider the case when ESy = «N and P(Sy = «kN) < 1. If ESy =
kN and P(Sy = kN) < 1, then at least one probability s(()N), S{N), R s,gjx,)_l is

larger than zero, because otherwise ESy > « N. Then, from (40),

kN—1 kN—i—1 00
) w(i)< D s+ m(u)) =0. (41)
u=0

i=0 u=0
If 5" > 0, then (41) implies p(0) = ¢(1) = --- = @(kN — 1) = 0. Using
recurrence (5) we can show that ¢(u) = 0 for all u € Ny. If s(()N) = 0 and s{N) > 0,
then (41) implies that ¢(0) = ¢(1) = --- = @(k N — 2) = 0 and once again, using
recurrence (5) we can show that ¢(u) = O for all u € Ny. Arguing in the same we
proceed up to séN) = s%N) =...= 51511\\;)—2 =0, slgjjvv)_l > ( and observe that in all of

these cases (41) and recurrence (5) yields ¢ (u) = O for all # € Np.

Finally, let us consider the case when P(Sy = «N) = 1. If Sy = «N with
probability one, the random variables X1, X», ..., X are degenerate, meaning that
Xi=c;iforalli e {1,2,...,N},wherec; € {0, 1,...,kN}andci+cr+---+cy =
kN. Thus, the model (1) becomes completely deterministic. Moreover, W, (n) =
W,(n + N) forall n € Ng, N € N, and it is sufficient to check if the lowest of value
among W, (1), ..., W,(N) is larger than zero. |

Proof of Theorem 4. The proof of equalities (20) and (21) is nearly the same as
deriving the recurrence (5). Equalities (22) and (23) are implied by [5, Thm. 1]. O

7 Numerical examples

In this section, we illustrate the applicability of theorems formulated in Section 3. All
the necessary computations in this section are performed using Wolfram Mathematica
[22]. Notice that some of the examples considered here are also considered in [,
Sec. 4], where the ultimate time survival probability was obtained by computing the
limits of certain recurrent sequences. Therefore, in some examples here we check if
the obtained values of ¢(u) match the previously known ones obtained by different
methods.

We say that a random variable X is distributed according to the shifted Poisson
distribution P (A, &) with parameters A > 0 and & € Ny, if

P(X:m):ﬂﬁ, m=£&£&+1,....
(m —§)!
One can check the following facts for the shifted Poisson distribution:
I. EX=X1+¢; (42)
2. f X ~ Py, &), Y ~P(Aa, &), and X and Y are independent, then X +Y ~
P+ A2, &1+ 62); (43)

3. Gx(s) = séers—D),
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Example 1. Let x = 2 and consider the bi-seasonal (N = 2) discrete time risk
model (1) where X1 ~ P(1, 0) and X, ~ P(2, 0). We set up the survival probability-
generating function E(s) and compute ¢ (u), whenu =0, 1, ..., 15.

Let us observe that in the considered example the net profit condition is satisfied
ES> = 3 < 4. Solving the equation G, (s) = ¢3¢~D = 5% when s € §1(0) \ {1}, we
get oy := —0.3605, ap := —0.1294 4 0.4087i, 3 := —0.1294 — 0.4087i. Since all
of the solutions «1, oy, a3 are simple and none of them are equal to 0, following the
description beneath Theorem 1 in Section 3, we set up matrices M1, M, and G»:

x(2 o] + xéz)(ozl +1) x(()z)al

u xfz)az + xéz) (ar+1) x(()z)az
1 = b
xfz)og + xéz) (az+1) x(()z)oz3
(2) +2x(2) (2)
x}l)al + xol)(al +1) x(()l)al
u xil)az + xol)(otz +1) x(()l)az
2 = b
x(l)a3 + x, )(otg +1) x(()l)ag
(1) +2x(1) xél)
ze(ﬂll) Gx,(a1)
of af
Gx,(@) Gx,(@)
G2 = Ot% 0[2
Gx,(@3) Gx,(a3)
o3 o3
1 1
and the system
(1
mg 0
1
M, M;oG o
( 1 20 2)4><4 e =lol
0 1
(2)
m

which implies m{’ = 0.6501, m" = 0.1395, m{? = 0.5083, m\® = 0.1855.

