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Abstract Let (ξ1, η1), (ξ2, η2), . . . be independent identically distributed N
2-valued ran-

dom vectors with arbitrarily dependent components. The sequence (�k)k∈N defined by �k =
�k−1 · ηk , where �0 = 1 and �k = ξ1 · . . . · ξk for k ∈ N, is called a multiplicative per-
turbed random walk. Arithmetic properties of the random sets {�1, �2, . . . , �k} ⊂ N and
{�1, �2, . . . , �k} ⊂ N, k ∈ N, are studied. In particular, distributional limit theorems for
their prime counts and for the least common multiple are derived.

Keywords Least common multiple, multiplicative perturbed random walk, prime counts
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1 Introduction

Let (ξ1, η1), (ξ2, η2), . . . be independent copies of an N
2-valued random vector (ξ, η)

with arbitrarily dependent components. Denote by (�k)k∈N0 (as usual, N0 := N∪{0})
the standard multiplicative random walk defined by

�0 := 1, �k = ξ1 · ξ2 · · · ξk, k ∈ N.
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A multiplicative perturbed random walk is the sequence (�k)k∈N given by

�k := �k−1 · ηk, k ∈ N.

Note that if P{η = ξ} = 1, then �k = �k for all k ∈ N. If P{ξ = 1} = 1,
then (�k)k∈N is just a sequence of independent copies of a random variable η. In
this article we investigate some arithmetic properties of the random sets (�k)k∈N and
(�k)k∈N.

To set the scene, we introduce first some necessary notation. Let P denote the set
of prime numbers. For an integer n ∈ N and p ∈ P , let λp(n) denote the multiplicity
of prime p in the prime decomposition of n, that is,

n =
∏
p∈P

pλp(n).

For every p ∈ P , the function λp : N �→ N0 is totally additive in the sense that

λp(mn) = λp(m) + λp(n), p ∈ P, m, n ∈ N.

The set of functions (λp)p∈P is a basic brick from which many other arithmetic
functions can be constructed. For example, with GCD (A) and LCM (A) denoting the
greatest common divisor and the least common multiple of a set A ⊂ N, respectively,
we have

GCD (A) =
∏
p∈P

pminn∈A λp(n) and LCM (A) =
∏
p∈P

pmaxn∈A λp(n).

The listed arithmetic functions applied either to A = {�1, . . . ,�n} or A =
{�1, . . . ,�n} are the main objects of investigation in the present paper. From the
additivity of λp we infer

Sk(p) := λp(�k) =
k∑

j=1

λp(ξj ), p ∈ P, k ∈ N0, (1)

and

Tk(p) := λp(�k) =
k−1∑
j=1

λp(ξj ) + λp(ηk), p ∈ P, k ∈ N. (2)

Fix any p ∈ P . Formulae (1) and (2) demonstrate that S(p) := (Sk(p))k∈N0 is a
standard additive random walk with the generic step λp(ξ), whereas the sequence
T (p) := (Tk(p))k∈N is a particular instance of an additive perturbed random walk,
see [6], generated by the pair (λp(ξ), λp(η)).

2 Main results

2.1 Distributional properties of the prime counts (λp(ξ), λp(η))

As is suggested by (1) and (2) the first step in the analysis of S(p) and T (p) should be
the derivation of the joint distribution (λp(ξ), λp(η))p∈P . The next lemma confirms



Arithmetic properties of multiplicative integer-valued perturbed random walks 135

that the finite-dimensional distributions of the infinite vector (λp(ξ), λp(η))p∈P , are
expressible via the probability mass function of (ξ, η). However, the obtained formu-
lae are not easy to handle except some special cases. For i, j ∈ N, put

ui := P{ξ = i}, vj := P{η = j}, wi,j := P{ξ = i, η = j}.
Lemma 1. Fix p ∈ P and nonnegative integers (kq)q∈P,q≤p and (�q)q∈P,q≤p . Then

P
{
λq(ξ) ≥ kq, λq(η) ≥ �q, q ∈ P, q ≤ p

} =
∞∑

i,j=1

wKi,Lj ,

where K := ∏
q≤p,q∈P qkq and L := ∏

q≤p,q∈P q�q .

Proof. This follows from

P
{
λq(ξ) ≥ kq, λq(η) ≥ �q, q ∈ P, q ≤ p

}

= P

{ ∏
q≤p,q∈P

qkq divides ξ,
∏

q≤p,q∈P
q�q divides η

}
=

∞∑
i,j=1

wKi,Lj .

