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Abstract We construct an estimator of the unknown drift parameter θ ∈ R in the linear
model

Xt = θt + σ1BH1(t) + σ2BH2(t), t ∈ [0, T ],

where BH1 and BH2 are two independent fractional Brownian motions with Hurst indices H1
and H2 satisfying the condition 1

2 ≤ H1 < H2 < 1. Actually, we reduce the problem to the so-
lution of the integral Fredholm equation of the 2nd kind with a specific weakly singular kernel
depending on two power exponents. It is proved that the kernel can be presented as the product
of a bounded continuous multiplier and weak singular one, and this representation allows us
to prove the compactness of the corresponding integral operator. This, in turn, allows us to
establish an existence–uniqueness result for the sequence of the equations on the increasing
intervals, to construct accordingly a sequence of statistical estimators, and to establish asymp-
totic consistency.
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1 Introduction

Consider the continuous-time linear model

X(t) = θt + σ1B
H1(t) + σ2B

H2(t), t ∈ [0, T ], (1)

where BH1 and BH2 are two independent fractional Brownian motions with different
Hurst indices H1 and H2 defined on some stochastic basis (Ω,F, (F)t , t ≥ 0, P).

We assume that the filtration is generated by these processes and completed by P-
negligible sets of F0.

Recall that the fractional Brownian motion (fBm) BH
t , t ≥ 0, with Hurst index

H ∈ (0, 1) is a centered Gaussian process with the covariance function

E
[
BH (t)BH (s)

]
= 1

2

(
t2H + s2H − |t − s|2H

)
.

From now on we suppose that the Hurst indices in (1) satisfy the inequality

1

2
≤ H1 < H2 < 1,

and we consider the continuous modifications of both processes, which exist due to
the Kolmogorov theorem. Assuming that the Hurst indices H1, H2 and parameters
σ1 ≥ 0, σ2 ≥ 0 are known, we aim to estimate the unknown drift parameter θ by the
continuous observations of the trajectories of X. Due to the long-range dependence
property of fBm with H > 1/2, we call our model the model with double long-range
dependence.

In the case where H1 = 1
2 , the problem of drift parameter estimation in the model

(1) was solved in [3], and in the case where 1
2 < H1 < H2 < 1 and H2 − H1 > 1/4,

the estimator was constructed in [6]. The goal of the present paper is to generalize the
results from [6] to arbitrary 1

2 ≤ H1 < H2 < 1. The problem, more technical than
principal, is that in the case where H2 − H1 > 1/4 and H1 > 1/2, the construction
of the estimator is reduced to the question if the solution of the Fredholm integral
equation of the 2nd kind with weakly singular kernel from L2[0, T ] exists and is
unique, but for H2 − H1 ≤ 1/4, the kernel does not belong to L2[0, T ]. Moreover,
in this case, we can say that in the literature it is impossible to pick up for this kernel
any suitable standard techniques for working with weak singular kernels, and it does
not belong to any standard class of weak singular kernels. The matter lies in the fact
that the kernel contains two power indices, H1 and H2, and they create more complex
singularity than it usually happens. So, it is necessary to make many additional efforts
in order to prove the compactness of the corresponding integral operator. Immediately
after establishing the compactness of the corresponding integral operator, the problem
of statistical estimation follows the same steps as in the paper [6], and we briefly
present these steps for completeness.

The paper is organized as follows. In Section 2, we describe the model and explain
how to reduce the solution of the estimation problem to the existence–uniqueness
problem for the integral Fredholm equation of the 2nd kind with some nonstandard
weakly singular kernel. In Section 3, we solve the existence–uniqueness problem.
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Section 4 is devoted to the basic properties of estimator, that is, we establish its form,
consistency, and asymptotic normality. Section A contains the properties of hyper-
geometric function used in the proof of the existence–uniqueness result for the main
Fredhom integral equation.

2 Preliminaries. How to reduce the original problem to the integral equation

Since we suppose that the Hurst parameters H1,H2 and scale parameters σ1, σ2 are
known, for technical simplicity, we consider the case where σ1 = σ2 = 1 and, as it
was mentioned before, 1

2 ≤ H1 < H2 < 1. If we wish to include the unknown param-
eter θ into the fractional Brownian motion with the smallest Hurst parameter in order
to apply Girsanov’s theorem for construction of the estimator, we consider a couple
of processes {B̃H1(t), BH2(t), t ≥ 0}, i = 1, 2, defined on the space (Ω,F, (F)t )

and let Pθ be a probability measure under which B̃H1 and BH2 are independent, BH2

is a fractional Brownian motion with Hurst parameter H2, and B̃H1 is a fractional
Brownian motion with Hurst parameter H1 and drift θ , that is,

B̃H1(t) = θt + BH1(t).

