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Abstract We prove a quantitative functional central limit theorem for one-hidden-layer neu-
ral networks with generic activation function. Our rates of convergence depend heavily on the
smoothness of the activation function, and they range from logarithmic for nondifferentiable
nonlinearities such as the ReLu to

√
n for highly regular activations. Our main tools are based

on functional versions of the Stein–Malliavin method; in particular, we rely on a quantitative
functional central limit theorem which has been recently established by Bourguin and Campese
[Electron. J. Probab. 25 (2020), 150].

Keywords Quantitative functional central limit theorem, Wiener-chaos expansions, neural
networks, Gaussian processes

2010 MSC 60F17, 68T07, 60G60

∗Corresponding author.

© 2024 The Author(s). Published by VTeX. Open access article under the CC BY license.

www.vmsta.org

https://doi.org/10.15559/23-VMSTA238
mailto:valentina.cammarota@uniroma1.it
mailto:marinucc@mat.uniroma2.it
mailto:salvi@mat.uniroma2.it
mailto:vigogna@mat.uniroma2.it
http://www.ams.org/msc/msc2010.html?s=60F17
http://www.ams.org/msc/msc2010.html?s=68T07
http://www.ams.org/msc/msc2010.html?s=60G60
http://creativecommons.org/licenses/by/4.0/
http://www.vmsta.org
http://www.vtex.lt/en/


86 V. Cammarota et al.

1 Introduction and background

In this paper we shall be concerned with one-hidden-layer neural networks with Gaus-
sian random weights, that is, random fields F : Sd−1 → R of the form

F(x) = 1√
n

n∑
j=1

Vjσ

( d∑
�=1

Wj�x�

)
= 1√

n

n∑
j=1

Vjσ(Wjx), (1)

where Vj ∈ R, Wj ∈ R
1×d are, respectively, random variables and vectors, whose

entries are independent Gaussian with zero mean and variance E[V 2
j ] = E[W 2

j�] = 1,
j = 1, . . . , n, � = 1, . . . , d . Here σ : R →R is an activation function whose proper-
ties and form we will discuss below, the σ(Wjx) represent the artificial neurons, and
n is their number, namely the width of the network. The random field F is defined on
the unit sphere S

d−1, with zero mean and covariance function

S(x1, x2) := E
[
F(x1)F (x2)

] = E
[
σ(Wjx1)σ (Wjx2)

]
, x1, x2 ∈ S

d−1. (2)

The covariance function S also defines a zero mean Gaussian random field Z :
S

d−1 → R, which gives the asymptotic distribution of F for n → ∞ [23].
Our aim is to establish a quantitative functional central limit theorem for the net-

work F as the number of neurons n increases, that is, to study the distance, under
a suitable functional probability metric d2, between F and Z as a function of n. In
particular, we shall obtain bounds of the form

d2(F,Z) ≤ b(n, α),

where limn→∞ b(n, α) → 0 and α is a parameter capturing the smoothness of the
activation σ . For the sake of brevity and simplicity, in this paper we restrict our at-
tention to univariate neural networks; the extension to the multivariate case can be
obtained along similar lines, up to a factor depending on the output dimension.

The distribution of neural networks in the large-width limit is a classical topic
in learning theory, the first result going back to the seminal work [23]. The sub-
ject has gained considerable attention in the machine learning community as it can
shed light on the network training process and draw links with kernel-based learn-
ing. Neural networks are usually optimized by (variants of) gradient descent with a
random initial condition, hence, at initialization, they can be seen as random fields.
In many applications, the Gaussian is in fact the distribution of choice, which leads
(in the shallow case) to the model considered in (1). On the other hand, taking large,
over-parametrized architectures has become an established practice, achieving im-
pressive empirical performance in spite of classical statistical knowledge that would
warn from the risks of overfitting [30, 4]. For these reasons – (Gaussian) random ini-
tialization and over-parametrization – central limit theorems of neural networks to
infinite width provide useful information on the distribution of a typical network at
the beginning of its training. In particular, the Gaussian limit reveals random neural
networks as approximations of kernel methods associated with random-features ker-
nels, that is, kernels of the form (2) [27, 2]. Interestingly, some of this information
may even carry over beyond initialization. Indeed, it has been observed that, under
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a proper scaling limit, the evolution of the network through training is well approxi-
mated by its linearization around the initial condition, and it is governed by a kernel,
called neural tangent kernel, which adds higher-order correlations to the random fea-
tures (2) [18, 9]. In this lazy regime, the weights do not move too much from their
random initialization, and thus the network from its central limit.

As we already recalled, the story of central limit theorems for neural networks
starts with [23], which gave the proof for a single hidden layer. This first result
was later generalized to deep networks, leading to an extensive picture in [15]. Non-
Gaussianity at finite-width perturbations have been investigated studying higher-order
cumulants in [28, 29]. Quantitative central limit theorems in suitable probability met-
rics have been considered only very recently in [3] and [6]. In [3] the authors have
proved a finite-dimensional quantitative central limit theorem for neural networks of
finite depth whose activation functions satisfy a Lipschitz condition; in [6], the au-
thors have proved second-order Poincaré inequalities (which imply one-dimensional
quantitative central limit theorems) for neural networks with C2 activation functions.

Understanding the Gaussian behavior of a neural network allows, for instance,
to investigate the geometry of its landscape, e.g., the cardinality of its minima, the
number of nodal components and many other quantities of interest. However, conver-
gence of the finite-dimensional distributions is in general not sufficient to constraint
such landscapes. For this reason, functional results, that is, bounds on the speed of
convergence in functional spaces, are also of great interest. So far, the literature on
quantitative functional central limit theorems is still limited: [13] and [19] have fo-
cused on one-hidden-layer networks, where the random coefficients in the inner layer
are Gaussian for [13] and uniform on the sphere for [19], whereas the coefficients
in the outer layer follow a Rademacher distribution for both. In particular, the au-
thors in [13] manage to establish rates of convergence in Wasserstein distance which
are (power of) logarithmic for ReLu and other activation functions, and algebraic for
polynomial or very smooth activations, see below for more details. On the other hand,

the rates in [19] for ReLu networks are of the form O(n− 1
2d−1 ); this is algebraic for

fixed values of d , but it can actually converge to zero more slowly than the inverse of
a logarithm if d is of the same order as n, as it is the case for many applications.

1.1 Purpose and plan of the paper

We consider in this work functional quantitative central limit theorems under gen-
eral activations and for coefficients that are Gaussian for both layers, which seems
the most relevant case for applications; our approach is largely based upon very re-
cent results by [8] on the Stein–Malliavin techniques for random elements taking
values in Hilbert spaces (we refer to [24, 25] for the general foundations of this
approach, together with [20, 7, 1, 12] for some more recent references). Our main
results are collected in Section 2, whereas their proofs with a few technical lemmas
are given in Section 4. A short comparison with the existing literature is provided
in Section 3. Appendix A is mainly devoted to background results which we heavily
exploit throughout the paper.