Obviously, if ξ and η are independent, then

∞∑
i,j=1

wKi,Lj =
( ∞∑

i=1

uKi

)( ∞∑
j=1

vLj

)
.

We proceed with the series of examples.

Example 1. For α > 1, let P{ξ = k} = (ζ(α))−1k−α , k ∈ N, where ζ is the Riemann
zeta-function. For k ∈ N, p1, . . . , pk ∈ P and j1, . . . , jk ∈ N0 we have

P
{
λp1(ξ) ≥ j1, . . . , λpk

(ξ) ≥ jk

} = P
{
p

j1
1 · · ·pjk

k divides ξ
}

=
∞∑
i=1

P
{
ξ = (

p
j1
1 · · · pjk

k

)
i
} = (

p
j1
1 · · ·pjk

k

)−α = p
−αj1
1 · · ·p−αjk

k .

Thus, (λp(ξ))p∈P are mutually independent and λp(ξ) has a geometric distribution
on N0 with parameter p−α , for every fixed p ∈ P .

Example 2. For β ∈ (0, 1), let P{ξ = k} = βk−1(1 − β), k ∈ N. Then

P
{
λp(ξ) ≥ k

} = 1 − β

β

∞∑
j=1

βpkj = (1 − β)(βpk−1)

1 − βpk
, k ∈ N0.

Example 3. Let Poi(λ) be a random variable with the Poisson distribution with pa-
rameter λ and put

P{ξ = k} = P
{
Poi(λ) = k|Poi(λ) ≥ 1

} = (
eλ − 1

)−1
λk/k!, k ∈ N.
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Then

P
{
λp(ξ) ≥ k

} = (
eλ − 1

)−1
∞∑

j=1

λpkj /
(
pkj

)!

=
(

0Fpk

(
; 1

pk
,

2

pk
, . . . ,

pk − 1

pk
;
(

λ

pk

)pk)
− 1

)
, (3)

where 0Fpk is the generalized hypergeometric function, see Chapter 16 in [10].

In all examples above, the distribution of λp(ξ) for every fixed p ∈ P is extremely
light-tailed. It is not that difficult to construct ‘weird’ distributions where all λp(ξ)

have infinite expectations.

Example 4. Let (gp)p∈P be any probability distribution supported by P , gp > 0,
and (tk)k∈N0 any probability distribution on N such that

∑∞
k=1 ktk = ∞ and tk > 0.

Define a probability distribution h on Q := ⋃
p∈P {p, p2, . . .} by

h
({

pk
}) = gptk, p ∈ P, k ∈ N.

If ξ is a random variable with distribution h, then

P
{
λp(ξ) ≥ k

} = gp

∞∑
j=k

tj , k ∈ N, p ∈ P,

which implies E[λp(ξ)] = gp

∑∞
k=1 ktk = ∞, p ∈ P .

This example can be modified by taking g := ∑
p∈P gp < 1 and charging all

points of N \ Q (this set contains 1 and all integers having at least two different
prime factors) with arbitrary positive masses of the total weight 1 − g. The obtained
probability distribution charges all points of N and still possesses the property that all
λp’s have infinite expectations.

Let X be a random variable taking values in N. Since

log X =
∑
p∈P

λp(X) log p,

we conclude that E[(λp(X))k] < ∞, for all p ∈ P , whenever E[logk X] < ∞,
k ∈ N. It is also clear that the converse implication is false in general. However, when
k = 1 the inequality E[log X] < ∞ is in fact equivalent to

∑
p∈P E[λp(X)] log p <

∞. As we have seen in the above examples, checking that E[(λp(X))k] < ∞ might
be a much more difficult task than proving a stronger assumption E[logk X] < ∞.
Thus, we shall mostly work under moment conditions on log ξ and log η.

Our standing assumption throughout the article is

μξ := E[log ξ ] < ∞, (4)

which, by the above reasoning, implies E[λp(ξ)] < ∞, p ∈ P .
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2.2 Limit theorems for S(p) and T (p)

From Donsker’s invariance principle we immediately obtain the following proposi-
tion. Let D := D([0,∞),R) be the Skorokhod space endowed with the standard
J1-topology.

Proposition 1. Assume that E[log2 ξ ] ∈ (0,∞). Then,
((

S�ut�(p) − utE[λp(ξ)]√
t

)
u≥0

)
p∈P

=⇒ ((
Wp(u)

)
u≥0

)
p∈P , t → ∞,

on the product space DN, where, for all n ∈ N and all p1 < p2 < · · · < pn,
pi ∈ P , i ≤ n, ((Wp1(u))u≥0, . . . , (Wpn(u))u≥0) is an n-dimensional centered
Wiener process with covariance matrix C = ‖Ci, j‖1≤i,j≤n given by Ci, j = Cj, i =
Cov (λpi

(ξ), λpj
(ξ)).

