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Abstract The time-inhomogeneous autoregressive model AR(1) is studied, which is the pro-
cess of the form Xn+1 = αnXn + εn, where αn are constants, and εn are independent random
variables. Conditions on αn and distributions of εn are established that guarantee the geomet-
ric recurrence of the process. This result is applied to estimate the stability of n-steps tran-

sition probabilities for two autoregressive processes X(1) and X(2) assuming that both α
(i)
n ,

i ∈ {1, 2}, and distributions of ε
(i)
n , i ∈ {1, 2}, are close enough.
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1 Introduction

The classical autoregressive model Xn+1 = αXn + εn, where α is a constant and εn

are i.i.d. standard normal random variables, is well studied, and it is known, in partic-
ular, that for α ∈ (0, 1) the corresponding Markov chain is geometrically recurrent,
positive and ergodic.

However, in real applications, we cannot always guarantee that all εn are standard
normal i.i.d. random variables. In addition, parameter α may not always be the same
for all Xn. From the theoretical standpoint, it is interesting to study the behavior of
such a model when α is “oscillating” around unity and εn are independent but not
necessarily normal and identically distributed.
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So, we come to the model Xn+1 = αnXn + εn, where αn are some numbers
“around” unity and εn are independent random variables. Our goal is to find the
conditions which guarantee the geometric recurrence of such a chain and study its
stability in terms of the stability of n-steps transition probability functions.

Usually, when studying the recurrence of Markov chains, we use techniques de-
veloped in the classical theory based on a drift condition (see, for example, [5, 24]).
However, the process of interest is time-inhomogeneous, so the aforementioned tech-
niques are not applicable. That’s why we use a particular time-inhomogeneous drift
condition developed in the paper [13]. In order to establish geometric recurrence, we
use results from [12].

The general theory for inhomogeneous Markov chains is much more involved
than its homogeneous counterpart. One of the most popular instruments in research
is the coupling method (see classical books by T. Lindvall [22] and H. Thorisson
[25]). An interested reader may find an example of applying the coupling method to
the stability of Markov chains on a countable phase space in both homogeneous and
inhomogeneous cases in the papers [15, 16, 18, 20]. The papers [1, 3, 7] are devoted
to the calculation of convergence rates for subgeometrically ergodic, homogeneous
Markov chains, and [4] addresses the inhomogeneous case. All these works use the
coupling method. We heavily rely on the coupling method in the present paper. We
present a modified coupling construction that enables us to couple two different in-
homogeneous chains. Such modified coupling generates an inhomogeneous renewal
process which we use in our analysis. We can refer to the papers [14, 17] for more de-
tails about inhomogeneous renewal processes. Generally speaking, renewal processes
have been used for a long time to study Markov chains. See, for example, [2]. The
papers [6, 8, 9, 19, 21] are also related to the inhomogeneous case. Another inter-
esting example of using the renewal theory for the analysis of Markov chains with
applications in statistics is [23]. Since general inhomogeneous renewal theory is not
well-developed, we use some techniques that are specially adapted to the problem
under consideration. One of the key techniques that helps to handle inhomogeneity is
stochastic domination. Building a dominating sequence is a key aspect of our devel-
opment. See more details about this subject in [11] and [10].

Summarizing the methods described above, we can outline the plan for this paper.
First, we use the modified drift condition from [13] to establish geometric recurrence
of the autoregressive model. Then, we obtain an estimate for Ex[βσC ] for some β > 1,
where σC is the first return time to some “recurrence” set C. Second, we use the re-
sult from [12] to establish a similar estimate for a pair of autoregressive processes, i.e.
Ex,y[βσC×C ]. Third, we introduce the coupling schema for two inhomogeneous pro-
cesses and employ the renewal theory for the stability analysis. Finally, we construct
a domination sequence (see Lemmas 1–4) and use it to obtain the stability estimate.
We will show that n-steps transition probabilities for inhomogeneous processes will
be close, assuming that one-step transition probabilities are also close.

This paper is organized as follows. Section 2 contains main definitions and no-
tations. In Section 3, we present the geometric recurrence result. Section 4 contains
the main result, the stability estimate. Section 5 includes technical auxiliary lemmas.
Finally, the appendix contains the example of calculating all the necessary constants
in a practical application.
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2 Definitions and notation

Throughout this paper, we assume that all random variables are defined on a common
probability space (�,F,P). In Section 3 we deal with an inhomogeneous Markov
chain (Xn)n≥0 with values in a general phase space (E,E). We denote the chain’s
transition probability by

Pn(x,A) = P {Xn+1 ∈ A|Xn = x} , x ∈ E,A ∈ E.

When it is convenient, we will understand Pn as an operator acting on an appropriate
functional space as

Pnf (x) =
∫
R

Pn(x, dy)f (y).

By Px{X ∈ ·} we denote the probability measure generated by the process (Xn)n≥0
which starts at x ∈ E. Thus, for example

Px{Xn ∈ A,Xm ∈ B} = P{Xn ∈ A,Xm ∈ B|X0 = x}.
We denote by Ex the corresponding expectation. Strictly speaking, Px is defined on
a measurable space (E∞,E∞), and for every w = (w0, w1, . . .) ∈ E∞ we have
a canonical variable Xn(w) = wn. Thus, rigorously speaking Xn, in the context of
P and Px , represents two different random variables defined on different probability
spaces. However, such notation is very convenient and helps to develop the proper
intuition.

Next, we need a notation for a process conditioned on Xn = x, i.e.

P{(Xn+m)m≥0 ∈ ·|Xn = x}.
Note that in the homogeneous case, this would be the same Px introduced above.
But in our inhomogeneous case, we must maintain the index n in the notation since,
generally speaking, probabilities

P{(Xn+m)m≥0 ∈ ·|Xn = x}, and P{(Xk+m)m≥0 ∈ ·|Xk = x}
are not equal if k �= n. At the same time, we would like to stick to the homogeneous
notation as closely as possible. Thus, with some abuse of notation, we introduce prob-
abilities Pn

x{(Xk)k≥0 ∈ ·}, which mean

P
n
x

{
(Xk)k≥0 ∈ ·} = P

{
(Xn+k)k≥0 ∈ ·|Xn = x

}
.

We will denote the corresponding expectation by E
n
x . It is important to note that, un-

like the homogeneous case, Pn
x and P

m
x are probabilities defined on a different proba-

bility spaces. Thus, we can have a “homogeneous-style” derivation like

Ex

[
f (Xn+k)

] = Ex

[
E

n
Xn

[f (Xk)]
]
.

In Section 4 and later we deal with a pair of inhomogeneous Markov chains(
X

(1)
n , X

(2)
n

)
n≥0

. In this case, we will add a subscript i to probabilities and expecta-

tions related to the chain X(i), i ∈ {1, 2}, thus having Pi,n, the transition probability,
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Pi,x and P
n
i,x , the canonical probabilities generated by the chain X

(i)
n . In case we need

to operate with both chains simultaneously, we will use the notation

P
n
x,y

{(
X(1)

m ,X(2)
m

)
m≥0

∈ ·
}

= Px,y

{(
X

(1)
n+m,X

(2)
n+m

)
m≥0

∈ ·
∣∣∣∣ (X(1)

n , X(2)
n

)
= (x, y)

}
.

As usual, we denote by E
n
x,y the corresponding expectation.

3 Geometric recurrence for inhomogeneous autoregression chains

In this section we deal with a single time-inhomogeneous Markov chain (Xn)n≥1 with
values in (R,B) where B is a Borel σ -field.

The main result of this section is presented in the following theorem.

Theorem 1. Consider a time-inhomogeneous Markov chain (Xn)n≥0 with values in
(R,B) starting from a fixed x0 ∈ R and having the form

Xn+1 = αn+1Xn + Wn+1, n ≥ 0,

where αn ≥ 0, Wn, n ≥ 1, are independent and centered random variables defined
on the same probability space (�,F,P). Denote their distribution functions and tails
by �n(x) and �̄n(x) = 1 − �n(x) = ∫∞

x
�n(dy), respectively. Assume the following

conditions hold.

1. There exists δ > 0 such that

∞∑
k=1

⎛
⎝ k∏

j=1

max{αj + δ, 1}
⎞
⎠

−1

(1 − αk − δ)+ = ∞.