Then, ¢(1) = m{’ = 0.6501 and ¢(2) = m{"” + m{" = 0.7896. We then can

use the system (15) to find mél), mgl), ..., and consequently ©(3), p4), ... due to

equality (8). In the considered case, the system (15) is
1 1—i
2) 1 2) (1 2 1 1
my = ( v, Zm() v, Zm,()zx(-)]l{mz})/x(())
i=0

1) 2 . 2 1 2
D =<(> Zm()() mezx()l{nz})/x()

i=0
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n =2,3,.... Having ¢(1), ¢(2), ¢(3) and ¢(4) we use the recurrence (5) in order
to find ¢(0)

)= Y PX|=iDP(Xy=i2)p@—ii—i))
i1<1
i1+ <3
2 2 2 D@ 2
= "5 0@ + (62 + xVxP)e3) + (1§25 + x P xP)p(2)
D@ D@
(x5 5o
Let us recall that the recurrence (5) can be used to compute ¢(u) when u > 5.
We provide the obtained survival probabilities in Table 1.

Table 1. Survival probabilities forxk =2, N =2, X1 ~P(1,0) and X, ~ P(2,0)

u 0 1 2 3 4 5 10 15
o(u) 0.442 | 0.650 | 0.790 | 0.876 | 0.928 | 0.958 | 0.997 1

The provided values of ¢(u) match the ones given in [1, Table 1], where they
were obtained by a different method.

Based on Theorem 2, we now set up the survival probability-generating function
(s),i.e.

LA (56 4D, n=01
— = =@ , n=0,1,....
nldst o §=0 ¢

So, having m(()l), mgl), m(()z), mgz) and omitting the elementary rearrangements, we get

~ (0.187 4 0.4425)s% 4 (0.0224 + 0.104s)e*

E(s) = A6—1) _ ¢4 ’
Example 2. Let us consider the model (1) when k = 2 and X; ~ P(1, 1) and
X> ~ P(9/10, 1). We find ¢(u) when u = 0,1,...,50 and set up the survival
probability-generating function Z(s).

Is|] < 1, 67D £ ¢4,

According to (42) and (43), we check that the net profit condition is satisfied:
ES =141409+1 =39 <4 = «N. The probability-generating function of
S =X1+X2isGg,(s) = s2e196=D and the equation G, (s) = s* has one nonzero
solution inside the unit circle: « = —0.2928. Since x(gl) =0, xéz) = 0 weuse (11)
and (13) to set up the system

G
P D) () (0)
2 = .
xg) x 1<1> mé ) 0.1
It is easy to see that system (44), as in the previous example, can be expressed using
matrices M, M, and G;:

xl(Z)a xl(l)ot zez(a)
M, = @ s My = RONE G, = ‘ :
1 1

The system (44) implies m(()]) = 0.1270, m(<)2) = 0.1315 and consequently, ¢(1) =
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m(()l) = 0.1270. To proceed computing ¢ (1) = Zl‘-’:_f mgl), u > 2, we use (15),
which in this particular case is

1 1—i
2 1 1 2 1 2 1
mﬁl)x(())_m;)z Zm() () ZmE)ij')ﬂ{n=2}

. n=2 3, ...
(H_2 2 " D _(@2 ) 2
myxg? = n_)—ng xnji_z Zx)ﬂ{n =2}
i=0 i=0 j=0
or, equivalently,
2 1 2) (1 2) 1
2)1=<<> .Zm()() — @01, >/x<>
,n=23,....
(1) ) (1) (2) (1) (2)
m, 1= <m Z m; X, _; 1 )/x
Substituting n = 2, 3, ... into the last two equations, we obtain mgl), mél), .... The

survival probability ¢(0) is found using recurrence (5):

pO)= Y PX;=i)P(Xy =i2) p(d — it — i) = x{x{7p(2) + x{VxP ().

i<l
i1+ <3

After completing all the necessary arithmetic, we get survival probabilities which are
provided in Table 2.