The probability measure P0 corresponds to the case θ = 0. Our main problem
is the construction of maximum likelihood estimator for θ ∈ R by the observations
of the process Z(t) = θt + BH1(t) + BH2(t) = B̃H1(t) + BH2(t), t ∈ [0, T ]. As
in [6], we apply to Z the linear transformation in order to reduce the construction to
the sum with one term being the Wiener process. So, we take the kernel lH (t, s) =
(t − s)1/2−H s1/2−H and construct the integral

Y(t) =
∫ t

0
lH1(t, s)dZ(s) = θB

(
3

2
− H1,

3

2
− H1

)
t2−2H1 + MH1(t)

+
∫ t

0
lH1(t, s)dBH2(s),

(2)

where B(α, β) = ∫ 1
0 xα−1(1 − x)β−1dx is the beta function, and MH1 is a Gaussian

martingale (Molchan martingale), admitting the representations

MH (t) =
∫ t

0
lH (t, s)dBH (s) = γH

∫ t

0
s1/2−H dW(s)

with γH = (2H( 3
2 − H)Γ (3/2 − H)3Γ (H + 1

2 )Γ (3 − 2H)−1)
1
2 and a Wiener

process W . According to [6], the linear transformation (2) is well defined, and the
processes Z and Y are observed simultaneously. This means that we can reduce the
original problem to the equivalent problem of the construction of maximum likeli-
hood estimator of θ ∈ R basing on the linear transformation Y . For simplicity, denote
BH1 := B( 3

2 − H1,
3
2 − H1). Now the main problem can be formulated as follows.

Let 1
2 ≤ H1 < H2 < 1,{

X̃1(t) = M̃H1(t), X2(t) :=
∫ t

0
lH1(t, s)dBH2(s), t ≥ 0

}
,
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i = 1, 2, be a couple of processes defined on the space (Ω,F), and Pθ be a probability
measure under which X̃1 and X2 are independent, BH2 is a fractional Brownian
motion with Hurst parameter H2, and X̃1 is a martingale with square characteristics

〈X̃1〉(t) = γ 2
H1

2−2H1
t2−2H1 and drift θBH1 t

2−2H1 , that is,

X̃1(t) = M̃H1(t) = θBH1 t
2−2H1 + MH1(t).

Also, denote X1(t) = MH1(t). Our main problem is the construction of maximum
likelihood estimator for θ ∈ R by the observations of the process

Y(t) = θBH1 t
2−2H1 + X1(t) + X2(t) = X̃1(t) + X2(t).

Note that, under the measure Pθ , the process

W̃ (t) := W(t) + θ(2 − 2H1)BH1

γH1(
3
2 − H1)

t
3
2 −H1

is a Wiener process with drift. Denote δH1 = (2−2H1)BH1
γH1

.

By Girsanov’s theorem and independence of X1 and X2,

dPθ

dP0
= exp

{
θδH1

∫ T

0
s

1
2 −H1dW̃(s) − θ2δ2

H1

4(1 − H1)
T 2−2H1

}
= exp

{
θδH1X̃1(T ) − θ2δ2

H1

4(1 − H1)
T 2−2H1

}
.

As it was mentioned in [3], the derivative of such a form is not the likelihood ratio
for the problem at hand because it is not measurable with respect to the observed σ -
algebra

FY
T := σ

{
Y(t), t ∈ [0, T ]} = FX

T := σ
{
X(t), t ∈ [0, T ]},

where X(t) = X1(t) + X2(t).

We shall proceed as in [3]. Let μθ be the probability measure induced by Y on
the space of continuous functions with the supremum topology under probability Pθ .
Then for any measurable set A, μθ(A) = ∫

A
Φ(x)μ0(dx), where Φ(x) is a measur-

able functional such that Φ(X) = E0(
dPθ

dP0
|FX

T ). This means that μθ � μ0 for any

θ ∈ R. Taking into account that X̃1 = X1 under P0 and the fact that the vector pro-
cess (X1, X) is Gaussian, we get that the corresponding likelihood function is given
by

LT (X, θ) = E0

(
dPθ

dP0
|FX

T

)
= E0

(
exp

{
θδH1X1(T ) − θ2δ2

H1

4(1 − H1)
T 2−2H1

}
|FX

T

)
= exp

{
θδH1E0

(
X1(T )|FX

T

) + θ2δ2
H1

2

(
V (T ) − T 2−2H1

2 − 2H1

)}
,

where V (t) = E0(X1(t) − E0(X1(t)|FX
t ))2, t ∈ [0, T ].
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The next reasonings repeat the corresponding part of [6]. We have to solve the
following problem: to find the projection PXX1(T ) of X1(T ) onto

{X(t) = X1(t) + X2(t), t ∈ [0, T ]} .

According to [4], the transformation formula for converting fBm into a Wiener pro-
cess is of the form

Wi(t) =
∫ t

0

((
K∗

Hi

)−11[0,t]
)
(s)dBHi (s), i = 1, 2,

where(
K∗

H f
)
(s) =

∫ T

s

f (t)∂tKH (t, s)dt = βH s1/2−H

∫ T

s

f (t)tH−1/2(t − s)H−3/2dt,

βH = (
H(2H−1)

B(H−1/2,2−2H)
)

1
2 , and the square-integrable kernel KH (t, s) is of the form

KH (t, s) = βH s1/2−H

∫ t

s

(u − s)H−3/2uH−1/2du.