2. G := supn≥1 EW+
n < ∞.

Then for all x ∈ R and for all n ∈ N:

E
n
x

⎡
⎣ σC∏

j=1

1

αj + δ

⎤
⎦ ≤ 1 + |x| + (2G + 1 − δ)1[−c,c](x). (1)

Here

c := max

{
2G + 1

δ
− 1, 1

}
, (2)

σC = inf {n ≥ 1|Xn ∈ C} (stipulating that inf ∅ = ∞) is the first return time to the
set C = [−c, c].
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Proof. The main tool in the proof is the drift condition from the paper [13]. As a test
function we will consider

V (x) = 1 + |x|.
We will use this function for all n ≥ 1. We have then

PnV (x) =
∫
R

(1 + |αnx + y|)�n(dy)

= 1 −
∫

(−∞,−αnx]
(αnx + y)�n(dy) +

∫
(−αnx,∞)

(αnx + y)�n(dy).

For x ≥ 0 we can derive

PnV (x) = 1 − 2
∫

(−∞,−αnx]
(αnx + y)�n(dy) +

∫
R

(αnx + y)�n(dy)

= 1 + αnx − 2αnx�n(−αnx) + 2
∫

(−∞,−αnx]
(−y)�n(dy)

≤ αn(1 + |x|) + (1 − αn) + 2EW−
n = αnV (x) + (1 − αn) + 2G,

where we used the fact EW+
n − EW−

n = EWn = 0 and Condition 2.
Put

λn = αn + δ,

and write

PnV (x) ≤ λnV (x) + (1 − αn) + 2G − (λn − αn)V (x)

= λnV (x) + (1 − αn) + 2G − δ (1 + |x|) . (3)

Now we select constant c such that

(1 − αn) + 2G − δ(1 + c) ≤ 0,

for example

c = max

{
2G + 1

δ
− 1, 1

}
.

Thus, we arrived to the following inequality for all x ≥ 0:

PnV (x) ≤ λnV (x) + (2G + 1 − δ)1[−c,c](x), (4)

By exactly the same reasoning aplied to x ≤ 0 we see that inequality (4) is valid for
all x ∈ R.

Condition 1, along with inequality (4), ensures the conditions of Theorem 4 with
the set C = [−c, c]. The desired result now follows from Theorem 4.

Remark 1. Condition 1 in Theorem 1 is a relaxed form of a separation from unity
condition:

sup
n

αn < 1.
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Clearly, in this case, we can select δ = (1 − supn αn)/2, so that αn + δ < 1 for all n,
and Condition 1 is equivalent to∑

n≥1

(1 − αn − δ) = ∞

which is obviously true since 1 − αn − δ ≥ (1 − supn αn)/2 > 0. The novelty of this
result is that we allow αn to be greater than 1 from time to time.

Remark 2. Since random variables Wn are centered, Condition 2 is equivivalent to

sup
n

E|Wn| < ∞.

The following immediate corollary could be useful in practical applications.

Corollary 1. Assume conditions of Theorem 1 hold true and there exist two constants
ψ > 1 and C0 > 0 such that

n∏
k=1

(αk + δ) ≤ C0ψ
−n.

Then, for all x ∈ R,

E
n
x

[
ψσC

] ≤ C0
(
1 + |x| + (2G + 1 − δ)1[−c,c](x)

)
.

Remark 3. In the homogeneous theory, geometric recurrence implies a correspond-
ing chain’s positivity and geometric ergodicity. However, in the time-inhomogeneous
case, such a conclusion is wrong in general since essentially inhomogeneous chains
(which are not asymptotically homogeneous) usually do not have a stationary distri-
bution.

4 Stability of general autoregressive models

In this section we consider a set of independent random variables W
(i)
n : � → R with

distributions �
(i)
n (A) = P{W(i)

n ∈ A} and a pair of Markov chains

X(i)
n = α(i)

n X
(i)
n−1 + W(i)

n , (5)

n ≥ 1, i ∈ {1, 2}, x
(i)
0 ∈ R.

Our goal is to demonstrate that

sup
n

∥∥∥P {X(1)
n ∈ ·

}
− P

{
X(2)

n ∈ ·
}∥∥∥

T V
→ 0, ε → 0,

where ε defines how “close” are families
{
�

(1)
n , n ≥ 0

}
and

{
�

(2)
n , n ≥ 1

}
.

We define ε by

ε := 1

2
sup

x∈R,n≥1,A∈B

∣∣∣�(1)
n

(
A − α(1)

n x
)

− �(2)
n

(
A − α(2)

n x
)∣∣∣ . (6)
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It is important to emphasize that one-step transition probabilities for two chains
do not coincide when n → ∞ and remain different. Strictly speaking, ε is an internal
characteristic of a pair of processes and “changing” ε means shifting to another pair
of processes. This can be illustrated by the example that we will use across this paper
which emphasizes the dependence of ε and assumes the following representation:

�
(1)
n = (1 − ε̃)�n + ε̃R

(1)
n ,

�
(2)
n = (1 − ε̃)�n + ε̃R

(2)
n ,

(7)

where ε̃ is a small constant. Here we can think of �n as a “common part” of �
(1)
n and

�
(2)
n , and R

(i)
n states for a residual part. This particular example can also be considered

as a two-steps model, in which we flip a coin with a probability of “success” 1 − ε̃,
and if the flip was “successful” we render the next W

(i)
n from a common distribution

�n, otherwise from a residual distribution R
(i)
n . The connection between ε̃ and ε in

(6) is immediate:

ε = 1

2
sup

x∈R,n≥1,A∈B

∣∣∣ε̃R(1)
n

(
A − α(1)

n x
)

− ε̃R(2)
n

(
A − α(2)

n )x
)∣∣∣ ≤ ε̃.

Our goal is to find conditions which ensure proximity of n-steps transition proba-
bilities for all n, given only one-step proximity. Additionally, we want to demonstrate
that such proximity is approximately of order ε, and all involved constants can be
calculated in practical applications.

For this purpose we construct a coupling for chains X(1) and X(2). First, we as-
sume that conditions of Theorem 3 hold, let C = [−c, c] to be a corresponding set
and introduce the following condition.

Condition M (Minorization condition). Assume that there exists a sequence of real
numbers {an, n ≥ 1}, an ∈ (0, 1), and a sequence of probability measures νn on
(R,B) such that:

inf
x∈C

�n

(
A − α(i)

n x
)

≥ anνn(A), i ∈ {1, 2},
inf
n

νn(C) > 0,

0 < a∗ := inf
n

an ≤ an ≤ a∗ := sup
n

an < 1,

for all A ∈ B and n ≥ 1.

Remark 4. Going forward we will require Condition M for both
{
�

(1)
n , n ≥ 1

}
and{

�
(2)
n , n ≥ 1

}
with the same {an, n ≥ 1} and νn. At the same time, in the scheme (7)

it is sufficient to require Condition M only for the “common part” �n. This illustrates
that parameters {an, n ≥ 1} and measures νn do not depend on ε.

Second, we introduce substochastic kernels

Qn(x, ·) = mini

{
�

(i)
n

(
· − α

(i)
n x

)}
, (8)
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where min should be understood as a minimum of two measures (see [5], Proposition
D.2.8 as an example of a formal definition).

Note that by definition of ε and elementary equality a ∧ b = a+b−|a−b|
2

Qn(x,R) ≥ 1 − ε.

We denote the residual substochastic kernels by

R(i)
n (x,A) = �(i)

n

(
A − α(i)

n x
)

− Qn(x,A),

so that
R(i)

n (x,R) ≤ ε.

Here, Qn is a general analogue of a “common part” in (7).
To prove the main result, we will need some regularity conditions on Qn.