Table 2. Survival probabilities fork =2, N =2, X1 ~P(1, 1) and X, ~ P(9/10, 1)

u 0 1 2 3 4 5 10 20 30 40 50
@) | 0.048 | 0.127 | 0.209 | 0.286 | 0.355 | 0.417 | 0.649 | 0.873 | 0.954 | 0.983 | 0.994

Once again, the results obtained in Table 2 match the ones presented in [1, Ta-
ble 3], where the numbers are obtained differently, i.e. computing limits of certain
recurrent sequences.

Theorem 2 yields the following survival probability-generating function

0.0516¢*~1 + 0.0484s
SO =Tz

€ 51(0), e!067D £ 2,

Example 3. Let us consider the bi-seasonal model (1) with k = 3 where claims are
represented by two independent random variables X and X», whose distributions are
given in Table 3 and Table 4.

Table 3. Probability distribution of random variable X

i 0 1 2 3 4
P(Xy =1i) 0.4096 | 0.4096 | 0.1536 | 0.0256 | 0.0016

Table 4. Probability distribution of random variable X»

i 0 1 2
P(X, =1) 0.04 | 032 | 0.64
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We find the survival probability ¢(u) for all u € Ny and its generating func-
tion E(s).
It is easy to observe that ESy = 2.4 < 6. Thus, the net profit condition is valid.
The probability-generating function of the sum X + X5 is
Gs,(s) = (0.4096 + 0.40965 4 0.153652 + 0.02565> + 0.0016s4)
x (0.04 +0.325 + 0.64s7).

Solving G, (s) = 5%, we obtain the following roots inside the unit circle:

4
o) = 17 oy = —0.2250, a3 = —0.0154 — 0.7423i, aq = —0.0154 + 0.7423i.

Note that the complex roots always occur in conjugate pairs due to G, (5) — 5° N =
Gsy (s) — s“N, where over-line denotes conjugation. According to Lemma 4, there
must be one root of multiplicity two and one may check that «; is such. 3
3 We thNen employ (14) to create the modified versions of M1, M» and G». Let M1,
M5 and G, be
2 2 2
B Fx, () + a1 Fx, (1) + x5 o Fx, () +a1x)  x{Pa?
2 2 2
BFx, () + a2 Fx, (1) + x5 &3Fx,(1) + aax)  x{Pe?
2 2 2
@3 Fx,2) +asFx,() +x§”  adFx, () +asxy  xPad

M= afo2(2) + agFx, (1) +x(()2) afoz(l) + omxéz) x(§2)af ’
Fx,(1) + 201 Fx, (2) P 420 F, (1) 2xPa
xéz) + 2x§2) + 3xéz) xfz) + 2x(()2) x(()z)
2 Fx, () + a1 Fx, () +x" o3 Fy, () +aixf” x§Va?
ot%Fx1 (2) +arFx, (1) + x(()l) oe%Fx1 (1) + ozzx(()l) xél)ag
it 2Fx, () + a3 Fx, (1) +x" adFy, (1) +asxl”  x§Va2 7
@2Fx,(2) + asFx, () + x5 a2Fx, (1) + agxl’  xVa2
Ms 1 Ms > Ms 3
3Xé1) =+ 2)6{1) =+ Xél) ZX(()l) + xil) Xél)

~ ~ ~ Gx,(s)\ Gx, ()
(s, dts ds0) = (52|, (%59)

X! 0 0
< | Fe,() P 0 |,
Fx, (2 Fx,(1) xV
Gx,(a)/ai Gx,(a)/e; Gx,(a1)/e}
Gx,(@) /a3 Gx,()/a; Gx,(a)/a3
G, = | On@)/eg Gxy(@s)/e] Gxy(es)/e]

Gx,(aa)ja} Gx,(as)/a; Gx,(as)/a;
1 1 1
1 1 1

Gixz(s)hzal)

s=a|
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Then
m(()l) m(()l)
D 0 D 0.9984
;1) 0 g]) 0.0016
o my' | | o my | 0
(M1 M20Ga)g ol=lol T |27 1
0 0
@ 0 @ 0
m 3.6 m 0
méZ) mg2)

