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Abstract We introduce a branching process in a sparse random environment as an interme-
diate model between a Galton–Watson process and a branching process in a random environ-
ment. In the critical case we investigate the survival probability and prove Yaglom-type limit
theorems, that is, limit theorems for the size of population conditioned on the survival event.
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1 Introduction and main results

The branching process is a random process starting with one individual, the initial
ancestor, which produces offspring according to some random rule. The collection of
offspring constitutes the first generation. Each individual of the first generation gives
birth to a random number of children with the same offspring distribution as for the

∗Corresponding author.

© 2023 The Author(s). Published by VTeX. Open access article under the CC BY license.

www.vmsta.org

https://doi.org/10.15559/23-VMSTA231
mailto:dariusz.buraczewski@math.uni.wroc.pl
mailto:czdong@xidian.edu.cn
mailto:iksan@univ.kiev.ua
mailto:marynych@unicyb.kiev.ua
http://www.ams.org/msc/msc2010.html?s=60J80
http://www.ams.org/msc/msc2010.html?s=60F05
http://creativecommons.org/licenses/by/4.0/
http://www.vmsta.org
http://www.vtex.lt/en/


398 D. Buraczewski et al.

initial ancestor. The numbers of offspring of different individuals (including the initial
ancestor) are independent. This process continues forever or until the population dies
out. An interesting problem is the behavior of the long-time evolution of the process.
Plainly, it depends on a particular rule that regulates giving birth to offspring. In the
simplest case, when the offspring distribution is the same for all generations, the
branching process is called the Galton–Watson process. We refer to [2] for numerous
results concerning, for instance, long-term survival or extinction of such a process,
the growth rate of the population, fluctuations of population sizes. Thanks to a simple
tree structure, not only does the Galton–Watson process find numerous applications as
a model of biological reproduction processes, but also in many other fields including
computer science and physics.

The homogeneity of the Galton–Watson process reduces its applicability. In some
cases it may happen that the population evolution conditions change randomly over
time. This leads to the notion of branching process in random environment (BPRE)
introduced by Smith and Wilkinson [13]. The BPRE is a population growth process,
in which the individuals reproduce independently of each other with the offspring
distribution picked randomly at each generation. More precisely, let ν be a random
measure on the set of nonnegative integers N0 := {0, 1, 2, . . . , }. Then a sequence
(νn)n≥1 of independent copies of ν can be interpreted as a random environment.
The BPRE is then the sequence Z′ = (Z′

n)n≥0 defined by the recursive formula

Z′
n+1=

∑Z′
n

k=1 ξ
(n)
k , where, given (νn)n≥1, (ξ

(n)
k )k≥1 are independent identically dis-

tributed (iid) and independent of Z′
n with the common distribution νn+1. We refer to

the recent monograph by Kersting and Vatutin [11] for an overview of fundamental
properties of this process.

We intend to study here branching processes in sparse random environment (BP-
SRE), in which homogeneity of the environment is modified on a sparse subset of
N. This is an intermediate model between Galton–Watson processes and the BPRE.
To give a precise definition, let μ be a fixed probability measure on N0 and Q =
((dk, νk))k≥1 a sequence of independent copies of a random vector (d, ν), where d is
a positive integer-valued random variable and ν is a random measure on N0 indepen-
dent of d . First we choose a subset of integers marked by the positions of a standard
random walk (Sk)k≥0 defined by

S0 = 0, Sk =
k∑

j=1

dj , k ∈ N,

and then we impose random measures at the marked sites. The branching process in
sparse random environment Q (BPSRE) is formally defined as follows:

Z0 = 1, Zn+1=
Zn∑
j=1

ξ
(n)
j , n ∈ N0,

where, if n = Sk for some k ∈ N, then, given Q, ξ
(n)
j are independent random

variables with the common distribution νk+1, which are also independent of Zn. Oth-
erwise, if n /∈ {S0, S1, S2, . . .}, then ξ

(n)
j are independent random variables with the
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common distribution μ, which are also independent of Zn. The process (Zn)n≥0 be-
haves like the Galton–Watson process, with the exception of some randomly chosen
generations in which the offspring distribution is random.