Condition T (Tails condition). Denote Am = {y ∈ R : |y| ∈ [m,m + 1)}. Assume
that there exist sequences {Ŝn, n ≥ 1}, {r̂n, n ≥ 1}, such that

Qt,k(x,Am) ≤ Qt,k(x,R)Ŝm, x ∈ C,

νtQ
t,k(Am) ≤ νtQ

t,k(x,R)Ŝm,

m̂ =
∑
m≥1

Ŝm < ∞,

sup
i,k,x∈Am

∫
R

R
(i)
k (x, dy)|y| ≤ r̂m,

� =
∑
m≥1

r̂mŜm < ∞,

The motivation for this condition is as follows. We may think of Q̃t,k(x, ·) =
Qt,k(x,·)
Qt,k(x,R)

as a proper k-steps transition probability, which is true in the case of schema
(7). Generally speaking, this is not true, and we need additional regularity condi-
tions to ensure that function x �→ Qt(x,R) does not vary too much (in schema (7)
Qt(x,R) = 1 − ε̃ and does not depend on x at all). We do not need Q̃t = Q̃t,1 to
be a proper Markov kernel in our derivations, so we do not impose any additional
conditions. But we can think of Q̃t as a Markov kernel and Q̃t,k as k-steps transi-
tion probability function to develop the intuition behind Condition T. First, imagine
Q̃t (x, ·) is a homogeneous Markov kernel that is driving “coupling chain”, so that
Q̃t (x, ·) = Q̃(x, ·). Assume the kernel is irreducible and geometrically recurrent
(and thus positive), so there exists an invariant probability measure, say π . Denote
π̄m = π(Am). We can write∑

m≥0

Q̃k(x,Am) =
∑
m≥0

Q̃k(x,Am) − π̄m + π̄m ≤
∑
m≥0

|Q̃k(x, ·) − π |(Am) + π̄m

≤ 1 + |Q̃k(x, ·) − π |(R) = 1 + ||Q̃k(x, ·) − π ||T V

≤ 1 +
∑
k≥1

||Q̃k(x, ·) − π ||T V < ∞.
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Assuming that C is a geometrically recurrent set, we may conclude

sup
x∈C,k≥1

∑
m≥0

Q̃k(x,Am) ≤ 1 + sup
x∈C

∑
k≥1

||Q̃k(x, ·) − π ||T V < ∞.

This demonstrates that condition Qt,k(x,Am)

Qt,k(x,R)
≤ Ŝm, x ∈ C, is reasonable.

Let us now discuss the condition on R
(i)
k (x, dy). This condition requires that the

“shifted” residual process does not go far away from its starting position. For ex-
ample, if R

(i)
k are also centred and have the “autoregressive” form, R

(i)
k (x, dy) =

F
(i)
k (dy − x), the derivation of Section 3 demonstrates that it is reasonable to expect

r̂n = O(n). In this case, condition � < ∞ is reduced to

sup
x∈C

∑
n≥1

n||Qn(x, ·) − π(·)||T V < ∞,

and ∫
R

|y|π(dy) < ∞,

which are also reasonable conditions that are satisfied in the case of the geometrically
ergodic autoregressive model. Moreover, the homogeneous theory tells us that exist-
ing of a small set C (in the sense of Condition M) with a finite second moment of the
return time is sufficient for the above conditions to hold.

It is easy to show that a similar motivation remains valid for inhomogeneous
autoregressive models. Assume Q̃n(x, ·) = �̃n(· − αnx), so that we can construct
the chain (Yn)n≥0 of the form Yn+1 = αn+1Yn + Un+1, n ≥ 0, where Un ∼ �̃n are
independent and centred random variables. The transition kernels of the chain (Yn)

are Q̃n. Then the Chebyshev inequality turns into

Q̃t,k(x,Am) ≤ P
t
x {|Yk| ≥ m} ≤ E

t
x[|Yk|2]
m2 .

Next, we write

Yn =
n∑

k=0

⎛
⎝ n∏

j=k+1

αj

⎞
⎠Uk,

here U0 ∈ [−c, c] is a fixed (nonrandom) initial state and
∏n

n+1 = 1. Assume that
Un, n ≥ 1, have the uniformly bounded second moment. Denote its bound by μ2. We
can then set

Ŝm = max{μ2, c
2}

m2 sup
n

n∑
k=0

n∏
j=k+1

α2
j .

So, we can conclude that the existence of the uniformly bounded second moment (or
any higher moments) for distributions �̃n along with the condition

sup
n

n∑
k=0

n∏
j=k+1

α2
j < ∞ (9)
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are the sufficient conditions for building {Ŝn, n ≥ 1}. Note that Condition 1 of Theo-
rem 1 requires a set {n ≥ 1 : αn > 1 − δ} (for some δ < 1) to be very sparse, so that
it is reasonable to expect

sup
n

n∑
k=0

n∏
j=k+1

α2
j ≤ M

1 − δγ
,

for some constants M and γ > 0. Of course, in order to ensure
∑
m

r̂mŜm < ∞ we

may need to impose a stronger condition on Un, for example, to have a uniformly
bounded fourth, or even exponential, moment.

Generally speaking, Condition T requires that the “residual mean” grows slower
than the Q̃n-chain “advances in space”, in other words, the probability of hitting
distant regions of the phase space is small enough to compensate for the “residual
mean’s” growth as the starting point x is moving away from the origin. It should
be clear now that the most typical autoregression, the Gaussian one, satisfies this
condition as long as all variances are uniformly bounded.

Remark 5. In the discussion above, we have shown that we may expect r̂n = O(n),
which in turn means that m̂ < A�, where A is some constant. However, we have
never formally proved that r̂n ≥ 1, so we keep both conditions m̂ < ∞ and � < ∞
even if, in usual circumstances, the latter implies the former.

Finally, we would like to mention that � is in fact �(ε) (we have shown that
R

(i)
k (x,R) ≤ ε), which means it should be small as ε → 0. In schema (7) we clearly

have � = O(ε).
Assuming Condition M holds true, we define “noncoupling” operators

T
(i)
t (x, A) = �

(i)
t (A − atx) − atνt (A)

1 − at

,

T (t)
xy (A,B) = T

(1)
t (x, A)T

(2)
t (y, B).

We define the Markov chain Z̄n =
(
Z

(1)
n , Z

(2)
n , dn

)
with values in (R,R, {0, 1, 2})

by setting its transition probabilities

P̄n(x, y, 1; A × B × {2}) = 1x=yQn(x,A ∩ B),

P̄n(x, y, 1; A × B × {0}) = 1x=y

R
(1)
n (x,A)R

(2)
n (y, B)

1 − Qn(x,R)
,

we assume the latter probability is equal to zero if Qn(x,R) = 1,

P̄n(x, y, 0; A × B × {0}) = (1 − an)1C×C(x, y)T (1)
n (x,A)T (2)

n (y, B)

+ (1 − 1C×C(x, y))�(1)
n (A − α(1)

n x)�(2)
n (A − α(2)

n y),

P̄n(x, y, 0; A × B × {1}) = 1C×C(x, y)anνn(A ∩ B).

P̄n(x, y, 2; ·) = P̄n(x, y, 1; ·).
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All other probabilities are equal to zero.
It is straightforward that marginal distributions of the process Z̄n equal to those

of X
(i)
n .

We will use the canonical probability P̄
t
x,y,d and the expectation Ē

t
x,y,d , x, y ∈ R,

d ∈ {0, 1, 2} in the same sense as before.
Let us denote by

σ̄C×C = σ̄C×C(1) = inf
{
n ≥ 1 :

(
Z(1)

n , Z(2)
n

)
∈ C × C

}
,

σ̄C×C(m) = inf
{
n ≥ σ̄C×C(m − 1) :

(
Z(1)

n , Z(2)
n

)
∈ C × C

}
, m ≥ 2,

the first and m-th return times to C × C by the pair
(
Z

(1)
n , Z

(2)
n

)
.

We will also need a special notation for the sets

Dn = {d1 = d2 = · · · = dn = 0},
Dnk = {d1 = d2 = · · · = dn = 0, σ̄C×C(k) = n},
Bnk = {dk ∈ {1, 2}, dk+1 = 0, . . . dn = 0} ,

(10)

and for the values
ρnk = sup

x,y∈C,t

P̄
t
x,y,0 (Dnk) . (11)

Theorem 2. Let X(i) be two Markov chains defined in (5) that simultaneously satisfy
Condition M, Condition T and conditions of Corollary 1 with ψ > 1, and C = [−c, c]
be a corresponding set.

Then there exist constants M1,M2 ∈ R, such that for every x ∈ C∣∣∣∣∣∣Pt
x

{
X(1)

n ∈ ·
}

− P
t
x

{
X(2)

n ∈ ·
}∣∣∣∣∣∣ ≤ εm̂M1 + �M2, (12)

where m̂ and � are defined in Condition T.
For every x /∈ C the following inequality holds true:∣∣∣∣∣∣Pt

x

{
X(1)

n ∈ ·
}

− P
t
x

{
X(2)

n ∈ ·
}∣∣∣∣∣∣ ≤ ε(2m̂M1 + μ̂(x)) + 2�M2, (13)

where

μ̂(x) = sup
t

∑
k≥1

⎛
⎝k−1∏

j=0

Qt+j1R\C

⎞
⎠ (x,R \ C).