It follows that ¢ (1) = m(()l) =0.9984, p(2) = m(()l) + m(ll) = 1 and consequently
o) = 1 for all u > 3. Therefore,

p(O) = Y P(X;=i)P(Xs = i2) (6 — it — i)
<2
i1+iz2<S
1 2 1 2 1 2
= 5557 0(6) + (x5 + 216 ) (5)
1 2 1 2 1 2
+ (xg"x8? 4 x (Vx4 V2P ) o @)
+ (%@ 4 xDxP)o3) + xPxPp(2) = 0.9728.

The correctness of these results can be verified in the following way. If initial
surplus . = 1, ruin can only occur at the first moment of time and only if 1 +
3-1—-X; <0,ie. X1 =4 Thus, (1) =1 -P(X; = 4) = 1-0.0016 =
0.9984. If initial surplus # > 1, then ruin will never occur. There are two reasons
for that. First of all, at the first moment of time insurer’s wealth will never drop
below one. Moreover, every two periods insurer earns 6 units of currency and that
is the maximum amount of claims that the insurer can suffer during two consecutive
periods. The result of ¢(0) is also logical as with no initial capital ruin can occur only
if X; =3o0rX; =4, thuse0) =1-P(X; =3) —P(X; =4) =1-0.0256 —
0.0016 = 0.9728.

The generating function of (1), ¢(2), ... in the considered case is simply

1
E(s)=0.9984+s+s2~|—s3+~-=1 —0.0016, s € S1(0).

— S

One may verify that Theorem 2 produces the same result.

Example 4. In the last example, we consider ten season model with a premium rate of
5,ie. N = 10, k = 5, and we assume claims to be generated by independent random
variables X ~ P(k/(k + 1)+ 4, 0), k € {1, 2,...,10}, where P(A, 0) denotes
the Poisson distribution with parameter A. We compute both the finite time survival
probability ¢(u, T) and the ultimate time survival probability ¢(u#) and provide a
frame of ultimate time survival probability-generating function E(s).
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Let us verify that the net profit condition is satisfied:

10 10
k 1
) _ 1330009 ~ 47.9801 < 50.

ESio = EX; = — 44 )| = —
10 ; k k;<k+1+ 27720

We now apply Theorem 1. The equation

GS]()(S) — 61330009(S_1)/27720 — SSO

has 49 simple roots inside the unit circle depicted in Figure 2.

Fig. 2. Roots of 50 = Gg,,(s), when X3 ~ P(k/(k + 1) +4, 0),k € {1, 2,...,10}

Denoting these roots by oy, o, ..., 0s9 We set up matrices M|, M>, ..., Mg
and Gz, G3, ey Gloi

a J . 2 J . (10) 4
a]FX|()(.]) Za]FX]()(]_l) xo ozl
j=0 j=I1
Ml = 4 j . 4 i . 10 R
Z az{QFXm(.]) Z aigFXI()(] - 1) Xé )(Xi9
j=0 j=1
4 (10) 3 (10) (10)
Zx/. (CE=N)) ij 6G—-j—-1 X
j=0 - j=0
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4 4
. . 1
ZO()({FXI(]) Zloz{Fxl(] -1 . oxMed
j= j=
M2 = 4 . 4 . 3
. . 1 £ )
Zoa‘J“"FX‘ () -21 WoFx, (=1 .. xPady
j= j=
S > 0
ij S- ij G-j-D ... x
Jj=0 j=0
4 J 4 J 9 4
Yo Fxy(j)) Y aiFx,(j =1 ... x)
=0 j=1
MIO = 4 . 4 . 9 ,
Zoa‘j@FXQ(J) Zlaingg(]—l) xé )otjg
j= j=
2 9 > 9 9
ij(S—j) ij(S—J—l) Xy
j=0 j=0
GXIO(OlI) GXIO(O“) GX10+X1(a1) GXIOJer (1)
T e S
G2 . : . ,Gz= . . . ,
Gx,((a9) Gy, (09) Gxg+x, (49) Gxg+x, (@49)
ozzg : ozzg 0‘58 B otig
1 .. 1 1 .. 1
Gxjo+x +-+xg(@1) Gx g+x +-+xg (@1)
= Y
1 1
Gio= : :
Gxig+X1+-+Xg (249) Gxig+X1+-+Xg (249)
49 49
1 . 1
Solving the system
e
h
5 0
lh 0
(M M0Gy ... MipoGi)s, 5| = : (45)
m(()lO) 0
(10) 55991
m 27720/ 501
(10)
My "/ sox1