Notation. Hereafter, we will write an ∼ bn for two positive sequences such that
limn→∞ an/bn = 1. The expression A � B means that A ≤ CB for some absolute
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constant C > 0. We will denote by ‖ · ‖ the L2 norm corresponding to the uniform
probability measure on the unit sphere S

d−1.

2 Main results

In order to state our main theorems, we shall need some further assumptions and
notations. We shall always be concerned with activation functions which are square
integrable with respect to the standard Gaussian measure, i.e., such that

E
[
σ 2(ζ )

]
< ∞, ζ ∼ N(0, 1);

this is a truly minimal conditions, which is guaranteed by σ(z) = O(exp(z2/(2 +
δ)) for all δ > 0. For such activation functions, it is well known that the following
Hermite expansion holds, in the L2 sense with respect to the Gaussian measure (see,
e.g., [25]):

σ(x) =
∞∑

q=0

Jq(σ )
Hq(x)√

q! , with Hq(x) := (−1)qe
x2
2

dq

dxq
e− x2

2 ,

where {Hq}q=0,1,2,..., is the well-known sequence of Hermite polynomials. The co-
efficients Jq(σ ), which will play a crucial role in our arguments below, are defined
according to the following (normalized) projection:

Jq(σ ) := 1√
q!E

[
σ(ζ )Hq(ζ )

]
.

In the following, when no confusion is possible, we may drop the dependence of
J on σ for ease of notation. We remark that our notation is to some extent non-
standard, insofar we have introduced the factor 1√

q! inside the projection coefficient

E[σ(ζ )Hq(ζ )]; equivalently, we are defining the projection coefficients in terms of
Hermite polynomials which have been normalized to have unit variance. Indeed, it is
well known that

E

[(
Hq(ζ )√

q!
)2]

= 1

q!E
[(

Hq(ζ )
)2] = 1.

In short, our main results state that a quantitative functional central limit theorem
for neural networks built on σ holds, and the rate of convergence depends on the
rate of decay of {Jq(σ )}, as q → ∞; roughly put, it is logarithmic when this rate is
polynomial (e.g., the ReLu case), whereas convergence occurs at algebraic rates for
some activation functions which are smoother, with exponential decay of the coeffi-
cients. A more detailed discussion of these results and comparisons with the existing
literature are given below in Section 3.

Let us discuss an important point about normalization. In this paper, the measure
on the sphere S

d−1 is normalized to have unit volume. The bound we obtain are not
invariant to this normalization, and indeed they would be much tighter if the measure
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on the sphere was taken as usual to be sd = 2πd/2

�( d
2 )

, the surface volume of S
d−1.

Indeed, by Stirling’s formula

sd = 2πd/2

�(d
2 )

∼ 2πd/22d/2ed/2

√
πddd/2

= 2√
πd

(√
2eπ

d

)d

;

sd achieves its maximum for d = 7 (s7 = 33.073) and decays faster than expo-
nentially as d → ∞. This means that, without the normalization that we chose, our
bound on the d2 metric would be actually smaller by a factor of roughly d−d/2 when
the dimension grows. On the other hand, if we were to take the standard Lebesgue
measure λ then we would obtain, by a standard application of Hermite expansions
and the Diagram Formula

E‖F‖2
L2(λ)

=
∑
q

J 2
q (σ )

∫
Sd−1

λ(dx) =
∑
q

J 2
q (σ )sd,

so that the L2 norm would decay very quickly as d increases, making the interpreta-
tion of results less transparent.

Following [8], the convergence in our central limit theorem is measured in the d2
metric. This is given by

d2(F,Z) = sup
‖h‖

C2
b
(L2(Sd−1))

≤1

∣∣Eh(F ) − Eh(Z)
∣∣ ,

where C2
b(L2(Sd−1)) is the space of real-valued functions on L2(Sd−1) (where L2 is

taken with respect to the uniform measure) with bounded Frechet derivatives up to
order 2. It is to be noted that the d2 metric is bounded by the Wasserstein distance of
order 2, i.e.

d2(F,Z) ≤ W2(F,Z) := inf
(F̃ ,Z̃)

(
E‖F̃ − Z̃‖2

L2(Sd−1)

)1/2
,

where the infimum is taken over all the possible couplings of (F,Z).
Our first main statement is as follows.

Theorem 1. Under the previous assumptions and notations, and letting Z be the
Gaussian process with zero mean and same covariance as F , we have that, for all
Q ≤ log3

√
n,

d2(F,Z) ≤ C‖σ‖ 1
4
√

n

√√√√√ Q∑
q=0

J 2
q (σ )q3q + 3

2

√√√√ ∞∑
q=Q+1

J 2
q (σ ), (3)

where C is an absolute constant (in particular, independent of the input dimension d),
and ‖σ‖ is the L2 norm of σ taken with respect to the Gaussian density on R.

The proof is postponed to Section 4.1. From Theorem 1, optimizing over the
choice of Q, it is immediate to obtain much more explicit bounds. In the case of
polynomial decay of the Hermite coefficients, the choice Q = log n/(3 log 3) yields
the following result.



90 V. Cammarota et al.

Corollary 2. In the same setting as in Theorem 1, for Jq(σ ) � q−α , α > 1
2 , we have

d2(F,Z) ≤ C‖σ‖ 1

(log n)α− 1
2

.

Example 3 (ReLu). As shown in Lemma 19, for the ReLu activation σ(t) =
tI[0,∞)(t) we have that Jq(σ ) � q− 5

4 , whence we obtain the bound d2(F,Z) �
(log n)− 3

2 . Once again, we stress that the constant is independent of the input dimen-
sion d .

The statement of Theorem 1 is given in order to cover the most general activation
functions, allowing for possibly nondifferentiable choices such as the ReLu. Under
stronger conditions, the result can be improved; in particular, assuming the activation
function has a Malliavin derivative with bounded fourth moment (i.e., it belongs to
the class D1,4, see [25, 8]), we obtain the following extension.

Theorem 4. Under the previous assumptions and notations, and assuming further-
more that σ(Wx) ∈ D1,4, we have that, for all Q ∈ N,

d2(F,Z) ≤ C
1√
n

Q∑
q=0

J 2
q (σ )q3q

(
‖σ‖2 + 1√

n

Q∑
q=0

J 2
q (σ )3q

)
+ 3

2

√√√√ ∞∑
q=Q+1

J 2
q (σ ),

(4)
where C is an absolute constant (in particular, independend of the input dimension
d), and ‖σ‖ is the L2 norm of σ taken with respect to the Gaussian density on R.