We have that Wi, i = 1, 2, are standard Wiener processes, which are obviously
independent. Also, we have

X1(t) = γH1

∫ t

0
s1/2−H1dW1(s), BH2(t) =

∫ t

0
KH2(t, s)dW2(s). (3)

Then

X2(t) =
∫ t

0
KH1,H2(t, s)dW2(s),

where

KH1,H2(t, s) = βH2s
1/2−H2

∫ t

s

(t − u)1/2−H1uH2−H1(u − s)H2−3/2du. (4)

For an interval [0, T ], denote by L2
H [0, T ] the completion of the space of simple

functions f : [0, T ] → R with respect to the scalar product

〈f, g〉2
H := αH

∫ T

0

∫ T

0
f (t)g(s)|t − s|2H−2dsdt,

where αH = H(2H − 1). Note that this space contains both functions and distribu-
tions. For functions from L2

H2
[0, T ], we have that∫ T

0
f (s)dX2(s) =

∫ T

0

(
K∗

H1,H2
f

)
(s)dW2(s),

where (
K∗

H1,H2
f

)
(s) =

∫ T

s

f (t)∂tKH1,H2(t, s)dt.
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The projection of X1(T ) onto {X(t), t ∈ [0, T ]} is a centered X-measurable
Gaussian random variable and, therefore, is of the form

PXX1(T ) =
∫ T

0
hT (t)dX(t)

with hT ∈ L2
H1

[0, T ]. Note that hT still may be a distribution. However, as we will
further see, it is a continuous function. The projection for all u ∈ [0, T ] must satisfy

E [X(u)PXX1(T )] = E [X(u)X1(T )] . (5)

Using (5) together with independency of X1 and X2, we arrive at the equation

E
[
X1(u)

∫ T

0
hT (t)dX1(t) + X2(u)

∫ T

0
hT (t)dX2(t)

]
= E [X1(u)X1(T )] = εH1u

2−2H1 ,

(6)

where εH = γ 2
H /(2 − 2H). Finally, from (3)–(6) we get the prototype of a Fredholm

integral equation

εH1u
2−2H1 = γ 2

H1

∫ u

0
hT (s)s1−2H1ds +

∫ T

0
hT (s)rH1,H2(s, u)ds, u ∈ [0, T ], (7)

where

rH1,H2(s, u) =
∫ s∧u

0
∂sKH1,H2(s, v)KH1,H2(u, v)dv.

Differentiating (7), we get the Fredholm integral equation of the 2nd kind,

γ 2
H1

hT (u)u1−2H1 +
∫ T

0
hT (s)k(s, u)ds = γ 2

H1
u1−2H1 , u ∈ (0, T ], (8)

where

k(s, u) =
∫ s∧u

0
∂sKH1,H2(s, v)∂uKH1,H2(u, v)dv (9)

with the function KH1,H2 defined by (4).
We will establish in Remark 2 that for the case H1 = 1

2 , Eq. (8) can be reduced to
the corresponding equation from [3]:

hT (u) + H2(2H2 − 1)

∫ T

0
hT (s)|s − u|2H2−2ds = 1, u ∈ [0, T ], (10)

but the difference between (10) and (8) lies in the fact that (10) can be characterized as
the equation with standard kernel, whereas (8) with two different power exponents is
more or less nonstandard, and, therefore, it requires an unconventional approach. On
the one hand, it is known from the paper [6] that if the conditions H2 − H1 > 1

4 and

H1 > 1/2 are satisfied, then Eq. (8) has a unique solution hTn with hTn(t)t
1
2 −H1 ∈

L2[0, Tn] on any sequence of intervals [0, Tn] except, possibly, a countable number
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of Tn connected to eigenvalues of the corresponding integral operator (the meaning
of this sentence will be specified later because, finally, we will get a similar result
but in more general situation). On the other hand, the existence–uniqueness result for
Eq. (10) in [3] is proved without any restriction on Hurst index H2 while H1 = 1

2 .
The difference between these results can be explained so that in [3] the authors state
the existence and uniqueness of the continuous solution, whereas in [6] the solution
is established in the framework of L2-theory.

In this paper, we propose to consider Eq. (8) in the space C[0, T ] again. This
means that we consider the corresponding integral operator as an operator from
C[0, T ] into C[0, T ] and establish an existence–uniqueness result in C[0, T ]. This
approach has the advantage that we do not need anymore the assumption H2−H1 > 1

4
and can include the case H1 = 1/2 again into the consideration.

We say that two integral equations are equivalent if they have the same continuous
solutions. In this sense, Eqs. (7) and (8) are equivalent, and both are equivalent to the
equation

hT (u) + 1

γ 2
H1

∫ T

0
hT (s)κ(s, u)ds = 1, u ∈ [0, T ], (11)

with continuous right-hand side, where

κ(s, u) = u2H1−1k(s, u), s, u ∈ [0, T ]. (12)

We get that the main problem (i.e., the MLE construction for the drift parameter)
is reduced to the existence–uniqueness result for the integral equation (7).

3 Compactness of integral operator. Existence–uniqueness result for the Fred-
holm integral equation

Consider the integral operator K generated by the kernel K bearing in mind that the
notations of the kernel and of the corresponding operator will always coincide:

(Kx)(u) =
∫ T

0
K(s, u)x(s)ds, x ∈ C[0, T ].

Now we are in position to establish the properties of the kernel κ(s, u) defined by
(12) and (9). Introduce the notation [0, T ]2

0 = [0, T ]2 \ {(0, 0)}.
Lemma 1. Up to a set of Lebesgue measure zero, the kernel κ(s, u), s, u ∈ [0, T ],
admits the following representation on [0, T ] :

κ(s, u) =
{

κ0(s, u)ϕ(s, u), s �= u,

0, s = u,
(13)

where ϕ(s, u) = (s∧u)1−2H1u2H1−1|s−u|2H2−2H1−1, and the function κ0 is bounded
and belongs to C([0, T ]2

0).
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Proof. We take (9) and first present the derivative of KH1,H2(t, s), defined by (4),
in an appropriate form. To start, put u = s + (t − s)z. This allows us to rewrite
KH1,H2(t, s) as

KH1,H2(t, s) = βH2s
1
2 −H2(t − s)H2−H1

×
∫ 1

0
(1 − z)

1
2 −H1

(
s + (t − s)z

)H2−H1zH2− 3
2 dz.