According to the proof of Proposition 1.3.13 in [6], see pp. 28–29 therein, the
following holds true for the perturbed random walks T (p), p ∈ P .

Proposition 2. Assume that E[log2 ξ ] ∈ (0,∞) and

lim
t→∞ t2

P
{
λp(η) ≥ t

} = 0, p ∈ P . (5)

Then,((
T�ut�(p) − utE[λp(ξ)]√

t

)
u≥0

)
p∈P

=⇒ ((
Wp(u)

)
u≥0

)
p∈P , t → ∞,

on the product space DN.

Remark 1. Since P{λp(η) log p ≥ t} ≤ P{log η ≥ t}, the condition

lim
t→∞ t2

P{log η ≥ t} = 0 (6)

is clearly sufficient for (5).

From the continuous mapping theorem under the assumptions of Proposition 2
we infer ((

max1≤k≤�ut�(Tk(p) − kE[λp(ξ)])√
t

)
u≥0

)
p∈P

=⇒
((

sup
0≤v≤u

Wp(v)
)

u≥0

)
p∈P , t → ∞, (7)

see Proposition 1.3.13 in [6].
Formula (7), for a fixed p ∈ P , belongs to the realm of limit theorems for the

maximum of a single additive perturbed random walk. This circle of problems is
well-understood, see Section 1.3.3 in [6] and [7], in the situation when the underlying
additive standard random walk is centered and attracted to a stable Lévy process. In
our setting the perturbed random walks (Tk(p))k∈N and (Tk(q))k∈N are dependent
whenever p, q ∈ P , p �= q, which make derivation of the joint limit theorems harder
and leads to various asymptotic regimes.
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Note that (5) implies E[λp(η)] < ∞ and (6) implies E[log η] < ∞. Theorem 5
below tells us that under such moment conditions and assuming also E[log2 ξ ] < ∞
the maxima max1≤k≤n Tk(p), p ∈ P , of noncentered perturbed random walks T (p)

have the same behavior as Sn(p), p ∈ P as n → ∞.

Theorem 5. Assume that E[log2 ξ ] < ∞ and E[λp(η)] < ∞, p ∈ P . Suppose
further that

P{ξ is divisible by p} = P
{
λp(ξ) > 0

}
> 0, p ∈ P . (8)

Then, as t → ∞,
((

max1≤k≤�tu� Tk(p) − E[λp(ξ)]tu
t1/2

)
u≥0

)
p∈P

f.d.d.−→ ((
Wp(u)

)
u≥0

)
p∈P . (9)

Moreover, if also (5) holds for all p ∈ P , then (9) holds on the product space DN.

Remark 2. If (8) holds only for some P0 ⊆ P , then (9) holds with P0 instead of P .

In the next result we shall assume that η dominates ξ in a sense that the asymptotic
behavior of max1≤k≤n Tk(p) is regulated by the perturbations (λp(ηk))k≤n for all
p ∈ P0, where P0 is a finite subset of prime numbers and those p’s dominate all
other primes.

Theorem 6. Assume (4). Suppose further that there exists a finite set P0 ⊆ P , d :=
|P0|, such that the distributional tail of (λp(η))p∈P0 is regularly varying at infinity in
the following sense. For some positive function (a(t))t>0 and a measure ν satisfying
ν({x ∈ R

d : ‖x‖ ≥ r}) = c · r−α , c > 0, α ∈ (0, 1), it holds

tP
{(

a(t)
)−1(

λp(η)
)
p∈P0

∈ ·} v−→ ν(·), t → ∞, (10)

on the space of locally finite measures on (0,∞]d endowed with the vague topology.
Then((

max1≤k≤�tu� Tk(p)

a(t)

)
u≥0

)
p∈P0

f.d.d.−→ ((
Mp(u)

)
u≥0

)
p∈P0

, t → ∞, (11)

where ((Mp(u))u≥0)p∈P0 is a multivariate extreme process defined by
(
Mp(u)

)
p∈P0

= sup
k: tk≤u

yk, u ≥ 0. (12)

Here the pairs (tk, yk) are the atoms of a Poisson point process on [0,∞) × (0,∞]d
with the intensity measure LEB⊗ν and the supremum is taken coordinatewise. More-
over, suppose that E[λp(η)] < ∞, for p ∈ P \ P0. Then

((
max1≤k≤�tu� Tk(p)

a(t)

)
u≥0

)
p∈P\P0

f.d.d.−→ 0, t → ∞. (13)

We shall deduce Theorems 5 and 6 in Section 3 by proving general limit results
for coupled perturbed random walks.
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2.3 Limit theorems for the LCM

The results from the previous section will be applied below to the analysis of

Pn := LCM
({�1,�2, . . . , �n}

)
and Tn := LCM

({�1,�2, . . . , �n}
)
.