Remark 6. By Qt1A we understand a kernel that is equal to Qt(x, ·) if x ∈ A and
zero otherwise. So we have ⎛

⎝n−1∏
j=0

Qt+j1A

⎞
⎠ (x, B)

= 1A(x)

∫
A

. . .

∫
A

Qt(x, dy1)Qt+1(y1, dy2) . . . Qt+n−1(yn−1, B).



324 V. Golomoziy

Remark 7. Recall the process Z̄ =
(
Z

(1)
n , Z

(2)
n , dn

)
n≥0

that is defined above. We

can interpret μ̂(x) as

μ̂(x) = sup
t

∑
n≥1

P̄
t
x,x,1{d1 = · · · = dn = 2, Z

(1)
j = Z

(2)
j /∈ C, j ≤ n}.

We can think of μ̂(x) as an “expectation” for the first time the “coupled chain” vis-
its C. The difficulty of calculating μ̂ in a practical application depends on the exact
model. However, it is typical that the “common part process” enjoys the same prop-
erties as each of the original ones. In the context of this paper, this means that the
“common part process” will be geometrically recurrent.

We can demonstrate how to calculate μ̂(x) in schema (7). In this case, we can
factor out decoupling trials and the process’s advancement in space. Let (Yn)n≥0 be a
canonical autoregressive process generated by the family {�n, n ≥ 1} and P̃

t
x be the

corresponding probability. Without loss of generality we assume ε̃ = ε. Let

σ̃ = inf{t ≥ 1 : Yt ∈ C}
and assume there exists ψ > 1 such that

g(x) = sup
t

Ẽ
t
x

[
ψσ̃
]

< ∞.

Then, we can write

μ̂(x) = sup
t

∑
n≥1

P̄
t
x,x,1{d1 = · · · = dn = 2, Z

(1)
j = Z

(2)
j /∈ C, j ≤ n}

= sup
t

∑
n≥1

(1 − ε)nP̃t
x (σ̃ ≥ n) ≤ sup

t

∑
n≥1

(1 − ε)nψ−ng(x)

= g(x)
(1 − ε)ψ−1

1 − (1 − ε)ψ−1 → g(x)

ψ − 1
, ε → 0.

Finally, g(x) can usually be estimated by constructing a Foster–Lyapunov function
satisfying a drift condition for the process (Yn)n≥0.

Remark 8. It is possible to calculate all constants involved in (12) in terms of G, δ,
a∗, a∗, infn νn(C), ψ that are defined in Theorem 1, Corollary 1 and Condition M.
See Appendix A for an example of such calculation.

Proof. Using the standard coupling approach we first obtain∣∣∣Pt
x

{
X(1)

n ∈ A
}

− P
t
x

{
X(2)

n ∈ A
}∣∣∣

= ∣∣P̄t
x,x,1

{
Z̄n ∈ (A,R, {0, 1, 2})}− P̄

t
x,x,1

{
Z̄n ∈ (R, A, {0, 1, 2})}∣∣

= ∣∣P̄t
x,x,1

{
Z̄n ∈ (A,R, {0})}− P̄

t
x,x,1

{
Z̄n ∈ (R, A, {0})}∣∣

≤ max
{
P̄

t
x,x,1

{
Z̄n ∈ (A,R, {0})} , P̄t

x,x,1

{
Z̄n ∈ (R, A, {0})}}

≤ P̄
t
x,x,1 {dn = 0} .
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Let us denote a kernel

�t
k(x,A) = P̄

t
x,x,1

{
dk ∈ {1, 2}, Z(1)

k = Z
(2)
k ∈ A

}
,

and a set
Am = {y ∈ R : |y| ∈ [m,m + 1)}.

We note that since P̄n(x, y, 1; ·) = P̄n(x, y, 2; ·) we have

P̄
t
x,x,1(Bnk) =

∫
R

P̄
t
x,x,1

{
dk = 1, Z

(1)
k = Z(2) = dy

}
P̄

t+k
y,y,1(Dn−k)

+
∫
R

P̄
t
x,x,1

{
dk = 2, Z

(1)
k = Z

(2)
k = dy

}
P̄

t+k
y,y,2(Dn−k)

= �t
k(x, dy)P̄t+k

y,y,1(Dn−k).

We apply this equality to the last decoupling time and derive:

P̄
t
x,x,1{dn = 0} =

n−1∑
k=1

P̄
t
x,x,1(Bnk) =

n−1∑
k=1

∫
R

�t
k(x, dy)P̄t+k

y,y,1(Dn−k)

=
n−1∑
k=1

∑
m≥0

∫
Am

�t
k(x, dy)P̄t+k

y,y,1(Dn−k)

≤
n−1∑
k=1

∑
m≥0

�t
k(x,Am) sup

y∈Am

P̄
t+k
y,y,1(Dn−k). (14)

Next, we want to replace �t
k(x,Am) with Ŝm and apply Lemma 8. However, this

can only be done for x ∈ C. Indeed:

�t
k(x,Am) =

k−1∑
j=0

P̄
t
x,x,1{dj = 1}P̄t+j

νj ,1{dl = 2, l ∈ 1, k − j, Z
(1)
k−j = Z

(2)
k−j ∈ Am}

=
k−1∑
j=0

P̄
t
x,x,1{dj = 1}νjQ

t+j,k−j (Am) ≤
k−1∑
j=0

P̄
t
x,x,1{dj = 1}νjQ

t+j,k−j (R)Ŝm

= Ŝm

k−1∑
j=0

P̄
t
x,x,1{dj = 1, dj+1 = · · · dk = 2} = ŜmP

t
x,x,1{dk = 2} ≤ Ŝm.

Here νj (du, dv) = 1du=dv(1{j=0}δx + 1{j>0}ν(du)) helps us to include the case
of j = 0 (i.e. no decouplings from the beginning) into the previous derivations.
Applying this bound and Lemma 8 to (14) we obtain for x ∈ C:

P̄
t
x,x,1{dn = 0} ≤

∑
m≥0

Ŝm(εM1 + r̂mM2) = εm̂M1 + �M2. (15)

Now we consider the case x /∈ C. Let us denote

σ̄ = inf{t > 0 : Z
(1)
t = Z

(2)
t ∈ C, d1 = · · · = dt = 2} ≤ ∞.
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For x /∈ C we have

�t
k(x,Am) =

k−1∑
j=1

P̄
t
x,x,1{dj = 1}P̄t+j

ν,1 {dl = 2, l ∈ 1, k − j, Z
(1)
k−j = Z

(2)
k−j ∈ Am}

+P̄
t
x,x,1{d2 = · · · = dk−1 = 2, Z

(1)
k−1 = Z

(2)
k−1 ∈ Am} ≤ Ŝm

+
k−1∑
j=1

P̄
t
x,x,1{d2 = · · · = dk−1 = 2, σ̄ = j, Z

(1)
k−1 = Z

(2)
k−1 ∈ Am}

+P̄
t
x,x,1{d2 = · · · = dk−1 = 2, σ̄ ≥ k, Z

(1)
k−1 = Z

(2)
k−1 ∈ Am}

≤ Ŝm + ŜmP̄
t
x,x,1(d1 = · · · = dk−1 = 2, σ̄ < k) + qk,m(x) ≤ 2Ŝm + qk,m(x),

where

qk,m(x) = P̄
t
x,x,1{d2 = · · · = dk−1 = 2, σ̄ ≥ k, Z

(1)
k−1 = Z

(2)
k−1 ∈ Am}.

Denote
qk(x) =

∑
m≥0

qk,m(x).

Applying this result and the obvious inequality P̄
t+k
y,y,1(Dn−k) ≤ ε to (14), we get for

x /∈ C

P̄
t
x,x,1{dn = 0} ≤ 2εm̂M1 + 2�M2 + ε

∑
k≥0

qk(x) ≤ ε(2m̂M1 + μ̂(x)) + 2�M2.

Here we used the fact ∑
k≥0

qk(x) = μ̂(x).