(14)

Differentiating (14) w.r.t. t for 0 < s < t ≤ T , we get

∂tKH1,H2(t, s) = (H2 − H1)βH2s
1
2 −H2(t − s)H2−H1−1

×
∫ 1

0
(1 − z)

1
2 −H1

(
s + (t − s)z

)H2−H1zH2− 3
2 dz

+ (H2 − H1)βH2s
1
2 −H2

× (t − s)H2−H1

∫ 1

0
(1 − z)

1
2 −H1

(
s + (t − s)z

)H2−H1−1
zH2− 1

2 dz

= (H2 − H1)βH2s
1
2 −H2(t − s)H2−H1−1

×
(∫ 1

0
(1 − z)

1
2 −H1

(
s + (t − s)z

)H2−H1zH2− 3
2 dz

+ (t − s)

∫ 1

0
(1 − z)

1
2 −H1

(
s + (t − s)z

)H2−H1−1
zH2− 1

2 dz

)
= (H2 − H1)βH2s

1
2 −H2(t − s)H2−H1−1

×
(

sH2−H1

∫ 1

0
zH2− 3

2 (1 − z)
1
2 −H1

(
1 − s − t

s
z

)H2−H1

dz

+ (t − s)sH2−H1−1
∫ 1

0
(1 − z)

1
2 −H1

(
1 − s − t

s
z

)H2−H1−1

zH2− 1
2 dz

)
.

(15)
Denote for technical simplicity αi = Hi − 1

2 , i = 1, 2. Then, according to the
definition and properties of the Gauss hypergeometric function (see Eqs. (31) and
(32)), the terms in the right-hand side of (15) can be rewritten as follows. For the first
term, thats is, for

I1(t, s) := sH2−H1

∫ 1

0
zα2−1(1 − z)−α1

(
1 − s − t

s
z

)H2−H1

dz, (16)

the values of parameters for the underlying integral equal a = H1 − H2, b = α2, c =
H2 − H1 + 1, and x = s−t

s
< 1, respectively; therefore, x

x−1 = t−s
t

, c − b = 1 − α1,
and

I1(t, s) = B(1 − α1, α2)s
H2−H1F

(
H1 − H2, α2, 1 − H1 + H2; s − t

s

)
= B(1 − α1, α2)s

H2−H1

(
t

s

)H2−H1

F

(
H1 − H2, 1 − α1, 1 − H1 + H2; t − s

t

)
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= B(1 − α1, α2)t
H2−H1F

(
H1 − H2, 1 − α1, 1 − H1 + H2; t − s

t

)
.

Similarly, for the second term, that is, for

I2(t, s) := (t − s)sH2−H1−1
∫ 1

0
zα2(1 − z)−α1

(
1 − s − t

s
z

)H2−H1−1

dz, (17)

the values of parameters for the underlying integral equal a = H1−H2+1, b = α2+1,
c = H2 − H1 + 2, and x = s−t

s
, respectively; therefore, x

x−1 = t−s
t

, c − b = 1 − α1,
and

I2(t, s) = (t − s)sH2−H1−1B(1 − α1, α2 + 1)

× F

(
H1 − H2 + 1, α2 + 1,H2 − H1 + 2; s − t

s

)
= (t − s)sH2−H1−1

(
t

s

)H2−H1−1

× B(1 − α1, α2 + 1)F

(
H1 − H2 + 1, 1 − α1, 2 − H1 + H2; t − s

t

)
= (t − s)tH2−H1−1B(1 − α1, α2 + 1)

× F

(
H1 − H2 + 1, 1 − α1, 2 − H1 + H2; t − s

t

)
.

It is easy to see from the initial representations (16) and (17) that I1(t, s) and I2(t, s)

are continuous on the set 0 < s ≤ t ≤ T .
Now, introduce the notations

Ψ1(t, s) = B(1 − α1, α2)F

(
H1 − H2, 1 − α1, 1 − H1 + H2; t − s

t

)
and

Ψ2(t, s) =
(

t − s

t

)1−H2+H1

B(1 − α1, α2 + 1)

× F

(
H1 − H2 + 1, 1 − α1, 2 − H1 + H2; t − s

t

)
,

so that I1(t, s) = tH2−H1Ψ1(t, s) and I2(t, s) = (t − s)H2−H1Ψ2(t, s). Note that
t−s
t

∈ [0, 1); therefore,

F

(
H1 − H2, 1 − α1, 1 − H1 + H2; t − s

t

)
= 1

B(1 − α1, α2)
×

∫ 1

0
z−α1(1 − z)α2−1

(
1 − t − s

t
z

)H2−H1

dz

≤ 1

B(1 − α1, α2)