A moment’s reflection shows that the analysis of Pn is trivial. Indeed, by definition,
�n−1 divides �n and thereupon Pn = �n for n ∈ N. Thus, assuming that σ 2

ξ :=
Var (log ξ) ∈ (0,∞), an application of the Donsker functional limit theorem yields

(
logP�tu� − μξ tu

t1/2

)
u≥0

=⇒ (
σξW(u)

)
u≥0, t → ∞, (14)

on the Skorokhod space D, where (W(u))u≥0 is a standard Brownian motion and
μξ = E[log ξ ] was defined in (4).

A simple structure of the sequence (Pn)n∈N breaks down completely upon intro-
ducing the perturbations (ηk), which makes the analysis of (Tn)n∈N a much harder
problem. As an illustration, consider the case ξ = 1 in which

Tn = LCM (η1, . . . , ηn).

Thus, the problem encompasses, as a particular case, the investigation of the LCM of
an independent sample. This itself constitutes a highly nontrivial challenge. Note that

logTn = log
∏
p∈P

pmax1≤k≤n (λp(ξ1)+···+λp(ξk−1)+λp(ηk)) =
∑
p∈P

max
1≤k≤n

Tk(p) log p,

which shows that the asymptotics of Tn is intimately connected with the behavior of
max1≤k≤n Tk(p), p ∈ P .

As one can guess from Theorem 5 in a ‘typical’ situation relation (14) holds
with logT�tu� replacing logP�tu�. The following heuristics suggest the right form of
assumptions ensuring that perturbations (ηk)k∈N have an asymptotically negligible
impact on logTn. Take a prime p ∈ P . Its contribution to logTn (up to a factor
log p) is max1≤k≤n Tk(p). According to Theorem 5, this maximum is asymptotically
the same as Sn(p). However, as p gets large, the mean E[λp(ξ)] of the random walk
Sn−1(p) becomes small because of the identity

∑
p∈P

E
[
λp(ξ)

]
log p = E[log ξ ] < ∞.

Thus, for large p ∈ P , the remainder max1≤k≤n Tk(p) − Sn−1(p) can, in principle,
become larger than Sn−1(p) itself if the tail of λp(η) is sufficiently heavy. In order to
rule out such a possibility, we introduce the deterministic sets

P1(n) := {
p ∈ P : P{

λp(ξ) > 0
} ≥ n−1/2} and P2(n) := P \ P1(n), (15)

and bound the rate of growth of max1≤k≤n λp(ηk) for all p ∈ P2(n). It is important
to note that under the assumption (8) it holds

minP2(n) = min
{
p ∈ P : p ∈ P2(n)

}
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= min
{
p ∈ P : P{

λp(ξ) > 0
}

< n−1/2} → ∞, n → ∞.

Therefore, if E[log ξ ] < ∞ and (8) holds, then

lim
n→∞

∑
p∈P2(n)

E
[
λp(ξ)

]
log p = 0. (16)

Theorem 7. Assume E[log2 ξ ] < ∞, E[log η] < ∞, (8) and the following two
conditions: ∑

p∈P
E

[((
λp(η) − λp(ξ)

)+)2] log p < ∞ (17)

and ∑
p∈P2(n)

E
[(

λp(η) − λp(ξ)
)+]

log p = o
(
n−1/2), n → ∞. (18)

Then (
logT�tu� − μξ tu

t1/2

)
u≥0

f.d.d.−→ (
σξW(u)

)
u≥0, t → ∞, (19)

where μξ = E[log ξ ] < ∞, σ 2
ξ = Var [log ξ ] and (W(u))u≥0 is a standard Brownian

motion.

Remark 3. If E[log2 η] < ∞, then (17) holds true. Indeed, since we assume
E[log2 ξ ] < ∞,

E

[∑
p∈P

((
λp(η) − λp(ξ)

)+)2 log p

]
≤ E

[∑
p∈P

(
λ2

p(η) + λ2
p(ξ)

)
log p

]

≤ 1

log 2
E

[(∑
p∈P

λp(η) log p

)2]
+ E

[(∑
p∈P

λp(ξ) log p

)2]

= 1

log 2

(
E

[
log2 η

] + E
[
log2 ξ

])
< ∞.