5 Auxiliary results

Everywhere in this section we assume that conditions of Theorem 1 are valid as well
as Condition C and will use the corresponding notation.

We start by introducing an important result that allows us to connect the expec-
tation of the exponential moment of σC×C with individual exponential moments of
σ

(i)
C .

Theorem 3. Let
X

(1)
n+1 = α(1)

n X(1)
n + W(1)

n ,

and
X

(2)
n+1 = α(2)

n X(2)
n + W(2)

n ,

be two Markov chains. Let �
(i)
n be a distribution of W

(i)
n and all W

(i)
n be independent.

Assume that both chains satisfy conditions of Corollary 1 and Condition M for the set
C = [−c, c] where c is defined in (2).

Then there exist ψ1 > 1 and �0, �1 ∈ R, such that for every x, y ∈ R and n ≥ 0

E
n
x,y

[
ψ

σC×C

1

] ≤ �0(|x| + |y|) + �1.
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Remark 9. Constants �0, �1 can be calculated using results from [12]. We will show
how this can be done in Appendix A.

Proof. From [12], Theorem 4.2, we get

E
n
x,y

[
ψ

σC×C

1

] ≤ M

(
E

n
x

[
ψ

σ
(1)
C

0

]
S1(ψ0) + E

n
y

[
ψ

σ
(2)
C

0

]
S2(ψ0)

)
,

where, ψ0, ψ1 ∈ (1, ψ) and M ∈ R are some constants and

Si(u) = sup
n,x∈C

{
1

1 − an

(
E

n
x

[
uσ

(i)
C

]
− anE

n
νn

[
uσ

(i)
C

])}
.

Since ψ0 < ψ , Corollary 1 turns into

Si(ψ0) ≤ 1

1 − a∗ sup
n,x∈C

E
n
x

[
ψσ

(i)
C

]
≤ C0(2 + 2G + c − δ)

1 − a∗ .

Next we apply Corollary 1 to E
n
x

[
ψ

σ
(i)
C

0

]
and get

E
n
x,y

[
ψ

σC×C

1

] ≤ �0(|x| + |y|) + �1, (16)

�0 = MC2
0(2 + 2G + c − δ)

1 − a∗ , (17)

�1 = �0(2 + (1 + 2G − δ)(1C(x) + 1C(y))). (18)

Next we introduce
h(x, y) = sup

n
E

n
x,y

[
ψ

σC×C

1

]
(19)

and

Ht(x) =
∫
R2\C×C

R
(1)
t (x, dy)R

(2)
t (x, dz)

1 − Qt(x,R)
h(y, z). (20)

Going forward we will use the notation from Theorem 1, Corollary 1, Theorem 3
and Condition M. We now present a series of lemmas that are necessary to prove the
main result.

Lemma 1. For all (x, y) /∈ C × C

P̄
t
x,y,0 {σC×C ≥ n} ≤ ψ−n

1 h(x, y).

Proof. For all (x, y) /∈ C × C

P̄
t
x,y,0 {σC×C ≥ n} = P

{
σ

(t)
C×C ≥ n

∣∣∣ X
(1)
t = x,X

(2)
t = y

}
≤ δ−n

1 E
t
x,y

[
δ
−σC×C

1

]
= ψ−n

1 h(x, y). (21)

The first equality above is due to the definition P̄
t
x,y,0, then we used the Chernoff

inequality and definition (19).
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Remark. Note, that it is important in the preceding derivations that (x, y) /∈ C × C.
In this case the distribution of the pair

(
Z(1), Z(2)

)
coincides with that of

(
X(1), X(2)

)
on the time intervall [0, σ̄C×C − 1] which makes the first equality valid and allows us
to move from the probability measure P̄ to P, and use geometric recurrence result for
a paired chain.

Lemma 2.
P̄

t
x,x,1 {d1 = 0, σ̄C×C ≥ n} ≤ ψn−1

1 Ht(x),

where Ht(x) is defined in (20) and x ∈ R.

Proof. We use Lemma 1 and definition of probability P̄ to derive

P̄
t
x,x,1 {d1 = 0, σ̄C×C ≥ n}

=
∫
R2\C×C

R
(1)
t (x, dy)R

(2)
t (x, dz)

1 − Qt(x,R)
P̄

t
y,z,0 {σ̄C×C ≥ n − 1}

≤ ψn−1
1

∫
R2\C×C

R
(1)
t (x, dy)R

(2)
t (x, dz)

1 − Qt(x,R)
h(y, z)

= ψn−1
1 Ht(x).

Now, we consider a situation when the pair
(
Z

(1)
k , Z

(2)
k

)
hits C ×C exactly once.

Lemma 3.

P̄
t
x,x,1

{
dj = 0, j = 1, n, σ̄C×C ≤ n < σ̄C×C(2)

} ≤ S ((n − 1)Ht (x) + ε)

ψn−1
1

, (22)

where

S = (1 − a∗) sup
x,y∈C,t≥0,

∫
R2\C×C

T (t)
x,y(du, dv)h(u, v).

Proof. For any x ∈ R

P̄
t
x,x,1

{
dj = 0, j = 1, n, σ̄C×C ≤ n < σ̄C×C(2)

}
=

n∑
k=1

P̄
t
x,x,1

{
dj = 0, j = 1, n, σ̄C×C = k, σ̄C×C(2) > n

}

=
n∑

k=1

∫
C×C

P̄
t
x,x,1

{
d1 = 0, σ̄C×C = k,

(
Z

(1)
k , Z

(2)
k , dk

)
= (du, dv, 0)

}
×

× P̄
t+k
u,v,0 {σ̄C×C > n − k} ≤

n∑
k=1

P̄
t
x,x,1 {d1 = 0, σ̄C×C = k, dk = 0} ×

× sup
x,y∈C

P̄
t+k
x,y,0 {d1 = 0, σ̄C×C > n − k} .

Note that we cannot apply Lemma 1 to the last term, because initial values (x, y) ∈
C × C, and so the distribution of the first step for a Z̄-chain under the measure P̄ is
different from that of (X(1), X(2))-chain under P. So we have for all (x0, y0) ∈ C ×C

P̄
t+k
x0,y0,0

{d1 = 0, σ̄C×C > n − k}
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= (1 − at+k)

∫
R2\C×C

T
(1)
t+k(x0, dx)T

(2)
t+k(y0, dy)P̄t+k+1

x,y,0 {σ̄C×C ≥ n − k} .

Now we can apply Lemma 1 to P̄
t+k+1
x,y,0 {σ̄C×C ≥ n − k} and obtain the inequality

sup
x0,y0∈C

P̄
t+k
x0,y0,0

{d1 = 0, σ̄C×C ≥ n − k}

≤ 1 − a∗
ψ

(n−k)
1

sup
x0,y0∈C

∫
R2\C×C

T (t+k)
x0,y0

(dx, dy)h(x, y)

= Sψ
−(n−k)
1 .

(23)

Using Lemma 2 for k ≥ 2 we get

P̄
t
x,x,1 {d1 = 0, dk = 0, σ̄C×C = k} ≤ P̄

t
x,x,1 {d1 = 0, σ̄C×C ≥ k}

≤ ψ
−(k−1)
1 Ht(x). (24)

It is clear that for k = 1

P̄
t
x,x,1 {d1 = 0, σ̄C×C = 1} = R

(1)
t (x, C)R

(2)
t (x, C)

1 − Qt(x,R)
≤ ε. (25)

Now combining (23)–(25) we get that

P̄
t
x,x,1

{
dj = 0, j = 1, n, σ̄C×C ≤ n < σ̄C×C(2)

}
≤ S

n∑
k=1

P̄
t
x,x,1 {d1 = 0, σ̄C×C = k, dk = 0} ψ

−(n−k)
1

≤ S

(
n∑

k=2

Ht(x)ψ
−(k−1)
1 ψ

−(n−k)
1 + εψ

−(n−1)
1

)

= S
(
ψ

−(n−1)
1 (n − 1)Ht (x) + εψ

−(n−1)
1

)
= Sψ

−(n−1)
1 ((n − 1)Ht (x) + ε) .

Finally, we look at the situation when the pair
(
Z

(1)
k , Z

(2)
k

)
hits C × C exactly

k ≥ 2 times.