∫ 1

0
z−α1(1 − z)α2−1dz = 1,



156 Yu. Mishura, I. Voronov

whence the function Ψ1(t, s) is bounded by B(1 − α1, α2). In order to establish that
Ψ2(t, s) is bounded, we use Proposition 1. Its conditions are satisfied: a = H1 −H2 +
1 ∈ (0, 1), b = 1 − α1 > 0, c − b = α2 + 1 > 1, and x = t−s

t
∈ [0, 1). Therefore,

x1−H2+H1F(H1 − H2 + 1, 1 − α1, 2 − H1 + H2; x) ≤ x1−H2+H1

×
(

1 − 1 − α1

1 − H1 + H2
x

)−1−H1+H2

=
(

1

x
− 1 − α1

1 − H1 + H2

)−1−H1+H2

≤
(

1 − 1 − α1

1 − H1 + H2

)−1−H1+H2

=
(

1 − H1 + H2

α2

)H1−H2+1

,

whence Ψ2(t, s) ≤ B(1−α1, α2+1)(
1−H1+H2

α2
)H1−H2+1. Additionally, both functions

are homogeneous:

Ψi(at, as) = Ψi(t, s) for a > 0, i = 1, 2.

Introduce the notation

Φ(t, s) = I1(t, s) + I2(t, s) = tH2−H1Ψ1(t, s) + (t − s)H2−H1Ψ2(t, s) (18)

and note that Φ ∈ C([0, T ]2
0) is bounded and homogeneous:

Φ(at, as) = aH2−H1Φ(t, s), a > 0. (19)

In terms of notation (18), the representation (15) for ∂tKH1,H2(t, s) can be rewritten
as

∂tKH1,H2(t, s) = βH2(H2 − H1)s
1
2 −H2(t − s)H2−H1−1Φ(t, s). (20)

In turn, the kernel k(s, u) from (9) can be rewritten as

k(s, u) = (
βH2(H2 − H1)

)2

×
∫ s∧u

0
v1−2H2(s − v)H2−H1−1(u − v)H2−H1−1Φ(s, v)Φ(u, v)dv.

(21)

Consider the kernel k(s, u) for s > u. Then it evidently equals

k(s, u) = (
βH2(H2 − H1)

)2

×
∫ u

0
v1−2H2(s − v)H2−H1−1(u − v)H2−H1−1Φ(s, v)Φ(u, v)dv.

Put z = u−v
s−u

and transform k(s, u) to

k(s, u) = (
βH2(H2 − H1)

)2
(s − u)2H2−2H1−1

∫ u
s−u

0
zH2−H1−1(1 + z)H2−H1−1

× (
u − z(s − u)

)1−2H2Φ
(
s, u − z(s − u)

)
Φ

(
u, u − z(s − u)

)
dz

=: k0(s, u)

(s − u)1−2H2+2H1
,
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where

k0(s, u) = (
βH2(H2 − H1)

)2
∫ u

s−u

0
zH2−H1−1(1 + z)H2−H1−1

× (
u − z(s − u)

)1−2H2Φ
(
s, u − z(s − u)

)
Φ

(
u, u − z(s − u)

)
dz.

In turn, transform k0(s, u) with the change of variables tu = z and apply (19):

k0(s, u) = (
βH2(H2 − H1)

)2
∫ 1

s−u

0
(tu)H2−H1−1(1 + tu)H2−H1−1

× (
u − tu(s − u)

)1−2H2Φ
(
s, u − tu(s − u)

)
Φ

(
u, u − tu(s − u)

)
udt

= (
βH2(H2 − H1)

)2
u1−2H1

∫ 1
s−u

0

(
1 − t (s − u)

)1−2H2(1 + tu)H2−H1−1

× tH2−H1−1Φ
(
s, u − tu(s − u)

)
Φ

(
1, 1 − t (s − u)

)
dt. (22)

Introducing the kernel κ0(s, u) = k0(s, u)u2H1−1, we can present k(s, u) as

k(s, u) = κ0(s, u)

(s − u)1−2H2+2H1u2H1−1
, (23)

where, for s > u > 0,

κ0(s, u) = (
βH2(H2 − H1)

)2
∫ 1

s−u

0

(
1 − (s − u)t

)1−2H2(1 + ut)H2−H1−1

× tH2−H1−1Φ
(
s, u − tu(s − u)

)
Φ

(
1, 1 − t (s − u)

)
dt

= (
βH2(H2 − H1)

)2
∫ ∞

0
1
t≤ 1

s−u

(
1 − (s − u)t

)1−2H2(1 + ut)H2−H1−1

× tH2−H1−1Φ
(
s, u − tu(s − u)

)
Φ

(
1, 1 − t (s − u)

)
dt. (24)

For the case u > s > 0, we can replace s and u in formulas (23) and (24).
Substituting formally u = s into (24), for s > 0, we get

κ0(s, s) = (
βH2(H2 − H1)

)2
Φ(s, s)Φ(1, 1)

∫ ∞

0
(1 + st)H2−H1−1tH2−H1−1dt

= (
βH2(H2 − H1)

)2
sH2−H1Φ(1, 1)2

∫ ∞

0
(1 + st)H2−H1−1tH2−H1−1dt.

(25)
Note that Φ(1, 1) = B(1 − α1, α2) and

∫ ∞
0 (1 + st)H2−H1−1tH2−H1−1dt = sH1−H2

B(H2 − H1, 1 − 2H2 + H1). The former equation holds due to (34). We get that
κ0(s, s) does not depend on s and equals some constant CH := (βH2(H2 −H1)B(1−
α1, α2))

2B(H2 − H1, 1 − 2H2 + H1). Therefore, we define κ0(s, s) = CH , s > 0.