we obtain m)’ = 0.1821, m{" = 0.0604, m{" = 0.0583, m{" = 0.0545, m" =
0.0504.
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Therefore, using (8):

o(1) =mf = 0.1821,
9(2) = m” +m{" = 02425,
03) = m +mY + m® = 03009,
o@ =mP +m" +m® +mD =0.3554,
<1> O pml 4+ mD = 0.4058.

p(5) = m(()l) +my +m,

Employing system (15) we find the remaining probabilities mgl), mél), S

2 1 2) 2 1 1
e =< ), .Zm() » Zm()Zx“ﬂ{n 5}>/x<>

=0 j=0

10 9 & (10)_© 10 9 9
mfﬂ:( ;)5—2 (10,0 _ 50 >Zx<>ﬂ{n 5}>/x(<))

i=0 z—O
1 1 "= ao 1 10 10
mg)_(;; S 10 _ Zm()Zx( ML s )/xé)
i=0 i=0 j=0
= 5,6, .... We substitute the obtained probabilities m(() ), m(ll), ... into (8) and
compute ¢(6), ¢(7), .. .. Finally, ¢(0) can be found using (5):
10
e = > PX =iDP(Xa=1i) P(Xj0= ilo)so(so - Zij)-
i1 <4 j=1
i1+ <9

i1+ix+iz <14
i) it il <49

The final results, including the finite time ruin probability computed by Theo-
rem 4, rounded up to three decimal places, are provided in Table 5.

Table 5. Survival probabilities for k = 5, N = 10, Xy ~ Pk/(k+ 1) +4,0), k €
{1,2,...,10}

T u=0 | u=1 u=2|u=3|u=4|u=5|u=10 | u=20 | u=30
1 0.532 | 0.703 | 0.831 0.913 | 0.960 | 0.983 1 1 1
2 0.424 | 0.587 | 0.727 | 0.831 0.902 | 0.946 0.999 1 1
3 0.368 | 0.520 | 0.657 | 0.767 | 0.849 | 0.906 0.995 1 1
4 0.332 | 0474 | 0.606 | 0.717 | 0.804 | 0.869 0.988 1 1
5 0.306 | 0.440 | 0.567 | 0.677 | 0.766 | 0.834 0.979 1 1
10 | 0.235 | 0.343 | 0.450 | 0.548 | 0.635 | 0.708 0.921 0.998 1
20 | 0.200 | 0.294 | 0.389 | 0.478 | 0.558 | 0.629 0.863 0.990 1
30 | 0.179 | 0.264 | 0.350 | 0.432 | 0.507 | 0.575 0.814 0.979 0.999
oo | 0.125 | 0.182 | 0.243 | 0.301 | 0.355 | 0.406 0.605 0.826 0.923
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),i=

The survival probability ¢(1), ¢(2), ... generating function, having mlgj

0,1,...,4,j=1,2,...,10, from system (45), when s € S;(0) and e®106—1 £ 30
is
e W (®V(s)
B(8) = 2061 4507
45 _ 4 2 4 , T
o S sl L
—A j J=t 4]
350 (—1) ey i om; i s Y Ay /!
u(s) = . ;o v(s) = : .
: o 4 10) 4 j~—ji—i g
§5 pas(s—1) e Yo m?(l)) DS XSy A/ 1!
— 4 4 i —i
e™G=D e MO omy ) Yo s? 2020 Mo/ 1!

where a, = 4n +22:0k/(k+ Dand A, =4+n/(n+1)whenn =1, 2,...,10.
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