Lemma 4. For all x ∈ R

P̄
t
x,x,1 {Dn, σ̄C×C(k) ≤ n < σ̄C×C(k + 1)}

≤ SHt(x)

n−k+1∑
i=2

δ
−(i−1)
1

n−i∑
j=k−1

ρj,k−1δ
−(n−i−j)

1

+ εS

n−1∑
j=k−1

ρj,k−1δ
−(n−j−1)
1 ,

where ρnk is defined in (11), and S is from Lemma 3.
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Proof. Using the first entrance – last exit decomposition and the Markov property,
we get the following representation of the probability of interest

P̄
t
x,x,1 {Dn, σ̄C×C(k) ≤ n < σ̄C×C(k + 1)}

=
n−k+1∑

i=1

n∑
j=i+k−1

∫
C×C

P̄
t
x,x,1

{
Di1,

(
Z

(1)
i , Z

(2)
i

)
= (dy1, dy2)

}
×

×
∫

C×C

P̄
t+i
x,y,0

{
Dj−i,k−1,

(
Z

(1)
j−i , Z

(2)
j−i

)
= (dz1, dz2)

}
× P̄

t+j

z1,z2,0
{d1 = 0, σ̄C×C > n − j} .

Here index i stands for the first hitting. Since there are k total hittings during the n

timesteps, the first hitting may not occur later than n − k, otherwise there will be no
“space” for the rest k − 1 hittings. Similar arguments applied to j , which is the time
of the last hitting. Since there are exactly k − 1 hittings on the time interval (i, j ], j

may not be closer than k −1 to i, otherwise k −1 hittings will not fit into the interval.
Now we take supremum over x, y ∈ C and t ≥ 0 in the second and third terms and
arrive to the inequality

P̄
t
x,x,1 {Dn, σ̄C×C(k) ≤ n < σ̄C×C(k + 1)} ≤

n−k+1∑
i=1

n∑
j=i+k−1

P̄
t
x,x,1 {Di1} ×

× supx,y∈C,t P̄
t
x,y,0

{
Dj−i,k−1

}
supx,y∈C,t P̄

t
x,y,0 {d1 = 0, σ̄C×C > n − j}

(26)

We immediately recognize the second multiplier as ρj−i,k−1.
Using the same arguments as in Lemma 3 (see inequality (23)), we get an estimate

for the third multiplier

sup
x,y∈C,t

P̄
t
x,y,0 {d1 = 0, σ̄C×C > n − j} ≤ Sψ

−(n−j)

1 .

Using Lemma 2 we obtain a bound for the first multiplier for i ≥ 2

P
t
x,x,1 {d1 = di = 0, σ̄C×C = i} ≤ sup

x∈R
P

t
x,x,1 {d1 = 0, σ̄C×C ≥ i}

≤ ψ
−(i−1)
1 Ht(x).

For i = 1 we have

P
t
x,x,1 {d1 = 0, σ̄C×C = 1} = R

(1)
t (x, C)R

(2)
t (x, C)

1 − Qt(x,R)
≤ ε. (27)

Substituting the bounds for the first and third multipliers into (26), we get

P̄
t
x,x,1 {Dn, σ̄C×C(k) ≤ n < σ̄C×C(k + 1)}

≤
n−k+1∑

i=2

n∑
j=i+k−1

Ht(x)ψ
−(i−1)
1 ρj−i,k−1Sψ

−(n−j)

1
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+
n∑

j=k

ερj−1,k−1Sψ
−(n−j)
1

= SHt(x)

n−k+1∑
i=2

ψ
−(i−1)
1

n∑
j=i+k−1

ρj−i,k−1ψ
−(n−j)
1

+ εS

n∑
j=k

ρj−1,k−1ψ
−(n−j)
1

= SHt(x)

n−k+1∑
i=2

δ
−(i−1)
1

n−i∑
j=k−1

ρj,k−1δ
−(n−i−j)

1

+ εS

n−1∑
j=k−1

ρj,k−1δ
−(n−j−1)
1 .

(28)

It is critical that the probability from Lemma 4 is double summable over n, k.
One may notice that since ρjk = 0 if j < k (because it is impossible that σ̄C×C(k) =
j < k), the double sum in the right hand side of the inequality from Lemma 4 is a
convolution of two geometric sequences (ψ−n

1 ) with ρjk (as function of j with fixed
k) evaluated at n − k + 1. Thus in order to establish finitness of the desired sum it is
required to demonstrate that the double sequence {ρnk, n ≥ 1, k = 1, n} is summable.
For doing so we will need the next three lemmas.

Lemma 5.
ρnk = sup

x,y∈C,t

P̄
t
x,y,0 {Dnk} ≤ (1 − a∗)k. (29)

Proof. We proceed by induction. Let n = 1 and k = 1. Then

P
t
x,y,0 {D11} = P

t
x,y,0

{
Z̄1 ∈ (C × C × 0)

}
= (1 − at )T

(1)
t (x, C)T

(2)
t (y, C) ≤ (1 − a∗),

since T
(i)
t (x, C) ≤ T

(i)
t (x,R) = 1.

Consider now n ≥ 2, k = 1:

P̄
t
x0,y0,0

{Dn1} = (1 − at )

∫
R2\C×C

T
(1)
t (x0, dx)T

(2)
t (y0, dy)P̄t+1

x,y,0 {σ̄1 = n}

≤ (1 − at )

∫
R2\C×C

T
(1)
t (x0, dx)T

(2)
t (y0, dy) ≤ (1 − a∗).

So, we have shown that for all positive integers n and k = 1 inequality (29) is
valid.

In what follows we will use a simplified notation

σ̄i = σ̄C×C(i).
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Assume it is valid for all positive n and k, let us check it for k+1. Clearly, it is nothing
to prove if n < k + 1 since the underlying probability is zero. Consider n ≥ k + 1
and write

P̄
t
x0,y0,0

{
Dn,k+1

} =
n−k∑
s=1

P̄
t
x0,y0,0

{
σ̄1 = s,Dn,k+1

}
.

Now we use the conditioning by Fs , the Markov property and the fact that{
σ̄1 = s,Dn,k+1

} = {Ds1, ds+1 = · · · = dn = 0, σ̄k+1 = n}
= Ds1 ∩ θs ({d1 = · · · = dn−s = 0, σ̄k = n − s}) = Ds1 ∩ θsDn−s,k,

where θs is a shift operator. The obvious inlusion Ds ∈ Fs and the induction assump-
tion allow us to obtain

n−k∑
s=1

P̄
t
x0,y0,0

{
σ̄1 = s,Dn,k+1

} =
n−k∑
s=1

Ē
t
x0,y0,0

{
Ds1, P̄

t+s

Z̄s

{
Dn−s,k

}}

≤
n−k∑
s=1

sup
x,y∈C,t

P̄
t
x,y

{
Dn−s,k

}
P̄

t
x0,y0,0(Ds1)

≤ (1 − a∗)k
n−k∑
s=1

P̄
t
x0,y0,0(Ds1) = (1 − a∗)k

n−k∑
s=1

P̄
t
x0,y0,0(d1 = 0, σ̄1 = s)

= (1 − a∗)kP̄t
x0,y0,0(d1 = 0, σ̄1 ≤ n − k)

= (1 − a∗)k(1 − at )

∫
R2\C×C

T
(1)
t (x0, dx)T

(2)
t (y0, dy)×

× P̄
t+1
x,y,0 {σ̄1 ≤ n − k − 1} + (1 − a∗)k(1 − at )T

(1)
t (x0, C)T

(2)
t (y0, C)

≤ (1 − a∗)k+1
∫
R2

T
(1)
t (x0, dx)T

(2)
t (y0, dy) = (1 − α)k+1.

(30)

Thus the inequality (29) is proved for all n, k.

Lemma 6. Let m ≥ 2 be an integer, k an arbitrary positive integer and j ∈ {0, . . . , k−
1}. Then

ρmk+j,k ≤ (1 − a∗)k−1Sψ
−(m−1)
1 ,

where S is defined in Lemma 3.

Proof. In this lemma we use the following notation which is aimed to simplify further
formulas:

n = mk + j,

σ̄0 = 0,

σ̄i = σ̄C×C(i), i ≥ 0,

�̄i = σ̄i − σ̄i−1, i ≥ 1,
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ζ̄k = max
1≤i≤k

{�̄i},
τ̄n = min{l ≥ 0 : �̄l = ζ̄k} ≤ k,

D = Dmk+j,k.