Now the continuity of κ0 on (0, T ]2 follows from the Lebesgue dominated con-
vergence theorem supplied by representation (24), Eq. (25), and its consequence
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κ0(s, s) = CH , s > 0, together with the facts that Φ ∈ C([0, T ]2
0) and is bounded.

Consider κ0(s, u) for u ↓ 0 and let s > 0 be fixed. Then

lim
u↓0

κ0(s, u) = C1
H := (

βH2(H2 − H1)
)2

Φ(1, 0)

×
∫ 1

0
(1 − y)1−2H2yH2−H1−1Φ(1, 1 − y)dy < ∞,

and we can put κ0(s, 0) = κ0(0, u) = C1
H , s > 0, u > 0, thus extending the

continuity of κ0 to [0, T ]2
0.

It is easy to see that the values κ0(s, s) and κ0(s, 0) do not depend on s > 0 and
do not coincide: CH �= C1

H . Consequently, the limit

lim
(s,u)→(0,0)

κ0(s, u)

does not exist and depends on the way the variables s and u tend to zero. We can
equate κ0(0, 0) to any constant; for example, let κ0(0, 0) = 0.

In order to prove that κ0 is bounded, we consider the case s > u (the opposite
case is treated similarly) and put z = (s − u)t . Then∫ 1

s−u

0

(
1 − (s − u)t

)1−2H2(1 + ut)H2−H1−1tH2−H1−1Φ
(
s, u − tu(s − u)

)
× Φ

(
1, 1 − t (s − u)

)
dt = 1

(s − u)H2−H1

∫ 1

0
(1 − z)1−2H2

×
(

1 + u

s − u
z

)H2−H1−1

zH2−H1−1Φ
(
s, u(1 − z)

)
)Φ(1, 1 − z)dz =: I3(s, u).

(26)
It follows from (19) that, for s �= 0,

Φ
(
s, u(1 − z)

) = sH2−H1Φ

(
1,

u

s
(1 − z)

)
.

Denote r = s
s−u

and put t = 1−z
1−(1−r)z

. Then

u

s − u
= r − 1, t < 1, z = 1 − t

1 − t (1 − r)
∈ (0, 1),

and the right-hand side of (26) can be rewritten as

I3(s, u) = rH2−H1

∫ 1

0
(1 − z)1−2H2

(
1 − (1 − r)z

)H2−H1−1
zH2−H1−1

× Φ

(
1,

u

s
(1 − z)

)
Φ(1, 1 − z)dz = r1−2H1

∫ 1

0
t1−2H2(1 − t)H2−H1−1

× (
1 − (1 − r)t

)2H1−1
Φ

(
1,

u

s

rt

1 − (1 − r)t

)
Φ

(
1,

rt

1 − (1 − r)t

)
dt.

(27)
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Fig. 1. Function κ0(s, u)

Finally, put y = 1 − t . Then the right-hand side of (27) is transformed to

I3(s, u) = r1−2H1r2H1−1
∫ 1

0
(1 − y)1−2H2yH2−H1−1

(
1 − y

r − 1

r

)2H1−1

× Φ

(
1,

u

s

r(1 − y)

r − y(r − 1)

)
Φ

(
1,

r(1 − y)

r − y(r − 1)

)
dy.

Recall that r = s
s−u

. Then it follows from the boundedness of Φ that there exists

a constant C1
H such that, for s > u,

κ0(s, u) = (
βH2(H2 − H1)

)2
∫ 1

0
(1 − y)1−2H2

(
1 − u

s
y

)2H1−1

yH2−H1−1

× Φ

(
1,

u(1 − y)

s − uy

)
Φ

(
1,

s(1 − y)

s − uy

)
dy

≤ C1
H

∫ 1

0
(1 − y)1−2H2yH2−H1−1dy, (28)

so κ0 is bounded, and the lemma is proved.

Remark 1. Figure 1 demonstrates the graph of κ0(s, u) for H1 = 0.7 and H2 = 0.9.

Now, consider the properties of the function

ϕ(s, u) = (s ∧ u)1−2H1u2H1−1|s − u|2H2−2H1−1

participating in the kernel representation (13).

Lemma 2. The function ϕ has the following properties:

(i) for any u ∈ [0, T ], ϕ(·, u) ∈ L1[0, T ] and sup
u∈[0,T ]

‖ϕ(·, u)‖L1 < ∞
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(ii) for any u1 ∈ [0, T ], ∫ T

0 |ϕ(s, u) − ϕ(s, u1)|ds → 0 as u → u1.

Proof. (i) It follows from the evident calculations that

∫ T

0
|ϕ(s, u)|ds =

∫ T

0
ϕ(s, u)ds =

∫ u

0

u2H1−1ds

s2H1−1(u − s)1+2H1−2H2

+
∫ T

u

ds

(s − u)1+2H1−2H2
= u2H2−2H1 B(2 − 2H1, 2H2 − 2H1)

+ (T − u)2H2−2H1

2H2 − 2H1
≤ CH1,H2T

2H2−2H1 < ∞ for all u ∈ [0, T ].