The condition (18) can be replaced by a stronger one which only involves the distri-
bution of η, namely

∑
p∈P2(n)

E
[
λp(η)

]
log p = o

(
n−1/2), n → ∞. (20)

Taking into account (16) and the fact that E[log η] < ∞, the assumption (20) is
nothing else but a condition of the speed of convergence of the series

∑
p∈P

E
[
λp(η)

]
log p = E[log η].

Example 8. In the settings of Example 1, let ξ and η be arbitrarily dependent with

P{ξ = k} = 1

ζ(α)kα
, P{η = k} = 1

ζ(β)kβ
, k ∈ N,
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for some α, β > 1. Note that E[log2 ξ ] < ∞ and E[log2 η] < ∞. Direct calculations
show that

P1(n) = {
p ∈ P : p−α ≥ n−1/2} = {

p ∈ P : p ≤ n1/(2α)
}
,

P2(n) = {
p ∈ P : p > n1/(2α)

}
.

From the chain of relations

E
[
λp(η)

] =
∑
j≥1

P
{
λp(η) ≥ j

} =
∑
j≥1

p−βj = p−β

1 − p−β
≤ 2p−β,

and using the notation π(x) for the number of primes smaller than x, we obtain

∑
p∈P2(n)

E
[
λp(η)

]
log p ≤ 2

∑
p∈P,p>n1/(2α)

log p

pβ
= 2

∫
(n1/(2α),∞)

log x

xβ
dπ(x)

∼ 2
∫ ∞

n1/(2α)

log x

xβ

dx

log x
= 2n(1−β)/(2α)

β − 1
, n → ∞.

Here the asymptotic equivalence follows from the prime number theorem and inte-
gration by parts, see, for example Eq. (16) in [3]. Thus, (20) holds if

1

2
+ 1 − β

2α
< 0 ⇐⇒ α + 1 < β.

In the settings of Theorem 6 the situation is much simpler in a sense that almost
no extra assumptions are needed to derive a limit theorem for Tn.

Theorem 9. Under the same assumptions as in Theorem 6 and assuming additionally
that ∑

p∈P\P0

E
[
λp(η)

]
log p < ∞, (21)

it holds (
logT�tu�

a(t)

)
u≥0

f.d.d.−→
( ∑

p∈P0

Mp(u) log p

)
u≥0

, t → ∞. (22)

Note that in Theorem 9 it is allowed to take ξ = 1, which yields the following
limit theorem for the LCM of an independent integer-valued random variables.

Corollary 1. Under the same assumptions on η as in Theorem 6, it holds(
log LCM (η1, η2, . . . , η�tu�)

a(t)

)
u≥0

f.d.d.−→
( ∑

p∈P0

Mp(u) log p

)
u≥0

, t → ∞.

Remark 4. The results presented in Theorems 7 and 9 constitute a contribution to
a popular topic in probabilistic number theory, namely, the asymptotic analysis of
the LCM of various random sets. For random sets comprised of independent ran-
dom variables uniformly distributed on {1, 2, . . . , n} this problem has been addressed
in [2–5, 9]. Some models with a more sophisticated dependence structure have been
studied [1] and [8].
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3 Limit theorems for coupled perturbed random walks

Theorems 5 and 6 will be derived from general limit theorems for the maxima of
arbitrary additive perturbed random walks indexed by some parameters ranging in a
countable set in the situation when the underlying additive standard random walks
are positively divergent and attracted to a Brownian motion.

Let A be a countable or finite set of real numbers and
((

X1(r), Y1(r)
))

r∈A,
((

X2(r), Y2(r)
))

r∈A, . . .

be independent copies of an R
2×|A| random vector (X(r), Y (r))r∈A with arbitrarily

dependent components. For each r ∈ A, the sequence (S∗
k (r))k∈N0 given by

S∗
0 (r) := 0, S∗

k (r) := X1(r) + · · · + Xk(r), k ∈ N,

is an additive standard random walk. For each r ∈ A, the sequence (T ∗
k (r))k∈N de-

fined by
T ∗

k (r) := S∗
k−1(r) + Yk(r), k ∈ N,

is an additive perturbed random walk. The sequence ((T ∗
k (r))k∈N)r∈A is a collection

of (generally) dependent additive perturbed random walks.