We prove Theorem 4 in Section 4.4. Again, imposing specific decay profiles on
the Hermite expansion we can obtain explicit bounds. In particular, when Jq � e−βq

with β > log
√

3, the second sum appearing in (4) stays finite for all Q, hence the
bound assumes the form

d2(F,Z) ≤ C‖σ‖2 1√
n

Q∑
q=0

J 2
q (σ )q3q + 3

2

√√√√ ∞∑
q=Q+1

J 2
q (σ ),

which is more in line with the bound (3). In such a case, letting Q to go to infinity
leads to the next result.

Corollary 5. In the same setting as in Theorem 4, for Jq(σ ) � e−βq , β > log
√

3,
we have

d2(F,Z) ≤ C
1√
n
.

Example 6 (polynomials/erf). The assumptions of Corollary 5 are fulfilled by poly-
nomial activations and by the error function erf(t) = 2√

π

∫ t

0 e−s2
ds, for which

J 2
q (σ ) � (2/3)q – cf. [19]. In these cases, the fact that σ(Wx) ∈ D

1,4 can be readily
shown by means of the triangle inequality and the standard hypercontractivity bound
for Wiener chaos components – see [25, Corollary 2.8.14].
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Example 7 (tanh/logistic). Of course, other forms of decay could be considered. For
instance, for the hyperbolic tangent σ(t) = (et − e−t )/(et + e−t ) the rate of decay of
the Hermite coefficients is of order exp(−C

√
q) (see, e.g., [13]), hence the result of

Corollary 5 does not apply; the bounds in Corollary 2 obviously hold, but applying
directly Theorem 1 and some algebra we obtain the finer bound

d2(F,Z) � exp(−c
√

log n), for Jq(σ ) ≤ exp(−C
√

q).

The same bound holds also for the sigmoid/logistic activation function σ(t) = (1 +
e−t )−1.

Remark 8. Lower bounds on the rates of convergence of neural networks to Gaussian
processes are still an open question. In particular, we do not know whether the rates
obtained in Corollary 2 and Corollary 5 are optimal. In Section 3 we compare our
results to the previous literature.

2.1 Sketch of the proof and discussion

As a first step in our proof, cf. Section 4.1, we decompose our neural network F into
two processes: F≤Q, corresponding to its projection onto the first Q Wiener chaoses,
and F>Q, the remainder, where Q is an integer to be chosen below. This truncation-
and-optimization approach is rather standard in the literature on Quantitative Cen-
tral Limit Theorems, cf. [8, Remark 3.11]. By the triangle inequality, we can bound
the distance of F from a suitable Gaussian process Z with the distance of Z from
F≤Q plus the 2-Wasserstein distance of F from F≤Q. This second part can be easily
bounded by standard L2 arguments, see (5).

For the leading term we follow a recent result by Bourguin and Campese [8],
which we restate as Theorem 16, adapted to our framework. To the best of our knowl-
edge, this is the first time when a link between the Stein–Malliavin method (see [25, 8]
and the references therein) and neural networks has been established.

Thanks to this technique, the problem can be essentially reduced to a thorough
analysis of fourth-order cumulants and covariances for the L2 norms of the Wiener
projections. Besides smaller order terms, we dominate the distance between Z and
F≤Q with the sum of two terms, called M and C. Heuristically, M controls the ex-
pected distance of the fourth moments of the Wiener projections of Z and F≤Q, while
C accounts for the covariances between different projections of F≤Q. In order to con-
trol M , in Proposition 9 we exploit the properties of Hermite polynomials and in
particular the diagram formula (see [22, Proposition 4.15]). A detailed analysis of
the possible configurations of the diagrams (Lemma 10 and Lemma 11) and of the
covariances of the Hermite polynomials (Lemma 12) allows us to obtain bounds that,
in particular, do not depend on the dimension d of the input, cf. Remark 13 and the
discussion in Section 3. Finally, in Proposition 15 we show that C is bounded from
above by M itself.

We point out that the strategy we follow relies on the Gaussianity of the distribu-
tion of the weights W . While nonquantitative versions of the CLT have been proved
assuming only mild finite moment assumptions, see [15], Gaussianity has been re-
quired in the literature for the quantitative case so far (cf. [13, 19]). Our main techni-
cal tool, [8, Theorem 3.10], goes beyond the Gaussian case and Hermite polynomials,
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but for more general eigenfunctions no diagram formula is known and explicit com-
putations (e.g., for estimating the cumulants) become impossible.

Another technical point that we shall address is the following. The convergence
results by [8] require the limiting process to be nondegenerate; this condition is
not always satisfied for arbitrary activation functions if one takes the correspond-
ing Hilbert space to be L2(Sd−1) (counter-examples being finite-order polynomi-
als). However, we note that for activations for which the corresponding networks
are dense in the space of continuous functions (such as the ReLu or the sigmoid
and basically all nonpolynomials, see for instance the classical universal approxi-
mation theorems in [10, 16, 17, 21, 26]), then the nondegeneracy condition is au-
tomatically satisfied. On the other hand, when the condition fails, our results con-
tinue to hold, but the underlying functional space must be taken to be the repro-
ducing kernel Hilbert space generated by the covariance operator, which is strictly
included into L2(Sd−1) when universal approximation fails (e.g., in the polynomial
case).

3 A comparison with the existing literature

Two papers that have established quantitative functional central limit theorems for
neural networks are [13] and [19]. Their settings and results are not entirely compa-
rable to ours; on the one hand, they use the Wasserstein distance, which is slightly
stronger that the d2 metric we consider here. On the other hand, their model for the
random weight is different from ours: for the outer layers, both consider Rademacher
variables, while for the inner layer the distribution is Gaussian in [13] and uniform
on the sphere in [19]; on the contrary, we assume the Gaussian distribution for both
inner and outer layer. As a further (minor) difference, we note that in [13], as well as
in our paper, input variables are in S

d−1, while [19] considers
√

d S
d−1; this is just

a notational issue, though, because in [19] the argument of the activation function is
normalized by a factor 1/

√
d.

Even with these important caveats, it is nevertheless of some interest to compare
their bounds with ours, for activation functions for which there is an overlap. We
report their results together with ours in Table 1 (the constant C may differ from one
box to the other, but in all cases it does not depend neither on d nor on n).