It is easy to see that
D ⊂ {ζ̄k ≥ m}. (31)

Indeed, assume D ∩ {ζ̄k < m} �= ∅ and let ω ∈ D ∩ {ζ̄k < m}. Then

σ̄k(ω) =
k∑

j=1

�̄j (ω) ≤ kζ̄k(ω) < mk.

This contradicts to the definition of D = Dmk+j,k , so (31) is proved.
Assume first that τ̄n = 1. This means that the period before the first hitting is the

longest, or, in other words, all subsequent intervals between hitting C ×C are smaller
or equal to the first one. Note, that since m ≥ 2 and ζ̄k(ω) ≥ m, ω ∈ D, we conclude
that hitting will not occur at the first timestep. This observation allows us to write the
following decomposition for x0, y0 ∈ C:

P̄
t
x0,y0,0

{Dnk, τ̄n = 1}
= (1 − at )

∫
R2\C×C

T (t)
x0y0

(dx, dy)P̄t+1
x,y,0

{
σ̄1 ≥ m − 1,Dn−1,k

}
, (32)

where we used the notation T
(t)
xy (A,B) = T

(1)
t (x, A)T

(2)
t (y, B) introduced in the

previous section.
Now, using the same arguments as in the proof of Lemma 5 we notice that for

s ≥ m

P̄
t+1
x,y,0

{
σ̄1 = s,Dn−1,k

} = Ē
t+1
x,y,0

[
σ̄1 = s,Ds, P̄

t+s

Z̄s

{
Dn−s,k−1

}]
≤ ρn−s,k−1P̄

t+1
x,y,0 {σ̄1 = s,Ds} ≤ (1 − a∗)k−1

P̄
t+1
x,y,0 {σ̄1 = s,Ds} ,

where we used Lemma 5.
Substituting this upper bound into (32), we get

P̄
t
x0,y0,0

{Dnk, τ̄n = 1} ≤ (1 − a∗)k
∑

s≥m−1

∫
R2\C×C

T (t)
x0y0

(dx, dy)P̄t+1
x,y,0 [σ̄1 = s,Ds]

= (1 − a∗)k
∫
R2\C×C

Tx0y0(dx, dy)P̄t+1
x,y,0 {σ̄1 ≥ m − 1}

≤ (1 − a∗)k

ψm−1
1

∫
R2\C×C

Tx0y0(dx, dy)h(x, y)

= (1 − a∗)k−1S

ψm−1
1

.



334 V. Golomoziy

So, finally we get the estimate

P̄
t
x0,y0,0

{Dnk, τ̄n = 1} ≤ S1(1 − a∗)k

ψm−1
1

. (33)

Here we introduced S1 = S/(1 − a∗) because we would like to maintain the term
(1 − a∗)k .

Now we use (31) and (33) to write a decomposition with respect to τ̄n:

P̄
t
x,y,0 {Dnk} = P̄

t
x,y,0

{
Dnk, ζ̄k ≥ m

} =
k∑

j=1

P̄
t
x,y,0

{
Dnk, ζ̄k ≥ m, τ̄n = j

}

=
k∑

j=1

∑
s

Ē
t
x,y,0

[
P̄

t+j

Z
(1)
j ,Z

(2)
j ,0

{
τ̄n−s = 1,Dn−s,k−j+1

} ; Ds,j−1, τ̄n = j, σ̄j−1 = s

]

≤ S1

ψm−1
1

k∑
j=1

∑
s

(1 − a∗)k−j+1
P̄

t
x,y,0

[
Ds,j−1, τ̄n = j, σ̄j−1 = s

]

= S1

ψm−1
1

k∑
j=1

∑
s

(1 − a∗)k−j+1
P̄

t
x,y,0

[
Ds,j−1, τ̄n = j, σ̄j−1 = s

]

≤ S1

ψm−1
1

k∑
j=1

∑
s

(1 − a∗)k−j+1
P̄

t
x,y,0

[
τ̄n = j, σ̄j−1 = s

]
sup

u,v∈C,t

P̄
t
u,v,0{Ds,j−1}

= S1

ψm−1
1

k∑
j=1

∑
s

(1 − a∗)k−j+1
P̄

t
x,y,0

[
τ̄n = j, σ̄j−1 = s

]
ρs,j−1

≤ S1

ψm−1
1

k∑
j=1

(1 − a∗)k−j+1(1 − a∗)j−1
P̄

t
x,y,0 [τ̄n = j ] = S1(1 − a∗)k

ψm−1
1

.

Note that we used Lemma 5 in the last inequality.

Finally we can show that {ρnk} is summable.

Lemma 7.

ρ :=
∞∑

n=1

n∑
k=1

ρnk ≤ 1 − a∗
(a∗)2

(
1 + S

(1 − a∗)(ψ1 − 1)

)
< ∞.

Proof. As in the previous lemma, we denote by S1 = S/(1 − a∗), so that we can
maintain the term (1 − a∗)k . Then we obtain the following upper bound:

∞∑
n=1

n∑
k=1

ρnk =
∞∑

k=1

∞∑
n=k

ρnk =
∞∑

k=1

∞∑
m=1

⎛
⎝k−1∑

j=0

ρmk+j,k

⎞
⎠

=
∞∑

k=1

⎛
⎝k−1∑

j=0

ρk+j,k

⎞
⎠+

∞∑
k=1

∞∑
m=2

⎛
⎝k−1∑

j=0

ρmk+j,k

⎞
⎠
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≤
∞∑

k=1

⎛
⎝k−1∑

j=0

ρk+j,k

⎞
⎠+

∞∑
k=1

∞∑
m=2

k(1 − a∗)kψ−(m−1)
1 S1

≤
∞∑

k=1

(1 − a∗)kk +
∞∑

k=1

∞∑
m=1

k(1 − a∗)kψ−m
1 S1

= 1 − a∗
(a∗)2 + S1

∞∑
k=1

k(1 − a∗)k
∞∑

m=1

ψ−m
1

= 1 − a∗
(a∗)2 + S1

1 − a∗
(ψ1 − 1)(a∗)2 = 1 − a∗

(a∗)2

(
1 + S1

1

ψ1 − 1

)
.

Note that we used Lemma 6 in the first inequality.

Lemma 8. ∑
n≥1

sup
x∈[m,m+1),t

P
t
x,x,1 {Dn} ≤ εM1 + r̂mM2

where ρ is defined in Lemma 7 and

M1 = �0

(
ψ1S(1 + ρψ1)

(ψ1 − 1)2 + ψ1(1 + S)

ψ1 − 1

)
,

M2 = 2�0

(
S

ψ1(1 + ρ + �1(1 + S))

ψ1 − 1
+ �1

ψ1S(1 + ρψ1)

(ψ1 − 1)2

)
,

�0, �1 are from Theorem 3.

Proof. Let us introduce

H
(m)
t (x) = sup

|x|∈[m,m+1)

Ht (x).

Using Lemmas 2, 3, 4 and 6, we get

∑
n≥1

sup
|x|∈[m,m+1)

P
t
x,x,1 {Dn} ≤

∑
n≥1

(
H

(m)
t (x)

ψn−1
1

+ S((n − 1)H
(m)
t (x) + ε)

ψn−1
1

)

+
∑
n≥1

∑
k≥2

SH
(m)
t (x)

n−k+1∑
i=2

ψ
−(i−1)
1

n−i∑
j=k−1

ρj,k−1ψ
−(n−i−j)
1

+
∑
n≥1

∑
k≥2

εS

n−1∑
j=k−1

ρj,k−1ψ
−(n−j−1)

1 = A1 + A2 + εSA3.

We start with A1.

A1 =
∑
n≥1

(
H

(m)
t (x)

ψn−1
1

+ S((n − 1)H
(m)
t (x) + ε)

ψn−1
1

)
= ψ1(H

(m)
t (x) + εS)

ψ1 − 1
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+ ψ1SH
(m)
t (x)

(ψ1 − 1)2 .

Before moving to A2 let us first look at the sum

∞∑
n=1

∑
k≥2

n−k+1∑
i=1

ψ
−(i−1)
1

n−i∑
j=k−1

ρj,k−1ψ
−(n−i−j)

1

=
∞∑

n=1

∑
k≥1

n−k∑
i=1

ψ
−(i−1)
1

n−i∑
j=k

ρjkψ
−(n−i−j)
1 .