We intend to describe how the additional randomness of the environment affects
the behavior of the BPSRE. To this end, we focus on Yaglom-type results. For the
Galton–Watson process in the critical case, that is, when the expected number of
offspring is 1 (see (A2) below), it is known that the probability of survival up to the
generation n is of the order 1/n and the population size conditioned to the survival
set converges weakly to an exponential distribution (Section 9 in [2]). In contrast, in
the critical case for the BPRE, that is, when the expectation of the logarithm of the
number of offspring is 0 (see (A1)), the probability of survival up to the generation n

is asymptotically 1/
√

n, and the process conditioned to the survival event converges
weakly to a Rayleigh distribution. We prove below in Theorems 1 and 2 that, although
the environment is random on a sparse subset only, the behavior the BPSRE reminds
that of a BPRE.

To close the introduction, we mention that closely related random walks in a
sparse random environment, which is an intermediate model between the simple ran-
dom walk and the random walk in a random environment, have been recently inves-
tigated in [4–6].

1.1 Notation and assumptions

Given a deterministic or random probability measure θ on N0, define the generating
function

fθ (s) =
∞∑

j=0

sj θ({j}), |s| ≤ 1.

Denote by

Aθ := f ′
θ (1) =

∞∑
j=1

jθ({j})

its mean and by

σθ := f ′′
θ (1)

(f ′
θ (1))2 = 1

A2
θ

∞∑
j=2

j (j − 1)θ({j})

its normalized second factorial moment. We shall also use a standardized truncated
second moment defined by

κ(fθ ; a) := 1

A2
θ

∞∑
j=a

j2θ({j}), a ∈ N0.

To simplify our notation we shall write, for k ≥ 1, Ak and σk instead of Aνk
and σνk

,
respectively. Thus, in our setting (Ak)k≥1 and (σk)k≥1 are two (dependent) sequences
of iid random variables. As usual, x+ = max(x, 0) and x− = max(−x, 0) for x ∈ R.

Throughout the paper we impose the following assumptions:

(A1) E log A1 = 0, v2 := Var (log A1) ∈ (0,∞) and E(log− A1)
4 < ∞;
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(A2) Aμ = 1;

(A3) Ed3/2 < ∞ and we put m := Ed;

(A4) E(log+ κ(fν; a))4 < ∞ for some a ∈ N.

1.2 Main results

Let τSparse ∈ (0,∞] be the extinction time of (Zn)n≥0, that is,

τSparse := inf{k ≥ 0 : Zk = 0}.
The following observation is almost immediate.

Proposition 1. Under the assumptions (A1)–(A2), P{τSparse < ∞} = 1.

In this paper we focus on the annealed analysis of BPSRE (Zn)n≥0, that is, on the
behavior of (Zn)n≥0 averaged over all realizations of the environment. Our first main
result is concerned with the (annealed) tail behavior of P{τSparse > n} = P{Zn > 0}
as n → ∞.

Theorem 1. Assume (A1)–(A4). Then there exists CSparse ∈ (0,∞) such that

lim
n→∞

√
nP{τSparse > n} = CSparse. (1)

Our next result is an (annealed) Yaglom-type functional limit theorem for the pro-
cess (Zn). Recall that a Brownian meander, see [8], is a stochastic process
(B+(t))t∈[0,1] defined as follows. Let (B(t))t∈[0,1] be a standard Brownian motion
and ζ := sup{t ∈ [0, 1] : B(t) = 0} be its last visit to 0 on [0, 1]. Then

B+(t) = 1√
1 − ζ

|B(ζ + t (1 − ζ ))|, t ∈ [0, 1].

Theorem 2. Assume (A1)–(A4). Then with (B+(t))t∈[0,1] being a Brownian meander

Law

((
log Z
nt�
v
√
m−1n

)
t∈[0,1]

∣∣∣Zn > 0

)
=⇒ Law

(
(B+(t))t∈[0,1]

)
, n → ∞,

weakly on the space of probability measures on D[0, 1] endowed with the Skorokhod
J1-topology.

Using formula (1.1) in [8] we obtain the following one-dimensional result.