Proposition 3. Assume that, for each r ∈ A, μ(r) :=E[X(r)]∈(0,∞), Var [X(r)] ∈
[0,∞) and E[Y(r)] < ∞. Then
((

max1≤k≤�tu� T ∗
k (r) − μ(r)tu

t1/2

)
u≥0

)
r∈A

f.d.d.−→ ((
Wr(u)

)
u≥0

)
r∈A, t → ∞,

(23)
where, for all n ∈ N and arbitrary r1 < r2 < · · · < rn with ri ∈ A, i ≤ n,
((Wr1(u))u≥0, . . . , (Wrn(u))u≥0) is an n-dimensional centered Wiener process
with covariance matrix C = ‖Ci, j‖1≤i,j≤n with the entries Ci, j = Cj, i =
Cov(X(ri), X(rj )).

Proof. We shall prove an equivalent statement that, as t → ∞,

((
max0≤k≤�tu� T ∗

k+1(r) − μ(r)tu

t1/2

)
u≥0

)
r∈A

f.d.d.−→ ((
Wr(u)

)
u≥0

)
r∈A,

which differs from (23) by a shift of the subscript k. By the multidimensional Donsker
theorem,

((
S∗�tu�(r) − μ(r)tu

t1/2

)
u≥0

)
r∈A

=⇒ ((
Wr(u)

)
u≥0

)
r∈A, t → ∞, (24)

in the product topology of DN. Fix any r ∈ A and write

max
0≤k≤�tu� T ∗

k+1(r) − μ(r)tu

= max
0≤k≤�tu�

(
S∗

k (r) − S∗�tu�(r) + Yk+1(r)
) + S∗�tu�(r) − μ(r)tu. (25)
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In view of (24) the proof is complete once we can show that

n−1/2
(

max
0≤k≤n

(
S∗

k (r) − S∗
n(r) + Yk+1(r)

)) P→ 0, n → ∞. (26)

Let (X0(r), Y0(r)) be a copy of (X(r), Y (r)) which is independent of the vector
(Xk(r), Yk(r))k∈N. Since the collection

((
X1(r), Y1(r)

)
, . . . ,

(
Xn+1(r), Yn+1(r)

))
has the same distribution as

((
Xn(r), Yn(r)

)
, . . . ,

(
X0(r), Y0(r)

))
,

the variable
max

0≤k≤n

(
S∗

k (r) − S∗
n(r) + Yk+1(r)

)

has the same distribution as

max
(
Y0(r), max

0≤k≤n−1

(−S∗
k (r) + Yk+1(r) − Xk+1(r)

))
.

By assumption, E(−S∗
1 (r)) ∈ (−∞, 0) and E(Y (r) − X(r))+ < ∞. Hence, by

Theorem 1.2.1 and Remark 1.2.3 in [6],

lim
k→∞

(−S∗
k (r) + Yk+1(r) − Xk+1(r)

) = −∞ a.s.

As a consequence, the a.s. limit

lim
n→∞ max(Y0(r), max

0≤k≤n−1

(−S∗
k (r) + Yk+1(r) − Xk+1(r)

)
= max(Y0(r), max

k≥0

(−S∗
k (r) + Yk+1(r) − Xk+1(r)

)

is a.s. finite. This completes the proof of (26).

Remark 5. Proposition 3 tells us that fluctuations of max1≤k≤�tu� T ∗
k (r) on the level

of finite-dimensional distributions are driven by the Brownian fluctuations of S∗�tu�(r).
According to formula (25), a functional version of this statement would be true if we
could check that, for every fixed T > 0,

t−1/2 sup
u∈[0, T ]

max
0≤k≤�tu�

(
S∗

k (r) − S∗�tu�(r) + Yk+1(r)
) P→ 0, t → ∞.

But the left-hand side is bounded from below by

t−1/2 sup
u∈[0, T ]

Y�tu�+1(r) = t−1/2 max
0≤k≤�T t�+1

Yk(r).

Under the sole assumption E[Y(r)] < ∞ this maximum does not converge to zero
in probability, as t → ∞. Thus, under the standing assumptions of Proposition 3 the
functional convergence does not hold.
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Proof of Theorem 5. To deduce the finite-dimensional convergence (9) we apply
Proposition 3 with A = P , X(p) = λp(ξ) and Y(p) = λp(η). The assump-
tion (8) in conjunction with E[log2 ξ ] < ∞ implies that E[λp(ξ)] ∈ (0,∞) and
Var [λp(ξ)] ∈ [0,∞), for all p ∈ P .

Suppose that (5) holds true for all p ∈ P . Fix p ∈ P , t > 0, and note that by
the subadditivity of the supremum and the fact that (Sk(p))k∈N0 is nondecreasing we
have

S�tu�−1(p) ≤ max
1≤k≤�tu� Tk(p) ≤ S�tu�−1(p) + max

1≤k≤�tu� λp(ηk), u ≥ 0. (27)

Assumption (5) implies that, for every fixed T > 0,

t−1/2 sup
u∈[0,T ]

max
1≤k≤�tu� λp(ηk) = t−1/2 max

1≤k≤�tT � λp(ηk)
P→ 0, t → ∞.