Comparing to [13], our bounds remove a logarithmic factor in the input dimension
and a log log factor in the number of neurons for ReLu and tanh networks; for smooth
activations, the rate goes from n−1/6 to n−1/2, and the constants lose the polynomial
dependence on the dimension. The rate in [19] in the polynomial case is n−1/2 as
ours, but with a factor growing in the input dimension d as dd/2. In the ReLu setting,

[19] displays the algebraic rate n− 3
4d−2 , which for fixed values of d decays faster

than our logarithmic bound. However, interpretation of these bounds from a “fixed d ,
growing n” perspective can be incomplete: when considering distances in probability
metrics it is of interest to allow both d and n to vary. In particular, for neural networks
applications, it is often the case that the input dimension and number of neurons are
of comparable order; taking for instance d = dn ∼ nα , it is immediate to verify that
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Table 1. Comparison of convergence rates established by different functional quantitative cen-
tral limit theorems for several activation functions. Bear in mind that two different metrics
d2 ≤ W2 are considered, W2 for [13, 19], and d2 for this paper. The parameters α and β must
satisfy α > 1/2 and β > log

√
3

Eldan et al. [13] Klukowski [19] This paper

Jq ∼ q−α (
log n

log log n log d
)
−α+ 1

2 – (log n)
−α+ 1

2

ReLu (
log n

log log n log d
)
− 3

4 n
− 3

4d−2 (log n)
− 3

4

tanh / logistic exp(−c

√
log n

log d log log n
) – exp(−c

√
log n)

Jq ∼ e−βq n−c(log log n log d)−1
– n

− 1
2

erf n−c(log log n log d)−1
Cd(log n)

d
2 −1

n
− 1

2 n
− 1

2

polynomial order p pcpd
5p
6 − 1

12 n
− 1

6 (d + p)
d
2 n

− 1
2 n

− 1
2

for all α > 0 (no matter how small) one has

lim
n→∞

(log n)− 3
4

n− 3
4d−2

= lim
n→∞

(log n)− 3
4

exp(− 3
4nα−2 log n)

= 0,

so that our bound in the d2 metric decays faster that the one by [19] in W2 under these
circumstances.

4 Proof of the main results

Our main results, Theorems 1 and 4, are proved in Sections 4.1 and 4.4, respec-
tively. The proofs use auxiliary propositions and lemmas, which are established in
Sections 4.2 and 4.3.

4.1 Proof of Theorem 1

The main idea behind our proof is as follows. For some integer Q to be fixed later,
write

F = F≤Q + F>Q,

where

F≤Q :=
Q∑

q=0

Fq, F>Q :=
∞∑

q=Q+1

Fq,

and

Fq(x) := Jq(σ )√
n

n∑
j=1

Vj

Hq(Wjx)√
q! , x ∈ S

d−1.

In words, as anticipated in Section 2.1, we are partitioning our network into a compo-
nent projected onto the Q lowest Wiener chaoses and the remainder projection on the



94 V. Cammarota et al.

highest chaoses. Now recall that Z is the zero mean Gaussian process with covariance
function

E
[
Z(x1)Z(x2)

] := S(x1, x2) = E
[
F(x1)F (x2)

] =
∞∑

q=0

J 2
q (σ )〈x1, x2〉q .

In the sequel we shall write {Zq}q∈N for a sequence of independent zero mean Gaus-
sian variables with covariance function E[Zq(x1)Zq(x2)] := J 2

q (σ )〈x1, x2〉q . Our
idea is to use Theorem 3.10 in [8] and hence to consider

d2(F,Z) ≤ d2(F≤Q,Z) + d2(F, F≤Q)

≤ 1

2

(√
M(F≤Q) + C(F≤Q) + ‖S − S≤Q‖L2(�,HS)

) + W2(F, F≤Q),

where

M(F≤Q) := 1√
3

Q∑
p,q

cp,q

√
E‖Fp‖4

(
E‖Fq‖4 − E‖Zq‖4

)
,

C(F≤Q) :=
Q∑

p,q
p �=q

cp,q Cov
(‖Fp‖2, ‖Fq‖2),

cp,q :=
{

1 + √
3, p = q,

p+q
2p

, p �= q,

and we have

W2(F, F≤Q) ≤
√√√√ ∞∑

q=Q+1

J 2
q (σ ). (5)

Moreover,

‖S − S≤Q‖2
L2(�,HS)

≤
∞∑

q=Q+1

J 2
q (σ );

indeed, first note that the covariance operator can be written explicitly in coordinates
as

S≤Q(x1, x2)

= 1

n

Q∑
p,q

Jp(σ )Jq(σ )
1√
p! q!

n∑
j1,j2=1

E
[{

Vj1Hp(Wj1x1)
}{

Vj2Hq(Wj2x2)
}]

=
Q∑
q

J 2
q (σ )〈x1, x2〉q,

and hence

S(x, y) − S≤Q(x, y) =
∞∑

q=Q+1

J 2
q (σ )〈x, y〉q .
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Therefore, taking the standard basis of spherical harmonics {Y�m}, which are eigen-
functions of the covariance operators (see [22]),

‖S − S≤Q‖2
L2(�,HS)

=
∑

�,�′,m,m′

∞∑
q=Q+1

∫
Sd−1×Sd−1

Y�m(x)Y�′m′(y)
∑
�′′m′′

C�′′(q)Y�′′m′′(x)Y�′′m′′(y)dxdy

=
∑

�,�′,m,m′

∞∑
q=Q+1

∑
�′′m′′

C�′′(q)

∫
Sd−1×Sd−1

Y�m(x)Y�′m′(y)Y�′′m′′(x)Y�′′m′′(y)dxdy

=
∑

�,�′,m,m′

∞∑
q=Q+1

∑
�′′m′′

C�′′(q)δ�′′
� δ�′′

�′ δm′′
m δm′′

m′

=
∑

�

∞∑
q=Q+1

C�(q)n�;d

=
∞∑

q=Q+1

J 2
q (σ ),

where n�;d is the dimension of the �-th eigenspace in dimension d and {C�(q)} is the
angular power spectrum of Fq , see again [22] for more discussion and details (the
discussion in this reference is restricted to d = 2, but the results can be extended to
any dimension).

We are left to bound M(F≤Q) and C(F≤Q). In Section 4.2 we will provide a
bound for M(F≤Q). Under the conditon Q ≤ log3

√
n, such bound reduces to

M(F≤Q) � ‖σ‖2

√
n

Q∑
q

J 2
q (σ )q3q .

On the other hand, in Section 4.3 we will show that

C(F≤Q) ≤ M(F≤Q).

This completes the proof.

4.2 Bounding M(F≤Q)

The following proposition provides a bound on M(F≤Q). The proof relies on several
technical lemmas, which are given below.