(ii) First, let u1 = 0 and u ↓ 0. Note that ϕ(s, 0) = s2H2−2H1−1. Therefore,

∫ T

0
|ϕ(s, u) − 1

s1+2H1−2H2
|ds =

∫ u

0
| u2H1−1

s2H1−1(u − s)1+2H1−2H2
− 1

s1+2H1−2H2
|ds

+
∫ T

u

ds

(s − u)1+2H1−2H2
−

∫ T

u

ds

s1+2H1−2H2
ds ≤

∫ u

0

u2H1−1ds

s2H1−1(u − s)1+2H1−2H2

+
∫ u

0

ds

s1+2H1−2H2
+ 1

2H2 − 2H1

(
(s − u)2H2−2H1 − s2H2−2H1

)|s=T
s=u

= B(2 − 2H1, 2H2 − 2H1)u
2H2−2H1

+ 1

2H2 − 2H1

(
2u2H2−2H1 + (T − u)2H2−2H1 − T 2H2−2H1

) → 0, as u → 0.

From now on suppose that u1 > 0 is fixed. Without loss of generality, suppose
that u ↑ u1. Then

T∫
0

|ϕ(s, u) − ϕ(s, u1)|ds =
u∫

0

|ϕ(s, u) − ϕ(s, u1)|ds +
u1∫

u

|ϕ(s, u) − ϕ(s, u1)|ds

+
∫ T

u1

|ϕ(s, u) − ϕ(s, u1)|ds =: I1(u, u1) + I2(u, u1) + I3(u, u1).

Consider the terms separately. First, we establish that ϕ(s, ·) is decreasing in the
second argument. Indeed, for 0 < s < u < u1,

ϕ(s, u1) = u
2H1−1
1

s2H1−1(u1 − s)1+2H1−2H2
= 1

s2H1−1(1 − s
u1

)1+2H1−2H2u
2−2H2
1

≤ 1

s2H1−1(1 − s
u
)1+2H1−2H2u2−2H2

= ϕ(s, u).
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Therefore,

I1(u, u1) =
∫ u

0

(
ϕ(s, u) − ϕ(s, u1)

)
ds =

∫ u

0
ϕ(s, u)ds −

∫ u1

0
ϕ(s, u1)ds

+
u1∫

u

ϕ(s, u1)ds ≤ B(2 − 2H1, 2H2 − 2H1)
(
u2H2−2H1 − u

2H2−2H1
1

)
+ u

2H1−1
1 (u1 − u)2H2−2H1

2H2 − 2H1
→ 0, as u ↑ u1.

The second integral vanishes as well:

I2(u, u1) ≤
u1∫

u

ϕ(s, u)ds +
u1∫

u

ϕ(s, u1)ds

≤
(

1

2H2 − 2H1
+

(
u1

u

)2H1−1)
(u1 − u)2H2−2H1 → 0

as u ↑ u1. Finally,

I3(u, u1) =
∫ T

u1

ds

(s − u1)1+2H1−2H2
−

∫ T

u1

ds

(s − u)1+2H1−2H2
= 1

2H2 − 2H1

× (
(T − u1)

2H2−2H1 − (T − u)2H2−2H1 + (u1 − u)2H2−2H1
) → 0

as u ↑ u1.

The lemma is proved.

Lemma 3. The kernel κ generates a compact integral operator κ : C[0, T ] →
C[0, T ].
Proof. According to [2], it suffices to prove that the kernel κ defined by (13) satisfies
the following two conditions:

(iii) for any u ∈ [0, T ], κ(·, u) ∈ L1[0, T ] and sup
u∈[0,T ]

‖κ(·, u)‖L1 < ∞;

(iv) For any u1 ∈ [0, T ], ∫ T

0 |κ(s, u) − κ(s, u1)|ds → 0 as u → u1.

The first condition follows directly from fact that κ0(s, u) is bounded (see Lemma 1)
and from Lemma 2 (i).

In order to check (iv), consider∫ T

0
|κ(s, u) − κ(s, u1)|ds =

∫ T

0
|κ0(s, u)ϕ(s, u) − κ0(s, u1)ϕ(s, u1)|ds

≤
∫ T

0
κ0(s, u)|ϕ(s, u) − ϕ(s, u1)|ds +

∫ T

0
ϕ(s, u1)|κ0(s, u) − κ0(s, u1)|ds.

Again, Lemma 1 in the part that states that κ0(s, u) is bounded, together with Lemma 2
(ii), guarantees that the first term converges to zero as u → u1. Furthermore, Lemma 1
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in the part that states that κ0 ∈ C([0, T ]2
0) guarantees that κ0(s, u) converges to

κ0(s, u1) as u → u1 for a.e. s ∈ [0, T ]. Since

ϕ(s, u1)|κ0(s, u) − κ0(s, u1)| ≤ Cϕ(s, u1) ∈ L1[0, T ],
the proof follows from the Lebesgue dominated convergence theorem.

Remark 2. In the case where H1 = 1
2 , the kernel κ(s, u) can be simplified to

κ(s, u) = H2(2H2 − 1)|s − u|2H2−2,

and Eq. (8) coincides with (10). Indeed, let H1 = 1
2 . Then the function κ0(s, u) equals

H2(2H2 − 1). Consider the function Φ(s, v) defined by (18):

Φ(t, s) = tH2− 1
2

(∫ 1

0

(
1 − t − s

t
z

)H2− 1
2

(1 − z)H2− 3
2 dz

+ t − s

t

∫ 1

0
(1 − z)H2− 1

2

(
1 − t − s

t
z

)H2− 3
2

dz

)

= − tH2− 1
2

H2 − 1
2

∫ 1

0

((
1 − t − s

t
z

)H2− 1
2

(1 − z)H2− 1
2

)′

z

dz = tH2− 1
2

H2 − 1
2

.