Corollary 1. Assume (A1)–(A4). Then, for every fixed t ∈ (0, 1],

lim
n→∞P

{
log Z
nt�
v
√
m−1n

≥ x

∣∣∣Zn > 0

}
= P{B+(t) ≥ x}, x ≥ 0. (2)

The random variable B+(t) has an absolutely continuous distribution with a bounded
nonvanishing density on [0,∞). Furthermore,

P{B+(1) ≤ x} = 1 − e−x2/2, x ≥ 0,

so B+(1) has the Rayleigh distribution.
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Remark 1. The assumption (A4) and the last part of the assumption (A1) can be
weakened without changing the formulations of the main results. A version of (A4)
appears as Assumption (C) in [11, Chapter 5]. It is a convenient general condition
allowing for an (asymptotically) closed form of the survival probability and also va-
lidity of a functional limit theorem for a critical branching process in iid random
environment. A more general version of Assumption (C) can be found in [1]. How-
ever, we prefer to sacrifice generality in favor of transparency and simplicity of the
formulations.

2 Proofs

The proof of our main results consists of three steps. First, we analyze an embedded
process (ZSn)n≥0 by finding its survival asymptotic and proving a counterpart of The-
orem 2. Second, we deduce from the results obtained for (ZSn)n≥0 the corresponding
statements for a randomly stopped process (ZSϑ(n)

)n≥0, where (ϑ(n))n≥0 is the first
passage time process for the random walk (Sk)k≥0. At the last step, we show that
(ZSϑ(n)

)n≥0 is uniformly close to (Zn)n≥0.

2.1 Analysis of the embedded process

Observe that (ZSk
)k≥0 is a branching process in iid random environment Q̃ = (̃νk)k≥1

which can be explicitly described as follows. Let ((Z̃
(i)
j )j≥0)i≥0 be a sequence of in-

dependent copies of a critical Galton–Watson process (Z̃j )j≥0 in deterministic envi-

ronment with the offspring distribution μ and Z̃0 = 1. Suppose that ((Z̃
(i)
j )j≥0)i≥0 is

independent of the environment Q. Then

ν̃k({j}) =
∞∑
l=0

νk({l})P
{

l∑
i=1

Z̃
(i)
dk−1 = j

}
, k, j ∈ N0. (3)

Let ν̃ be a generic copy of iid random measures (̃νk)k≥1. Put

g̃(s) := EsZ̃d−1 , |s| ≤ 1,

where d is assumed independent of (Z̃k)k≥0. Equality (3) entails that the generating
function of the random measure ν̃ is given by

fν̃(s) = fν(g̃(s)), |s| ≤ 1.

Since g̃′(1) = EZ̃d−1 = 1, the latter formula immediately implies that

Aν̃k
= f ′̃

νk
(1) = f ′

νk
(1) = Aνk

= Ak, k ∈ N0. (4)

Further,

σν̃k
= f ′′̃

νk
(1)

(f ′̃
νk

(1))2 = f ′′
νk

(1) + f ′
νk

(1)g̃′′(1)

(f ′
νk

(1))2

= σνk
+ σμ(Ed − 1)

Aνk

= σk + σμ(Ed − 1)

Ak

, k ∈ N0,
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where we have used that

g̃′′(1) = EZ̃d−1(Z̃d−1 − 1) = σμ(Ed − 1), (5)

see, for instance, Chapter I.2 in [2] for the last equality. Note that (4) guarantees that

E log Aν̃1 = E log Aν1 = E log A1 = 0,

which means that the embedded process (ZSn)n≥0 is critical. In particular,

τEmbed := inf{k ≥ 0 : ZSk
= 0} < ∞ a.s. (6)

Recall that we denote by κ(fθ ; a) the truncated second moment of a measure θ .

Lemma 1. Let a∗ ∈ N0 and assume that

E(log+ κ(fν; a∗))4 < ∞ and E(log− Aν)
4 < ∞.

Then E(log+ κ(fν̃; a∗))4 < ∞.

Proof. We start by writing

κ(fν̃; a) = 1

A2
ν̃

∞∑
j=a

j2
∞∑
l=0

ν({l})P
{

l∑
i=1

Z̃
(i)
d−1 = j

}

= 1

A2
ν

∞∑
l=0

ν({l})E
⎛⎝(

l∑
i=1

Z̃
(i)
d−1

)2

1{∑l
i=1 Z̃

(i)
d−1≥a

}
⎞⎠ .