By Proposition 1 and taking into account (27) this means that (9) holds true on the
product space DN.

Proposition 4. Assume E[X(r)] < ∞, r ∈ A. Assume further that there exists a finite
set A0 ⊆ A, d := |A0|, such that the distributional tail of (Y (r))r∈A0 is regularly
varying at infinity in the following sense. For some positive function (a(t))t>0 and a
measure ν satisfying ν({x ∈ R

d : ‖x‖ ≥ r}) = c · r−α , c > 0, α ∈ (0, 1), it holds

tP
{(

a(t)
)−1(

Y(r)
)
r∈A0

∈ ·} v−→ ν(·), t → ∞, (28)

on the space of locally finite measures on (0,∞]d endowed with the vague topology.
Then((

max1≤k≤�tu� T ∗
k (r)

a(t)

)
u≥0

)
r∈A0

f.d.d.−→ ((
Mr(u)

)
u≥0

)
r∈A0

, t → ∞, (29)

where ((Mr(u))u≥0)r∈A0 is defined as in (12). If E[|Y(r)|] < ∞, for r ∈ A \ A0,
then also ((

max1≤k≤�tu� T ∗
k (r)

a(t)

)
u≥0

)
r∈A\A0

f.d.d.−→ 0, t → ∞. (30)

Proof. According to Corollary 5.18 in [11]
((

max1≤k≤�tu� Yk(r)

a(t)

)
u≥0

)
r∈A0

=⇒ ((
Mr(u)

)
u≥0

)
r∈A0

, t → ∞,

in the product topology of DN. The function (a(t))t≥0 is regularly varying at infinity
with index 1/α > 1. Thus, by the law of large numbers, for all r ∈ A,

(
min1≤k≤�tu� S∗

k−1(r)

a(t)

)
u≥0

f.d.d.−→ 0, t → ∞, (31)

(
max1≤k≤�tu� S∗

k−1(r)

a(t)

)
u≥0

f.d.d.−→ 0, t → ∞, (32)



Arithmetic properties of multiplicative integer-valued perturbed random walks 145

and (29) follows from the inequalities

min
1≤k≤�tu� S∗

k−1(r) + max
1≤k≤�tu� Yk(r) ≤ max

1≤k≤�tu� T ∗
k (r)

≤ max
1≤k≤�tu� S∗

k−1(r) + max
1≤k≤�tu� Yk(r).

In view of (31) and (32), to prove (30) it suffices to check that
((

max1≤k≤�tu� Yk(r)

a(t)

)
u≥0

)
f.d.d.−→ 0, t → ∞,

for every fixed r ∈ A \ A0. This, in turn, follows from

Yn(r)

n

a.s.−→ 0, n → ∞, r ∈ A \ A0,

which is a consequence of the assumption E[|Y(r)|] < ∞, r ∈ A \ A0, and the
Borel–Cantelli lemma.

Proof of Theorem 6. Follows immediately from Proposition 4 applied with A = P ,
X(p) = λp(ξ) and Y(p) = λp(η).

4 Proof of Theorem 7

We aim at proving that∑
p∈P (max1≤k≤n Tk(p) − Sn−1(p)) log p√

n

P−→ 0, n → ∞, (33)

which together with the relation
∑
p∈P

Sn(p) log p = log �n = logPn, n ∈ N,

implies Theorem 7 by the Slutsky lemma and (14).
Let (ξ0, η0) be an independent copy of (ξ, η) which is also independent of

(ξn, ηn)n∈N. By the same reasoning as we have used in the proof of (26) we obtain
(

max
1≤k≤n

Tk(p) − Sn−1(p)
)

p∈P
d=

(
max

(
λp(η0), max

1≤k<n

(
λp(ηk) − λp(ξk) − Sk−1(p)

)))
p∈P . (34)

Taking into account ∑
p∈P

λp(η0) log p = log η0,

we see that (33) is a consequence of
∑

p∈P max1≤k<n(λp(ηk) − λp(ξk) − Sk−1(p))+ log p√
n

P−→ 0, n → ∞. (35)
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Since, for every fixed p ∈ P ,

max
k≥1

(
λp(ηk) − λp(ξk) − Sk−1(p)

)+
< ∞ a.s. (36)

by assumption (8), it suffices to check that, for every fixed ε > 0,

lim
M→∞ lim sup

n→∞
P

{ ∑
p∈P,p>M

max
1≤k<n

(
λp(ηk) − λp(ξk) − Sk−1(p)

)+ log p > ε
√

n

}
.