Proposition 9. We have

M(F≤Q) � 1√
n

Q∑
q=0

J 2
q q3q

(
‖σ‖2 + 1√

n

Q∑
q=0

J 2
q 3q

)
.
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Proof. We can write

M(F≤Q) = 1√
3

Q∑
p,q

cp,q

√
E‖Fp‖4

(
E‖Fq‖4 − E‖Zq‖4

)
≤

Q∑
p

√
E‖Fp‖4

Q∑
q

q

√
E‖Fq‖4 − E‖Zq‖4.

In Lemma 10 we compute

E‖Fq‖4 − E‖Zq‖4 = 1

n

J 4
q (σ )

(q!)2

q−1∑
q1=0

ϒq1,q

∫
Sd−1×Sd−1

〈x1, x2〉2(q−q1)dx1dx2,

with

ϒq1,q =
(

q

q1

)4

(q1!)2(2q − 2q1)!.

By Lemma 11 we get the bound

max
0≤q1≤q−1

ϒq1,q � (q!)232q

q
,

whereas Lemma 12 yields∫
Sd−1×Sd−1

〈x1, x2〉2(q−q1)dx1dx2 ≤ 1.

Therefore,

E‖Fq‖4 − E‖Zq‖4 �
J 4

q (σ )32q

n
.

Moreover, in view of Lemma 14, we have

E‖Fp‖4 �
J 4

p(σ )32p

n
+ 3J 4

p(σ ).

Collecting all the terms, we finally obtain the claim.

In the following, we collect the technical lemmas used in the proof of Proposi-
tion 9.

Lemma 10. We have

E‖Fq‖4 − E‖Zq‖4 = 1

n

J 4
q (σ )

(q!)2

q−1∑
q1=0

ϒq1,q

∫
Sd−1×Sd−1

〈x1, x2〉2(q−q1)dx1dx2

with ϒq1,q = (
q
q1

)4
(q1!)2(2q − 2q1)!.
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Proof. We will write Cum(·, ·, ·, ·) for the joint cumulant of four random variables,
that is,

Cum(X, Y,Z,W) = E[XYZW ]−E[XY ]E[WZ]−E[XZ]E[WY ]−E[XW ]E[ZY ].
We have

E‖Fq‖4 = 1

n2

J 4
q

(q!)2

n∑
j1,j2,j3,j4=1

∫
Sd−1×Sd−1

× E
{
Vj1Hq(Wj1x1)Vj2Hq(Wj2x1)Vj3Hq(Wj3x2)Vj4Hq(Wj4x2)

}
dx1dx2

= 1

n

J 4
q

(q!)2

∫
Sd−1×Sd−1

× Cum
{
VjHq(Wjx1), VjHq(Wjx1), VjHq(Wjx2), VjHq(Wjx2)

}
dx1dx2

+ J 4
q

(q!)2

{∫
Sd−1

E
{
VjHq(Wjx1)VjHq(Wjx1)

}
dx1

}2

+ 2
J 4

q

(q!)2

∫
Sd−1×Sd−1

{
E

{
VjHq(Wjx1)VjHq(Wjx2)

}}2
dx1dx2.

Now note that, in view of the normalization we adopted for the volume of Sd−1,

1

(q!)2

{∫
Sd−1

E
{
VjHq(Wjx1)VjHq(Wjx1)

}
dx1

}2

= 1,

1

(q!)2

∫
Sd−1×Sd−1

{
E

{
VjHq(Wjx1)VjHq(Wjx2)

}}2
dx1dx2

=
∫
Sd−1×Sd−1

〈x1, x2〉2qdx1dx2.

Moreover,∫
Sd−1×Sd−1

E
{
Z2

q(x1)Z
2
q(x2)

}
dx1dx2

=
∫
Sd−1×Sd−1

E
{
Z2

q(x1)
}
E

{
Z2

q(x2)
}
dx1dx2

+ 2
∫
Sd−1×Sd−1

E
{
Zq(x1)Zq(x2)

}
E

{
Zq(x1)Zq(x2)

}
dx1dx2

= J 4
q + 2J 4

q

∫
Sd−1×Sd−1

〈x1, x2〉2qdx1dx2.

Hence,

E‖Fq‖4 − E‖Zq‖4

= 1

n

J 4
q

(q!)2
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×
∫
Sd−1×Sd−1

Cum
{
V1Hq(W1x1), V1Hq(W1x1), V1Hq(W1x2), V1Hq(W1x2)

}
dx1dx2.

Using the diagram formula for Hermite polynomials [22, Proposition 4.15] and then
isotropy, for q1 + q2 + q3 + q4 = 2q we have∫

Sd−1×Sd−1
Cum

{
V1Hq(W1x1), V1Hq(W1x1), V1Hq(W1x2), V1Hq(W1x2)

}
dx1dx2

=
∑

q1+q2+q3+q4=2q

ϒq1q2q3q4

×
∫
Sd−1×Sd−1

〈x1, x1〉q1〈x1, x2〉q2〈x2, x2〉q3〈x2, x1〉q4dx1dx2

=
q−1∑
q1=0

ϒq1,q

∫
Sd−1×Sd−1

〈x1, x2〉2(q−q1)dx1dx2,

where ϒq1q2q3q4 , ϒq1,q count the possible configurations of the diagrams. Precisely,
ϒq1,q is the number of connected diagrams with no flat edges between four rows of
q nodes each and q1 < q connections between first and second row. To compute this
number explicitly, let us label the nodes of the diagram as

x1 x1 x1 . . . x1
x′

1 x′
1 x′

1 . . . x′
1

x2 x2 x2 . . . x2
x′

2 x′
2 x′

2 . . . x′
2

.

Because there cannot be flat edges, the number of edges between x1 and x′
1 is the

same as the number of edges between x2 and x′
2. Indeed, assume that the former was

larger than the latter; then there would be less edges starting from the pair (x1, x
′
1)

and reaching the pair (x2, x
′
2) than the other way round, which is obviously absurd.

There are
(

q
q1

)
ways to choose the nodes of the first row connected with the second,(

q
q1

)
ways to choose the nodes of the second connected with the first,

(
q
q1

)
ways to

choose the nodes of the third connected with the fourth, and
(

q
q1

)
ways to choose the

nodes of the fourth connected with the third, which gives a term of cardinality
(

q
q1

)4;
the number of ways to match the nodes between first and second row or third and
fourth is (q1!)2. There are now (2q − 2q1) nodes left in the first two rows, which can
be matched in any arbitrary way with the (2q −2q1) remaining nodes of the third and
the fourth row; the result follows immediately.

Lemma 11. The following bound holds true:

max
0≤q1≤q−1

ϒq1,q � (q!)232q

q
.