(29)

Combining (28) and (29), we get

κ0(s, u)

= (
βH2(H2 − H1)

)2
∫ 1

0
(1 − t)1−2H2 tH2− 3

2 Φ

(
1,

u(1 − t)

s − ut

)
Φ

(
1,

s(1 − t)

s − ut

)
dt

= β2
H2

∫ 1

0
(1 − t)1−2H2 tH2− 3

2 dt = β2
H2

B

(
H2 − 1

2
, 2 − 2H2

)
= H2(2H2 − 1).

Theorem 1. There exists a sequence Tn → ∞ such that the integral equation (11)
has a unique solution hTn(u) ∈ C[0, Tn].
Proof. We work on the space C([0, T ]). Recall that (11) is of the form

hT (u) + 1

γ 2
H1

∫ T

0
hT (s)κ(s, u)ds = 1, u ∈ [0, T ].

The corresponding homogeneous equation is of the form∫ T

0
hT (s)κ(s, u)ds = −γ 2

H1
hT (u), u ∈ [0, T ]. (30)

Since the integral operator κ is compact, classical Fredholm theory states that
Eq. (11) has a unique solution if and only if the corresponding homogeneous equation
(30) has only the trivial solution. Now, it is easy to see that, for any a > 0, the
following equalities hold:

κ0(sa, ua) = κ0(s, u),
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ϕ(sa, ua) = a2H2−2H1−1ϕ(s, u).

Consequently, κ(sa, ua) = a2H2−2H1−1κ(s, u). We can change the variable of
integration s = s′T and put u = u′T in (30). Therefore, the equation will be reduced
to the equivalent form∫ 1

0
hT (T s)κ(s, u)ds = −γ 2

H1
T 2H1−2H2hT (T u), u ∈ [0, 1].

Denote λ = −γ 2
H1

T 2H1−2H2 . Note that λ depends continuously on T . At the same
time, the compact operator κ has no more than countably many eigenvalues. There-
fore, we can take the sequence Tn → ∞ in such a way that

λn = −γ 2
H1

T 2H1−2H2
n

will be not an eigenvalue. Consequently, the homogeneous equation has only the
trivial solution, whence the proof follows.

4 Statistical results: The form of a maximum likelihood estimator, its consis-
tency, and asymptotic normality

The following result establishes the way MLE for the drift parameter θ can be calcu-
lated. The proof of the theorem is the same as the proof of the corresponding state-
ment from [6], so we omit it.

Theorem 2. The likelihood function is of the form

LTn(X, θ) = exp

{
θδH1N(Tn) − 1

2
θ2δ2

H1
〈N〉(Tn)

}
,

and the maximum likelihood estimator is of the form

θ̂ (Tn) = N(Tn)

δH1〈N〉(Tn)
,

where N(t) = E0(X1(t)|FX
t ) is a square-integrable Gaussian FX

t -martingale,

N(Tn) = ∫ Tn

0 hTn(t)dX(t) with hTn(t)t
1
2 −H1 ∈ L2[0, Tn], hTn(t) is a unique solution

to (11), and 〈N〉(Tn) = γ 2
H1

∫ Tn

0 hTn(t)t
1−2H1dt.

The next two results establish basic properties of the estimator; their proofs repeat
the proofs of the corresponding statements from [6] and [3].

Theorem 3. The estimator θ̂Tn is strongly consistent, and

lim
Tn→∞ Tn

2−2H2Eθ(θ̂Tn − θ)2 = 1∫ 1
0 h0(u)u

1
2 −H1du

,

where the function h0(u) is the solution of the integral equation

κh(u) = γ 2
H1

.

Theorem 4. The estimator θ̂Tn is unbiased, and the corresponding estimation error
is normal

θ̂Tn − θ ∼ N

(
0,

1∫ Tn

0 hTn(s)s
1−2H1ds

)
.
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A Appendix. Some properties of the hypergeometric function

Recall the integral representation of the Gauss hypergeometric function and some of
its properties.

For c > b > 0 and x < 1, the Gauss hypergeometric function is defined as the
integral (see [1], formula 15.3.1)

F(a, b, c; x) = 2F1(a, b, c; x) = 1

B(b, c − b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − xt)−adt.

(31)
For the same values of parameters, the following equality holds (see [1], 15.3.4):

F(a, b, c; x) = (1 − x)−aF

(
a, c − b, c; x

x − 1

)
, (32)

Evidently, F(a, b, c; x) at x = 1 is correctly defined for c −a −b > 1 and in this
case equals

F(a, b, c; 1) = Γ (c)Γ (c − a − b)

Γ (c − a)Γ (c − b)
. (33)

Finally, it is easy to check with the help of (31) that

F(a, b, c; 0) = F(0, b, c; x) = 1. (34)

The following result gives upper bounds for the hypergeometric function (see [5]
Theorem 4 and 5, respectively).

Proposition 1. (i) For c > b > 1, x > 0, and 0 < a ≤ 1, we have the inequality

F(a, b, c; −x) <
1

(1 + x(b − 1)/(c − 1))a
.

(ii) For 0 < a ≤ 1, b > 0, c − b > 1, and x ∈ (0, 1), we have the inequality

F(a, b, c; x) <
1

(1 − b
c−1x)a

.
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