(37)
In order to check (37), we divide the sum into two disjoint parts with summations
over P1(n) and P2(n). For the first sum, by Markov’s inequality, we obtain

P

{ ∑
p∈P1(n),p>M

max
1≤k<n

(
λp(ηk) − λp(ξk) − Sk−1(p)

)+ log p > ε
√

n/2

}

≤ 2

ε
√

n

∑
p∈P1(n),p>M

E

(
max

1≤k<n

(
λp(ηk) − λp(ξk) − Sk−1(p)

)+)
log p

≤ 2

ε
√

n

∑
p∈P1(n),p>M

log p
∑
k≥1

E
(
λp(ηk) − λp(ξk) − Sk−1(p)

)+

= 2

ε
√

n

∑
p∈P1(n),p>M

log p
∑
j≥1

P
{
λp(η) − λp(ξ) = j

}∑
k≥1

E
(
j − Sk−1(p)

)+

≤ 2

ε
√

n

∑
p∈P1(n),p>M

log p
∑
j≥1

jP
{
λp(η) − λp(ξ) = j

} ∑
k≥0

P
{
Sk(p) ≤ j

}

≤ 2

ε
√

n

∑
p∈P1(n),p>M

log p
∑
j≥1

jP
{
λp(η) − λp(ξ) = j

} 2j

E[(λp(ξ) ∧ j)] ,

where the last estimate is a consequence of Erickson’s inequality for renewal func-
tions, see Eq. (6.5) in [6]. Further, since for p ∈ P1(n),

E
[(

λp(ξ) ∧ j
)] ≥ P

{
λp(ξ) ≥ 1

} = P
{
λp(ξ) > 0

} ≥ n−1/2,

we obtain

P

{ ∑
p∈P1(n),p>M

max
1≤k<n

(
λp(ηk) − λp(ξk) − Sk−1(p)

)+
log p > ε

√
n/2

}

≤ 4

ε

∑
p∈P1(n),p>M

log pE
[((

λp(η) − λp(ξ)
)+)2]

≤ 4

ε

∑
p∈P,p>M

log pE
[((

λp(η) − λp(ξ)
)+)2]

.

The right-hand side converges to 0, as M → ∞ by (17). For the sum over P2(n) the
derivation is simpler. By Markov’s inequality

P

{ ∑
p∈P2(n),p>M

max
1≤k<n

(
λp(ηk) − λp(ξk) − Sk−1(p)

)+ log p > ε
√

n/2

}
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≤ 2

ε
√

n
E

[ ∑
p∈P2(n),p>M

max
1≤k<n

(
λp(ηk) − λp(ξk) − Sk−1(p)

)+ log p

]

≤ 2n

ε
√

n
E

[ ∑
p∈P2(n),p>M

(
λp(ηk) − λp(ξk)

)+ log p

]
,

and the right-hand side tends to zero as n → ∞ in view of (18). The proof is com-
plete.

5 Proof of Theorem 9

From Theorem 6 with the aid of the continuous mapping theorem we conclude that(∑
p∈P0

max1≤k≤�tu� Tk(p) log p

a(t)

)
u≥0

f.d.d.−→
( ∑

p∈P0

Mp(u) log p

)
u≥0

,

as t → ∞. It suffices to check(∑
p∈P\P0

max1≤k≤�tu� Tk(p) log p

a(t)

)
u≥0

f.d.d.−→ 0, t → ∞. (38)

Since (a(t)) is regularly varying at infinity, (38) follows from∑
p∈P\P0

E[max1≤k≤n Tk(p)] log p

a(n)
→ 0, n → ∞, (39)

by Markov’s inequality. To check the latter, note that∑
p∈P\P0

E

[
max

1≤k≤n
Tk(p)

]
log p ≤

∑
p∈P\P0

E

[
Sn−1(p) + max

1≤k≤n
λp(ηk)

]
log p

≤ (n − 1)
∑

p∈P\P0

E
[
λp(ξ)

]
log p + n

∑
p∈P\P0

E
[
λp(η)

]
log p

≤ (n − 1)E[log ξ ] + n
∑

p∈P\P0

E
[
λp(η)

]
log p = O(n), n → ∞,

where we have used the inequality E[log ξ ] < ∞ and the assumption (21). Using that
α ∈ (0, 1) and (a(t)) is regularly varying at infinity with index 1/α, we obtain (39).
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