Proof. We can write

1

(q!)2 ϒq1,q = 1

(q!)2

(
q

q1

)4

(q1!)2(2q − 2q1)!
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= (q!)2(2q − 2q1)!
(q1!)2((q − q1)!)2((q − q1)!)2 =

(
q

q1

)2(2q − 2q1

q − q1

)
.

Note that both the elements in the last expression are decreasing in q1, when q1 >
q
2

(say). Fix α ∈ [ε, 1
2 + ε], ε > 0; repeated use of Stirling’s approximation gives

(q!)2(2q − 2q1)!
(q1!)2((q − q1)!)2((q − q1)!)2

∼ 1

(2π)3/2

q2q+1(2q − 2q1)
2q−2q1+ 1

2 e2q1e2(q−q1)e2q−2q1

e2qe2q−2q1q
2q1+1
1 (q − q1)4q−4q1+2

∼ 22q−2q1+ 1
2

(2π)3/2

q2q+1

q
2q1+1
1 (q − q1)

2q−2q1+ 3
2

Taking q1 = αq we obtain

22(1−α)q+ 1
2

(2π)3/2

q2q+1

(αq)2αq+1((1 − α)q)2(1−α)q+ 3
2

= 22(1−α)q+ 1
2

(2π)3/2

1

(α)2αq+1((1 − α))2(1−α)q+ 3
2 q

3
2

= 2
1
2

(2π)3/2q
3
2

(
21−α

α
α+ 1

2q (1 − α)
1−α+ 3

4q

)2q

.

It can be immediately checked that the function f (α) := 21−α

αα(1−α)1−α admits a unique

maximum at α = 1
3 , for which the quantity gets bounded by q− 3

2 32q up to constants.
On the other hand, for q1 < �εq� it suffices to notice that(

q

q1

)2(2q − 2q1

q − q1

)
≤ 22q

(
q

q1

)2

≤ 22q

(
q

�εq�
)2

≤ 22q q2q+1

2π(εq)2εq+1((1 − ε)q)2(1−ε)q+1
,

where we used the fact that g(ε) = ε−ε(1 − ε)−(1−ε) is strictly increasing in (0, 1
2 );

hence we get

22q q2q+1

2π(εq)2εq+1((1 − ε)q)2(1−ε)q+1
= 22q

2πq

1

((ε)
ε+ 1

2q ((1 − ε))
(1−ε)+ 1

2q )2q
.

The result is proved by choosing ε such that(
(ε)

ε+ 1
2q

(
(1 − ε)

)(1−ε)+ 1
2q

)−1
<

3

2
.

We recall the standard definition of the Beta function B(α, β):

B(α, β) = �(α)�(β)

�(α + β)
, �(α) =

∫ ∞

0
tα−1 exp(−t)dt, α, β > 0.
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Lemma 12. We have∫
Sd−1×Sd−1

〈x1, x2〉2(q−q1)dx1dx2 = sd−1

sd
B

(
q − q1 + 1

2
,
d

2
− 1

2

)
≤ 1.

Proof. Fixing a pole and switching to spherical coordinates, we get∫
Sd−1×Sd−1

〈x1, x2〉2q−2q1dx1dx2

= sd−1

sd

∫ π

0
(cos θ)2q−2q1(sin θ)d−2dθ

= sd−1

sd

∫ π/2

0

(
cos2 θ

)q−q1− 1
2
(
1 − cos2 θ

) d−3
2 d cos θ

= sd−1

sd

∫ 1

0
tq−q1− 1

2 (1 − t)
d−3

2 dt = sd−1

sd
B

(
q − q1 + 1

2
,
d − 1

2

)
,

which is smaller than 1 for all d , q.

Remark 13. The bound we obtain is actually uniform over d . It is likely that it could
be further improved for growing numbers of d , because the Beta function decreases
quickly as d diverges.

Lemma 14. We have

E‖Fp‖4 ≤ E‖Fp‖4 − E‖Zp‖4 + 3J 4
p .

Proof. It suffices to observe that, following the calculations of Lemma 10,

E‖Zq‖4 = J 4
q + 2J 4

q

∫
Sd−1×Sd−1

〈x1, x2〉2qdx1dx2 ≤ 3J 4
q .

4.3 Bounding C(F≤Q)

The following results reduces the problem of bounding C(F≤Q) to that of bounding
M(F≤Q).

Proposition 15. We have
C(F≤Q) ≤ M(F≤Q).

Proof. We shall show that

C(F≤Q) =
Q∑

p,q:p �=q

cp,q

p−1∑
p1=p−q

(
p

p1

)2

(p1!)2
(

q

q − p + p1

)2

× (
(q − p + p1)!

)2(2(p − p1)
)!

×
∫
Sd−1×Sd−1

〈x1, x2〉2(p−p1)dx1dx2

≤
Q∑

p,q

p∑
p1=1

cp,q

(
p

p1

)4

(p1!)2(2p − 2p1)!
∫

Sd−1×Sd−1
〈x1, x2〉2(p−p1)dx1dx2
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= M(F≤Q).

Recall that

Cov
(‖Fp‖2, ‖Fq‖2)

= J 2
pJ 2

q

n

∫
Sd−1

∫
Sd−1

Cum
{
V Hp(Wx1),V Hp(Wx1),V Hq(Wx2),V Hq(Wx2)

}
dx1dx2.

Indeed,

‖Fp‖2 = J 2
p

n

1

p!
n∑

j1,j2=1

∫
Sd−1

{
Vj1Hp(Wj1x)

}{
Vj2Hp(Wj2x)

}
dx,

and
Cov

(‖Fp‖2, ‖Fq‖2) = E
(‖Fp‖2‖Fq‖2) − E

(‖Fp‖2)
E

(‖Fq‖2),
where

E
(‖Fp‖2‖Fq‖2) = J 2

pJ 2
q

n2

1

p! q!
n∑

j1,j2=1

n∑
j3,j4=1

∫
Sd−1

∫
Sd−1

E
[
Vj1Hp(Wj1x1)Vj2Hp(Wj2x1)Vj3Hq(Wj3x2)Vj4Hq(Wj4x2)

]
dx1dx2

= J 2
pJ 2

q

n

∫
Sd−1×Sd−1

Cum
[
V1Hp(W1x1), V1Hp(W1x1), V1Hq(W1x2), V1Hq(W1x2)

]
dx1dx2

+ J 2
pJ 2

q

∫
Sd−1×Sd−1

E
[
V1Hp(W1x1)V1Hp(W1x1)

]
E

[
V1Hq(W1x2)V1Hq(W1x2)

]
dx1dx2

+ 2J 2
pJ 2

q

∫
Sd−1×Sd−1

E
[
V1Hp(W1x1)V1Hq(W1x2)

]
E

[
V1Hp(W1x1)V1Hq(W1x2)

]
dx1dx2.