In view of (5), for all a ∈ N,

E

⎛⎝(
l∑

i=1

Z̃
(i)
d−1

)2

1{∑l
i=1 Z̃

(i)
d−1≥a

}
⎞⎠ ≤ E

(
l∑

i=1

Z̃
(i)
d−1

)2

≤ C1ml2,

where m = Ed and C1 > 0 is a constant. Thus,

1

A2
ν

∞∑
l=a∗

ν({l})E
⎛⎝(

l∑
i=1

Z̃
(i)
d−1

)2

1{∑l
i=1 Z̃

(i)
d−1≥a∗

}
⎞⎠

≤ C1m

A2
ν

∞∑
l=a∗

l2ν({l}) = C1mκ(fν; a∗).

Since E(log+ κ(fν; a∗))4 < ∞, it suffices to check that

E

⎛⎝log+ 1

A2
ν

a∗∑
l=0

ν({l})E
⎛⎝(

l∑
i=1

Z̃
(i)
d−1

)2

1{∑l
i=1 Z̃

(i)
d−1≥a∗

}
⎞⎠⎞⎠4

< ∞.
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The inner expectation is equal to 0 if l = 0 and uniformly bounded by a constant
C2 > 0 for all l = 1, . . . , a∗. It remains to note that

E

(
log+ C2

A2
ν

a∗∑
l=1

ν({l})
)4

≤ E

(
log+ C2

A2
ν

∞∑
l=1

lν({l})
)4

≤ E

(
log+ C2

Aν

)4

≤ C3E

(
log+ 1

Aν

)4

+ C4 = C3E
(
log− Aν

)4 + C4 < ∞

for some C3 > 0 and C4 ≥ 0.

Using Theorem 5.1 on p. 107 in [11] we obtain the following result.

Proposition 2. Assume (A1), (A2), (A4) and Ed < ∞. Then

P{ZSn > 0} ∼ CEmbed√
n

, n → ∞

for some constant CEmbed > 0.

Furthermore, Theorem 5.6 on p. 126 in [11] entails the proposition.

Proposition 3. Assume (A1), (A2), (A4) and Ed < ∞ and E(κ(fν; a))4 < ∞ for
some a ∈ N0. Then, with (B+(t))t∈[0,1] being the Brownian meander,

Law

((
log ZS
nt�
v
√

n

)
t∈[0,1]

∣∣∣ZSn > 0

)
=⇒ Law

(
(B+(t))t∈[0,1]

)
, n → ∞,

weakly on the space of probability measures on D[0, 1] endowed with the Skorokhod
J1-topology.

The corollary given next follows from formula (1.1) in [8].

Corollary 2. Under the assumptions of Proposition 3, for every fixed t ∈ (0, 1],

lim
n→∞P

{
log ZS
nt�
v
√

n
≥ x

∣∣∣ZSn > 0

}
= P{B+(t) ≥ x}, x ≥ 0. (7)

The random variable B+(t) has an absolutely continuous distribution with a bounded
nonvanishing density on [0,∞).

Propositions 2 and 3 are the key ingredients for the proof of our main results.

2.2 Proof of Proposition 1 and Theorem 1

Recall that τEmbed = inf{k ≥ 0 : ZSk
= 0} is the extinction time of the embedded

process (ZSk
)k≥0 and note that

P{τSparse < ∞} ≥ P{τEmbed < ∞} = 1,

where the equality is justified by (6). This proves Proposition 1.
For n ∈ N0, define the first passage time ϑ(n) by

ϑ(n) := inf{k ≥ 0 : Sk > n}. (8)
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Note that

P{ZSϑ(n)
> 0} ≤ P{Zn > 0} ≤ P{ZSϑ(n)−1 > 0}, n ∈ N0.

In view of the strong law of large numbers for ϑ(n), which reads

ϑ(n)

n
→ 1

m
, n → ∞, a.s.,

and Proposition 2, it is natural to expect that

P{ZSϑ(n)
> 0} ∼ m1/2CEmbed√

n
∼ P{ZSϑ(n)−1 > 0}, n → ∞. (9)

Checking of relation (9) is clearly sufficient for a proof of Theorem 1. Furthermore,
(9) would demonstrate that

CSparse = m1/2CEmbed. (10)

Observe that

P{ZSϑ(n)
> 0} = P{τEmbed > ϑ(n)}

= P{τEmbed − 1 ≥ ϑ(n)} = P{SτEmbed−1 > n},
and, similarly,

P{ZSϑ(n)−1 > 0} = P{τEmbed > ϑ(n) − 1}
= P{τEmbed ≥ ϑ(n)} = P{SτEmbed > n}.