It is clear that k may not exceed n, as well as ρjk = 0 if j < k. Put pn = ψ
−(n−1)
1 ,

n ≥ 1, p0 = 0 and qj (k) = ρj+k,k for a fixed k, j ≥ 0. We can then swap n and k

and rewrite the previous sums as

∞∑
k=1

∑
n≥k

n−k∑
i=1

ψ
−(i−1)
1

n−i∑
j=k

ρjkψ
−(n−i−j)
1

=
∞∑

k=1

∑
n≥k

n−k∑
i=1

ψ
−(i−1)
1

n−k−i∑
j=0

qj (k)ψ
−(n−k−i−j)
1

=
∞∑

k=1

∑
n≥k

(p � q(k) � p)n−k =
∞∑

k=1

( ∞∑
n=1

pn

)2
⎛
⎝∑

j≥0

qj (k)

⎞
⎠

=
( ∞∑

n=1

ψ
−(n−1)
1

)2 ∞∑
k=1

∞∑
j=1

ρjk =
(

ψ1

ψ1 − 1

)2

ρ.

Now we can calculate A2.

A2 =
∑
n≥1

∑
k≥2

SH
(m)
t (x)

n−k+1∑
i=2

ψ
−(i−1)
1

n−i∑
j=k−1

ρj,k−1ψ
−(n−i−j)
1

= SH
(m)
t (x)ρ

(
ψ1

ψ1 − 1

)2

− SH
(m)
t (x)A3.

For A3 we have

A3 =
∑
n≥1

∑
k≥2

n−1∑
j=k−1

ρj,k−1ψ
−(n−j−1)
1 =

∑
n≥1

∑
k≥1

n−1∑
j=k

ρj,kψ
−(n−j−1)
1

=
⎛
⎝∑

n≥0

ψ−n
1

⎞
⎠
⎛
⎝∑

j,k

ρj,k

⎞
⎠ = ρψ1

ψ1 − 1
.

Now we have

∑
n≥1

sup
|x|∈[m,m+1)

P
t
x,x,1 {Dn} ≤ ψ1(H

(m)
t (x) + εS)

ψ1 − 1
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+ ψ1SH
(m)
t (x)

(ψ1 − 1)2 + SH
(m)
t (x)ρ

(
ψ1

ψ1 − 1

)2

+ (εS − SH
(m)
t (x))

ρψ1

ψ1 − 1
= ψ1SH

(m)
t (x)(1 + ρψ1)

(ψ1 − 1)2

+ ψ1(H
(m)
t (x) + εS + SH

(m)
t (x) + ρεS − ρSH

(m)
t (x))

ψ1 − 1

≤ εS
ψ1(1 + ρ)

ψ1 − 1
+ H

(m)
t (x)

(
ψ1S(1 + ρψ1)

(ψ1 − 1)2 + ψ1(1 + S)

ψ1 − 1

)
.

We can use result of Theorem 3 and Condition T to obtain

H
(m)
t (x) ≤ sup

|x|∈[m,m+1)

∫
R2

R
(1)
t (x, dy)R

(2)
t (x, dz)

1 − Qt(x,R)
(�0(|y| + |z|) + �1)

≤ �0

(
sup

|x|∈[m,m+1)

∫
R

R
(1)
t (x, dy)|y| + sup

|x|∈[m,m+1)

∫
R

R
(2)
t (x, dy)|y|

)
+ ε�1

≤ 2�0r̂m + ε�1.

Finally we can write

∑
n≥1

sup
|x|∈[m,m+1)

P
t
x,x,1 {Dn} ≤ 2r̂m�0

(
ψ1S(1 + ρψ1)

(ψ1 − 1)2 + ψ1(1 + S)

ψ1 − 1

)

+ ε

(
S

ψ1(1 + ρ + �1(1 + S))

ψ1 − 1
+ �1

ψ1S(1 + ρψ1)

(ψ1 − 1)2

)
.

Appendix A

In this appendix we want to demonstrate how to calculate the constants involved in
the bound in Theorem 2.

First, we note that the bound in Theorem 2 depends on constants M1 and M2
that are defined in Lemma 8. These constants in turn, depend on �0, �1 defined in
Theorem 3 and S defined in Lemma 3. Constant �1 is known as far as we know �0
(see (18)). Thus, we have to calculate �0 and S.

We start with �0. From (17)

�0 = MC2
0(2 + 2G + c − δ)

1 − a∗ ,

and we see that the only unkown constant is M . It is defined in [12], Theorem 4.2, as

M =
(

1 + 1

1 − √
(1 + ε)(1 − γ1)

)(
1 + γ0

1 − γ0

)
,

where ε is an arbitrary constant such that (1 + ε)(1 − γ1) < 1. Thus, we only need
to calculate γ0 and γ1. This can be done using Theorem 4.3 from [12]. The essential
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condition in Theorem 4.3 reduces to the exponentially small bound on the tails of
σ

(i)
C :

P
t
x

{
σ

(i)
C > n

}
≤ (V (x)1R\C(x) + D1C(x))ψ−n,

for some ψ > 0 and V (x). Under the conditions of Theorem 2 (and thus Corollary 1)
this is true, with V (x) = C0(1 + |x|) and D = C0(c + 2 + 2G − δ).

We start with calculating

C0 sup
t,x∈C,i

∫
R

Pt,i(x, dy) − atνt (dy)

1 − at

(1 + |y|) ≤ C0

(
1 + 1 + 2G + c − δ

1 − a∗

)
.

We denote the last expression by Q̂, so that

Q̂ = C0

(
1 + 1 + 2G + c − δ

1 − a∗

)
.

Theorem 4.3 from [12] now gives us

δ0 =
√

1 + θ
a∗(ψ − 1)

(1 − a∗)ψQ̂ + a∗
,

where θ is an arbitrary number in (0, 1).

γ0 =
(

θa∗
ψ + a∗(1 − θ)(ψQ̂(1 − a∗))−1

) 1
2

,

D̂ = D
1 + γ0

1 − γ0

(
1 + δ0 − 1

ψ − δ0
ψQ̂

)(
1 + δ0(ψ − 1)

ψ − δ0

)
,

m = min{n ≥ 1| D̂δ−1
0 < 1},

γ1 = (a∗ inf
t

νt (C))m exp

(
ln
(

1 − D̂δ−m
0

)( δm+1
0

δ0 − 1
− 1

))
.

So, we calculated γ0 and γ1 which allows us to express M and thus �0 and �1 in
terms of known values.

Finally, we should calculate S from Lemma 3.

S = (1 − a∗) sup
x,y,∈C,t

∫
R2\C×C

T (t)
xy (du, dv)h(u, v)

≤ (1 − a∗) sup
t

∫
R

(
T

(1)
t (x, du)�0|u| + T

(2)
t (y, dv)�0|v| + �1

)

≤ 1 − a∗
1 − a∗

(
2�0(1 + 2G + c − δ) + �1(1 − a∗)

)
.

Appendix B

Condition D. We say that a sequence of Markov kernels (Pt , t ∈ N0) satisfies
Condition D with the set C ∈ E if:
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(1) There exists a sequence of measurable functions Vk : E → [1,∞] and two
sequences of positive constants {λk, k ≥ 0}, and {bk, k ≥ 0} such that for all
x ∈ E

PkVk+1(x) ≤ λk+1Vk(x) + bk1C(x); (34)

(2) The sequence {λk, k ≥ 0} defined in item (1), satisfies

∞∑
k=0

⎛
⎝ k∏

j=0

(
λj ∨ 1

)⎞⎠
−1

(1 − λk)
+ = ∞.

Here a ∨ b = max{a, b}, and a+ = max{a, 0}.
Theorem 4. Let (Pt ) be a sequence of Markov transition kernels, C ∈ E be some set
and Condition D hold true.

Then the following two statements hold true.

1. For any t ∈ N0 and x ∈ E such that PtVt+1(x) < ∞:

P
t
x {σC < ∞} = 1.

2. For any x ∈ E, t ∈ N0:

E
t
x

⎡
⎣ σC∏

j=1

λ−1
j

⎤
⎦ ≤ Vt (x) + λ−1

t+1bt1C(x).

The theorem is proven in [13], Theorem 1.
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