By the orthogonality of the Hermite polynomials, the third term vanishes and we are
left with

J 2
pJ 2

q

n

∫
Sd−1×Sd−1

Cum
[
V1Hp(W1x1), V1Hp(W1x1), V1Hq(W1x2), V1Hq(W1x2)

]
dx1dx2

+ J 2
pJ 2

q

∫
Sd−1×Sd−1

E
[
V1Hp(W1x1)V1Hp(W1x1)

]
E
[
V1Hq(W1x2)V1Hq(W1x2)

]
dx1dx2

= J 2
pJ 2

q

n

∫
Sd−1×Sd−1

Cum
[
V1Hp(W1x1), V1Hp(W1x1), V1Hq(W1x2), V1Hq(W1x2)

]
dx1dx2

+
(

J 2
p

∫
Sd−1

E
[
V1Hp(W1x1)V1Hp(W1x1)

]
dx1

)(
J 2

q

∫
Sd−1

E
[
V1Hq(W1x2)V1Hq(W1x2)

]
dx2

)
= J 2

pJ 2
q

n

∫
Sd−1×Sd−1

Cum
[
V1Hp(W1x1), V1Hp(W1x1), V1Hq(W1x2), V1Hq(W1x2)

]
dx1dx2

+ E
(‖Fp‖2)

E
(‖Fq‖2).

Indeed,

E
(‖Fp‖2) = J 2

pE

[ n∑
j1,j2=1

∫
Sd−1

{
Vj1Hp(Wj1x)

}{
Vj2Hp(Wj2x)

}
dx

]
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= J 2
pE

[
n

∫
Sd−1

{
V1Hp(W1x)

}{
V1Hp(W1x)

}
dx

]
.

Now note that

J 2
pJ 2

q

n

∫
Sd−1×Sd−1

Cum
[
V1Hp(W1x1),V1Hp(W1x1),V1Hq(W1x2),V1Hq(W1x2)

]
dx1dx2

= J 2
pJ 2

q

n

p−1∑
p1=p−q

(
p

p1

)2

p1!
(

q

q − p + p1

)2

(q − p + p1)!
(
2(p − p1)

)!
×

∫
Sd−1×Sd−1

〈x1, x2〉2(p−p1)dx1dx2.

Moreover,(
q

q − p + p1

)2(
(q − p + p1)!

)2 = (q!)2

((p − p1)!)2 ≤ (p!)2

((p − p1)!)2 =
(

p

p1

)2

(p1!)2,

and hence

p−1∑
p1=p−q

(
p

p1

)2

(p1!)2
(

q

q − p + p1

)2(
(q − p + p1)!

)2(2(p − p1)
)!

×
∫
Sd−1×Sd−1

〈x1, x2〉2(p−p1)dx1dx2

≤
p∑

p1=1

(
p

p1

)4

(p1!)2(2p − 2p1)!
∫
Sd−1×Sd−1

〈x1, x2〉2(p−p1)dx1dx2,

so that our previous bound on the fourth cumulant is sufficient, up to a factor
J 2
q

J 2
p

q!
p! � 1.

4.4 Proof of Theorem 4

The proof of Theorem 4 takes advantage of the tighter bounds which are obtained in
[8, Section 4]; we refer to this paper and Section A.1, together with the monograph
[25], for more details on the notation and further discussion.

Consider the isonormal Gaussian process with the underlying Hilbert space

H := L2[0, 2π] ⊗ L2[0, 2π] ⊗ R
d ;

we take

Vj = I (fVj
) = I

(
cos(·)√

π
⊗ exp(ij ·)√

2π
⊗ z

)
for some fixed z such that ‖z‖Rd = 1,

Wjx = I (fWj x) = I

(
sin(·)√

π
⊗ exp(ij ·)√

2π
⊗ x

)
for any x ∈ S

d−1.
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It is readily seen that these are two Gaussian, zero mean, unit variance random vari-
ables, with covariances

E[VjVj ′ ] = δ
j ′
j , E[VjWjx] = 0, E[Wjx1Wj ′x2] = δ

j ′
j 〈x1, x2〉Rd .

Also, we have that

1√
n

n∑
j=1

Vjσ(Wjx) = 1√
n

n∑
j=1

∞∑
p=1

Jp(σ )√
p! I (fVj

)Hp(Wjx)

= 1√
n

n∑
j=1

∞∑
p=1

Jp(σ )√
p! I (fVj

)Ip

(
f

⊗p
Wj x

)
,

where we have used the standard identity linking Hermite polynomials and multiple
stochastic integrals (i.e., Theorem 2.7.7 in [25]). To evaluate the term I (fVj

)Ip(f
⊗p
Wj x),

we recall the product formula [25, Theorem 2.7.10]

Ip

(
f ⊗p

)
Iq

(
g⊗q

) =
p∧q∑
r=0

r

(
p

r

)(
q

r

)
Ip+q−2r (f ⊗̃rg);

in our case p = 1, fVj
⊗̃1f

⊗p
Wj x = 0, hence we obtain

1√
n

n∑
j=1

I (fVj
)Ip

(
f

⊗p
Wj x

) = Ip+1

(
1√
n

n∑
j=1

fVj
⊗̃rf

⊗p
Wj x

)
,

where ⊗̃ denotes the symmetrized tensor product. Let us now write

fp+1;x := 1√
n

Jp(σ )√
p!

n∑
j=1

fVj
⊗̃rf

⊗p
Wj x;

it can then be readily checked that, for K = L2(Sd−1) and r < (p1 + 1 ∧ p2 + 1),

‖fp1+1;x1 ⊗ fp2+1;x2‖2
H⊗(p1+p2−2r) = 1

n

J 4
p(σ )

(p!)2 〈x1, x2〉2r ,

‖fp1+1;x1 ⊗ fp2+1;x2‖2
H⊗(p1+p2−2r)⊗K⊗2 = 1

n

J 4
p(σ )

(p!)2

∫
Sd−1×Sd−1

〈x1, x2〉2rdx1dx2.

To complete the proof, it is then sufficient to exploit [8, Theorem 4.3] and to follow
similar steps as in the proof of Theorem 1.

A Appendix

A.1 The quantitative functional central limit theorem by Bourguin and Campese
(2020)

In this paper, the probabilistic distance for the distance between the random fields we
consider is the so-called d2-metric, which is given by

d2(F,G) = sup
h∈C2

b (K)

‖h‖
C2

b
(K)

≤1

∣∣E[
h(F )

] − E
[
h(G)

]∣∣;
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here, C2
b(K) denotes the space of continuous and bounded applications from the

Hilbert space K into R endowed with two bounded Frechet derivatives h′, h′′; that
is, for each h ∈ C2

b(K) there exist a bounded linear operator h′ : K → R such that
‖h′‖K ≤ 1

lim‖v‖→0

|h(x + v) − h(x) − h′(v)|
‖v‖ = 0,

and similarly for the second derivative.
We will use a simplified version of the results by Bourguin and Campese in [8],

which we report below.