The desired relation (9) follows from Theorem 3.1 in [12] applied with r = 3/2
provided we can check that

nP{d > n} = o(P{τEmbed > n}) = o(P{ZSn > 0}), n → ∞.

By Proposition 2, this is equivalent to

P{d > n} = o(n−3/2), n → ∞,

which is secured by assumption (A3). This completes the proof of Theorem 1.

Remark 2. It is plausible that the assumption Ed3/2 < ∞ in Theorem 1 can be
replaced by Ed < ∞. According to Proposition 2 we still have in this case

P{τEmbed > n} ∼ CEmbed√
n

, n → ∞. (11)

For the claim of Theorem 1 to be true it is sufficient that

P{SτEmbed > n} ∼ CSparse√
n

, n → ∞. (12)

The major difficulty in proving that (11) together with Ed < ∞ implies (12) is
dependence of τEmbed and (Sk)k∈N. If these quantities were independent, then (12)
would hold, see Proposition 4.3 in [9]. In our setting, τEmbed and (Sk)k∈N are not
independent but τEmbed does not depend on the future of (Sk)k∈N in the sense of [7],
see Section 7 therein. However, we have not been able to prove any version of the
aforementioned Proposition 4.3 in [9] suitable for our purposes.
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Remark 3. The tail behavior of τSparse is rather elusive in the case where Ed = ∞
and/or E(log A1)

2 = ∞. We shall only sketch difficulties that arise in this scenario.
Let (T̂n)n∈N be a standard zero-delayed random walk with steps log Ak , k ∈ N,
see (4). It is known, see Section 5.8 in [11], that the existence of the limit

lim
n→∞P{T̂n > 0} = ρ ∈ (0, 1) (13)

and some further technical assumptions akin to (A4) imply that

P{τEmbed > n} ∼ �(n)

n1−ρ
, n → ∞,

for some � slowly varying at infinity. Assume further that the distribution of d belongs
to the domain of attraction of an α-stable law, α ∈ (0, 1). Recall that P{d > n}ϑ(n)

converges in distribution as n → ∞ to a random variable W , say, with the Mittag-
Leffler distribution with parameter α, see, for instance, Theorem 7 in [10]. Therefore,
one is tempted to write

P{Zn > 0} ∼ P{τEmbed ≥ ϑ(n)} ∼ P{τEmbed > ϑ(n)}
≈ �(1/P{d ≥ n})

(P{d ≥ n})ρ−1EWρ−1, n → ∞. (14)

The random variable W has the same distribution as S−α
α , where Sα is a random

variable with an α-stable distribution concentrated on the positive halfline. Since
ESr

α < ∞ for all r ∈ (0, α), we infer EWρ−1 < ∞. Hence, the right-hand side
of (14) is regularly varying at ∞ of index (ρ − 1)α. However, this result looks quite
dubious, since for an extremely sparse environment we expect the survivial prob-
ability to be of order close to 1/n, as for the critical Galton–Watson process. The
problem here is again the dependence of τEmbed and ϑ(n) which makes the ‘natural’
asymptotics ≈ in (14) doubtful. We do not have any reasonable conjecture for the
asymptotic behavior of P{τEmbed ≥ ϑ(n)}.

2.3 Proof of Theorem 2

We start by noting that m < ∞ together with the strong law of large numbers for
(ϑ(n)) imply

sup
t∈[0,1]

∣∣∣∣ϑ(
nt�) − 1

n
− t

m

∣∣∣∣ → 0, n → ∞, a.s.

Thus, the weak convergence claimed in Proposition 3 can be strengthened to the joint
convergence

Law

(((
log ZS
m−1nt�

v
√
m−1n

,
ϑ(
nt�) − 1

m−1n

)
t∈[0,1]

∣∣∣ZS
m−1n� > 0

))
=⇒ Law

(
(B+(t), t)t∈[0,1]

)
, n → ∞,
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which holds weakly on the space of probability measures on D[0, 1] × D[0, 1] en-
dowed with the product J1-topology. Using the continuous mapping theorem in com-
bination with continuity of the composition (see, for instance, Theorem 13.2.2 in
[14]) we infer

Law

(((
log+ ZSϑ(
nt�)−1

v
√
m−1n

)
t∈[0,1]

∣∣∣ZS
m−1n� > 0

))
=⇒ Law

(
(B+(t))t∈[0,1]

)
, n → ∞, (15)

weakly on the space of probability measures on D[0, 1]. We have replaced log by
log+ in (15) because the event {ZS
m−1n� > 0} does not entail the event{

ZSϑ(
nt�)−1 > 0 for all t ∈ [0, 1]
}
.

Now we check that (15) secures

Law

(((
log ZSϑ(
nt�)−1

v
√
m−1n

)
t∈[0,1]

∣∣∣Zn > 0

))
=⇒ Law

(
(B+(t))t∈[0,1]

)
, n → ∞. (16)

By Proposition 2, Theorem 1 and (10),

P{Zn > 0} ∼ P{ZS
m−1n� > 0} ∼ CSparse√
n

, n → ∞. (17)

Thus, the limit relation (16) follows once we can prove that

lim
n→∞

√
nP{ZS
m−1n� > 0, Zn = 0} = lim

n→∞
√

nP{ZS
m−1n� = 0, Zn > 0} = 0. (18)

In view of (17), it suffices to show that

lim
n→∞P{Zn > 0 |ZS
m−1n� > 0} = 1.

Fix any ε > 0. The assumption (A3) implies that

P{|Sn − mn| ≥ εn} = o(n−1/2), n → ∞,

by Theorem 4 in [3]. Thus,

P{Zn > 0 |ZS
m−1n� > 0}
= P{Zn > 0, S
m−1(1+ε)n� > n |ZS
m−1n� > 0} + o(1)

≥ P{ZS
m−1(1+ε)n� > 0, S
m−1(1+ε)n� > n |ZS
m−1n� > 0} + o(1)

= P{ZS
m−1(1+ε)n� > 0 |ZS
m−1n� > 0} + o(1)

=
P{ZS
m−1(1+ε)n� > 0}
P{ZS
m−1n� > 0} + o(1)
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→ (1 + ε)−1/2, n → ∞,

where we have used Proposition 2 for the last passage. Sending ε → 0 gives (18).
To finish the proof of Theorem 2 it remains to check that, for all ε > 0,

lim
n→∞P

{
sup

t∈[0,1]

∣∣∣∣ log Z
nt� − log ZSϑ(
nt�)−1

v
√
m−1n

∣∣∣∣ > ε

∣∣∣Zn > 0

}
= 0. (19)

To this end, we need an auxiliary lemma.

Lemma 2. Assume (A2), Ed < ∞ and that d is independent of (Z̃j )j≥0. Then

E

(
max

0≤k≤d
Z̃k

)
≤ 1 + Ed < ∞.

Proof. The proof follows from the chain of relations

E

(
max

0≤k≤d
Z̃k

)
≤ E

⎛⎝∑
k≥0

Z̃k 1{d≥k}

⎞⎠ =
∑
k≥0

EZ̃k · P{d ≥ k} = 1 + Ed.

In order to prove (19) we first show that

lim
n→∞P

{
sup

t∈[0,1]
log Z
nt� − log ZSϑ(
nt�)−1

v
√
m−1n

> ε

∣∣∣Zn > 0

}
= 0. (20)

Note that

Z
nt� =
ZSϑ(
nt�)−1∑

j=1

Z̃
(j)

nt�−Sϑ(
nt�)−1

(Sϑ(
nt�)−1), t ∈ [0, 1], n ∈ N, (21)

where (Z̃
(j)
k (m))k≥0 is the Galton–Watson process initiated by the j -th individual in

the generation m. On the event {Zn > 0},

Z
nt�
ZSϑ(
nt�)−1

=
∑ZSϑ(
nt�)−1

j=1 Z̃
(j)

nt�−Sϑ(
nt�)−1

(Sϑ(
nt�)−1)

ZSϑ(
nt�)−1

, t ∈ [0, 1], n ∈ N,

and thereupon

sup
t∈[0,1]

Z
nt�
ZSϑ(
nt�)−1

≤ sup
1≤k≤ϑ(n)

∑ZSk−1
j=1 max0≤i≤dk

Z̃
(j)
i (Sk−1)

ZSk−1

, n ∈ N.