Theorem 16 (A special case of Theorem 3.10 in [8]). Let F≤Q ∈ L2(�,K) be a
Hilbert-valued random element F≤Q : � → K with zero mean, covariance operator
S≤Q and such that it can be decomposed into a finite number of Wiener chaoses:

F≤Q(.) =
Q∑

p=0

Fp(.).

Then, for Z a Gaussian process on the same structure with covariance operator S we
have that

d2(F≤Q,Z) ≤ 1

2

√
M(F≤Q) + C(F≤Q) + ‖S − S≤Q‖L2(�,HS),

where

M(F≤Q) = 1√
3

∑
p,q

cp,q

√
E‖Fp‖4

(
E‖Fq‖4 − E‖Zq‖4

)
,

C(F≤Q) =
∑
p,q
p �=q

cp,q Cov
(‖Fp‖2, ‖Fq‖2),

Zq a centred Gaussian process with the same covariance operator as Fq , i.e.,
(E[Zq(x1)Zq(x2)] = J 2

q (σ )〈x1, x2〉q ) and

cp,q =
{

1 + √
3, p = q,

p+q
2p

, p �= q.

Remark 17. The general version of Theorem 3.10 in [8] covers a broader class of
processes which can be expanded into the eigenfunctions of Markov operators. We
do not need this extra generality, and we refer to [8] for more discussion and details.

We will now review another result by [8], which holds under tighter smoothness
conditions. We shall omit a number of details, for which we refer to classical refer-
ences such as [25].

Given a Hilbert space H we recall the isonormal process is the collection of zero
mean Gaussian random variables with covariance function

E
[
X(h1)X(h2)

] = 〈h1, h2〉H.
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In our case these random variables take values in the separable Hilbert space
L2(�,Sd−1). For smooth functions F : � → L2(�,Sd−1) of the form

F = f
(
W(h1), . . . ,W(hp)

) ⊗ v, f ∈ C∞
b

(
R

p
)
, v ∈ L2(�,Sd−1),

we recall that the Malliavin derivative is defined as

DF =
p∑

i=1

∂if
(
W(h1), . . . ,W(hp)

)
hi ⊗ v

whose domain, denoted by D
1,2, is the closure of the space of smooth functions with

respect to the Sobolev norm ‖F‖2
L2(�,Sd−1)

+ ‖DF‖2
L2(�,H⊗Sd−1)

; D1,4 is defined
analogously.

In this setting, the Wiener chaos decompositions take the form

F =
∞∑

p=1

Ip(fp), fp ∈ H�p ⊗ L2(
S

d−1),
where H�p denotes the p-fold symmetrized tensor product of H, see [8, Subsec-
tion 4.1.2]. The main result we are going to exploit is their Theorem 4.3, which we
can recall as follows.

Theorem 18 (A special case of Theorem 4.3 in [8]). Let Z be a centred random
element of L2(Sd−1) with covariance operator S and F ∈ D

1,4 with covariance
operator T and chaos decomposition F = ∑

p Ip(fp), where fp ∈ H�p⊗L2(Sd−1).
Then

d2(F,Z) ≤ 1

2

(
M̃(F ) + C̃(F ) + ‖S − T ‖HS

)
,

where

M̃(F ) =
∞∑

p=1

√√√√p−1∑
r=1

ϒ̃2
p,p(r)‖fp ⊗r fp‖2

H⊗(2p−2r)⊗L2(Sd−1)⊗2,

C̃(F ) =
∞∑

1≤p,q≤∞, p �=q

√√√√p∧q∑
r=1

ϒ̃2
p,q(r)‖fp ⊗r fq‖2

H⊗(p+q−2r)⊗L2(Sd−1)⊗2,

and

ϒ̃p,q(r) = p2(r − 1)!
(

p − 1

r − 1

)(
q − 1

r − 1

)
(p + q − 2r)!.

A.2 The ReLu activation function
We consider here the most popular activation function, i.e., the standard ReLu de-
fined by σ(t) = tI[0,∞)(t). The Hermite expansion is known to be given by (see for
instance [13, Lemma 17], or [19, Theorem 2], and [14, 11]):

Jq(σ ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1√
2π

, q = 0,

1
2 , q = 1,

0, q > 1, q odd

(−1)
q
2 +1

(q−3)!!√
π

√
q! , q even.
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The following lemma is standard (compare [19]), but we include it for completeness.

Lemma 19. As q → ∞,

J 2
q ∼

√
2√

π3q5/2
.

Proof. The result follows from a straightforward application of Stirling’s formula,
which gives

q! ∼ √
2πqq+ 1

2 exp(−q),

(q − 3)!! = (q − 3)!
2

q
2 −2(

q
2 − 2)!

∼ (q − 3)q− 5
2 exp(−q + 3)

2
q
2 −2(

q
2 − 2)

q
2 − 3

2 exp(− q
2 + 2)

= exp(− q
2 + 1)

(q − 3)1/2(
q
2 − 2)1/2

(
1 + 1

q − 4

) q
2 −2

(q − 3)
q
2 ,

so that

((q − 3)!!)2

π(q)! ∼
exp(−q+2)

(q−3)(
q
2 −2)

(1 + 1
q−4 )q−4(q − 3)q

√
2π3(q)q+ 1

2 exp(−q)

∼ exp(3)√
2π3(q − 3)(

q
2 − 2)

√
q

(
1 − 3

q

)q

∼ 21/2

√
π3(q)5/2

.

Remark 20. The corresponding covariance kernel is given by, for any x1, x2 ∈ S
d−1,

E
[
σ
(
WT x1

)
σ
(
WT x2

)]
= 1

2π
+ 〈x1, x2〉

4
+ 〈x1, x2〉2

4π
+ 1

2π

∞∑
q=2

((2q − 3)!!)2

(2q)! 〈x1, x2〉2q

= 1

π

(
u(π − arccos u) +

√
1 − u2

)
,

for u = 〈x1, x2〉, see also [5].

Remark 21. The rate for Jq in Lemma 19 is consistent with the one obtained by [19].
In [13], J 2

q = O(q−3) is given instead, yielding in [13, Theorem 3] the rate(
log d × log log n

log n

)
.

According to Lemma 19, this rate becomes(
log d × log log n

log n

)3/4

,

which is the one we actually report in Table 1.
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