Instead of (20), we shall prove a stronger relation

lim
n→∞P

⎧⎨⎩ ∑
1≤k≤ϑ(n)

∑ZSk−1
j=1 max0≤i≤dk

Z̃
(j)
i (Sk−1)

ZSk−1

> εn3
∣∣∣Zn > 0

⎫⎬⎭ = 0. (22)
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By Markov’s inequality in combination with P{Zn > 0} ≥ (1/C5)n
−1/2 for some

C5 > 0 and large n,

P

⎧⎨⎩ ∑
1≤k≤ϑ(n)

∑ZSk−1
j=1 max0≤i≤dk

Z̃
(j)
i (Sk−1)

ZSk−1

> εn3
∣∣∣ Zn > 0

⎫⎬⎭
≤ ε−1n−3

∞∑
k=1

E

⎛⎝1{Sk−1≤n}
1

ZSk−1

ZSk−1∑
j=1

max
0≤i≤dk

Z̃
(j)
i (Sk−1)

∣∣∣ Zn > 0

⎞⎠
≤ C5ε

−1n−5/2
∞∑

k=1

E

⎛⎝1{Sk−1≤n,Zn>0}
1

ZSk−1

ZSk−1∑
j=1

max
0≤i≤dk

Z̃
(j)
i (Sk−1)

⎞⎠
≤ C5ε

−1n−5/2
∞∑

k=1

E

⎛⎝1{Sk−1≤n,ZSk−1 >0}
1

ZSk−1

ZSk−1∑
j=1

max
0≤i≤dk

Z̃
(j)
i (Sk−1)

⎞⎠
= C5ε

−1n−5/2
(
E max

0≤i≤d
Z̃i

) ∞∑
k=1

P{Sk−1 ≤ n} = O(n−3/2), n → ∞.

To justify the penultimate equality, observe that, given (ZSk−1 , Sk−1), the sequences

(Z̃
(1)
i (Sk−1))i≥0, . . . , (Z̃

(ZSk−1 )

i (Sk−1))i≥0

are independent copies of the critical Galton–Watson process (Z̃i)i≥0. The last equal-
ity is a consequence of Lemma 2 and the elementary renewal theorem which states
that ∞∑

k=1

P{Sk−1 ≤ n} = Eϑ(n) ∼ n

m
, n → ∞.

We shall now check that

lim
n→∞P

{
inf

t∈[0,1]
log Z
nt� − log ZSϑ(
nt�)−1

v
√
m−1n

< −ε

∣∣∣Zn > 0

}
= 0. (23)

Using again decomposition (21), we write on the event {Zn > 0}

inf
t∈[0,1]

Z
nt�
ZSϑ(
nt�)−1

= inf
t∈[0,1]

∑ZSϑ(
nt�)−1
j=1 Z̃

(j)

nt�−Sϑ(
nt�)−1

(Sϑ(
nt�)−1)

ZSϑ(
nt�)−1

≥ inf
1≤k≤ϑ(n)

∑ZSk−1
j=1 min0≤i≤dk

Z̃
(j)
i (Sk−1)

ZSk−1

≥ inf
1≤k≤ϑ(n)

∑ZSk−1
j=1 1{Z̃(j)

dk
(Sk−1)>0}

ZSk−1

, n ∈ N.

As in the proof of (20), we shall prove a relation which is stronger than (23), namely,
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lim
n→∞P

⎧⎪⎨⎪⎩ inf
1≤k≤ϑ(n)

∑ZSk−1
j=1 1{Z̃(j)

dk
(Sk−1)>0}

ZSk−1

< εn−3
∣∣∣Zn > 0

⎫⎪⎬⎪⎭ = 0. (24)

Since P{ZSϑ(n)
> 0} ∼ P{Zn > 0} as n → ∞, by (9), and {ZSϑ(n)

> 0} entails
{Zn > 0}, relation (24) is equivalent to

lim
n→∞P

⎧⎪⎨⎪⎩ inf
1≤k≤ϑ(n)

∑ZSk−1
j=1 1{Z̃(j)

dk
(Sk−1)>0}

ZSk−1

< εn−3
∣∣∣ ZSϑ(n)

> 0

⎫⎪⎬⎪⎭ = 0. (25)

Observe that on the event {ZSϑ(n)
> 0}

ZSk−1∑
j=1

1{Z̃(j)
dk

(Sk−1)>0} > 0, k ≤ ϑ(n),

since otherwise the population does not survive up to time Sϑ(n). Using this and the
union bound yields

P

⎧⎨⎩ inf
1≤k≤ϑ(n)

1

ZSk−1

ZSk−1∑
j=1

1{Z̃(j)
dk

(Sk−1)>0} < εn−3
∣∣∣ ZSϑ(n)

> 0

⎫⎬⎭
≤

∑
k≥1

P

⎧⎨⎩0 <
1

ZSk−1

ZSk−1∑
j=1

1{Z̃(j)
dk

(Sk−1)>0} < εn−3, k ≤ ϑ(n)

∣∣∣ZSϑ(n)
> 0

⎫⎬⎭ .

Invoking P{ZSϑ(n)
> 0} ≥ (1/C6)n

−1/2 for some C6 > 0 and large n, we obtain, for
such n,

∑
k≥1

P

{
0 <

1

ZSk−1

ZSk−1∑
j=1

1{Z̃(j)
dk

(Sk−1)>0} <
ε

n3 , k ≤ ϑ(n)

∣∣∣ZSϑ(n)
> 0

}

≤ C6
√

n
∑
k≥1

P

{
0 <

1

ZSk−1

ZSk−1∑
j=1

1{Z̃(j)
dk

(Sk−1)>0} <
ε

n3 , k ≤ ϑ(n), ZSϑ(n)
> 0

}

= C6
√

n
∑
k≥1

P

{
0 <

1

ZSk−1

ZSk−1∑
j=1

1{Z̃(j)
dk

(Sk−1)>0} <
ε

n3 , Sk−1 ≤ n,ZSϑ(n)
> 0

}

≤ C6
√

n
∑
k≥1

P

{
0 <

1

ZSk−1

ZSk−1∑
j=1

1{Z̃(j)
dk

(Sk−1)>0} <
ε

n3 , Sk−1 ≤ n,ZSk−1 > 0
}
.

(26)

Let p̃ := P{Z̃d > 0} be the probability of the event that the critical Galton–Watson
process (Z̃k)k≥0 survives up to random time d independent of (Z̃k)k≥0. Obviously,
p̃ ∈ (0, 1). Given (Sk−1, ZSk−1), the sum
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ZSk−1∑
j=1

1{Z̃(j)
dk

(Sk−1)>0}

has a binomial distribution with parameters (ZSk−1 , p̃).
In what follows we denote by Bin(N, p) a random variable with a binomial dis-

tribution with N and p interpreted as the number of independent trials and a suc-
cess probability, respectively. The next lemma provides a uniform in N estimate for
P{0 < N−1Bin(N, p) ≤ x}, which is useful when x is close to zero.

Lemma 3. For all N ∈ N and x ∈ (0, p),

P{0 < N−1Bin(N, p) ≤ x} ≤ p(1 − p)x

(p − x)2 .

Proof. Plainly, P{0 < N−1Bin(N, p) ≤ x} = 0 if x < 1/N . If x ≥ 1/N , then by
Chebyshev’s inequality

P{0 < N−1Bin(N, p) ≤ x} ≤ P{Bin(N, p) ≤ Nx}
= P{Bin(N, 1 − p) − N(1 − p) ≥ N(p − x)} ≤ p(1 − p)

(p − x)2

1

N
≤ p(1 − p)

(p − x)2 x.

Using Lemma 3 we estimate the summands in (26) as follows. For k ≥ 1 and n

large enough,

P

⎧⎨⎩0 <
1

ZSk−1

ZSk−1∑
j=1

1{Z̃(j)
dk

(Sk−1)>0} < εn−3, Sk−1 ≤ n,ZSk−1 > 0

⎫⎬⎭
= P

⎧⎨⎩0 <
1

ZSk−1

ZSk−1∑
j=1

1{Z̃(j)
dk

(Sk−1)>0} < εn−3
∣∣∣ Sk−1 ≤ n,ZSk−1 > 0

⎫⎬⎭
× P{Sk−1 ≤ n,ZSk−1 > 0}

≤ p̃(1 − p̃)ε

(p̃ − εn−3)
n−3P{Sk−1 ≤ n,ZSk−1 > 0}

≤ p̃(1 − p̃)ε

(p̃ − εn−3)
n−3P{Sk−1 ≤ n}.

Summarizing, the probability on the left-hand side of (25) is bounded from above by

C6n
1/2 p̃(1 − p̃)ε

(p̃ − εn−3)
n−3

∑
k≥1

P{Sk−1 ≤ n} = O(n−3/2), n → ∞,

thereby finishing the proof of (25) and Theorem 2.
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