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1 Introduction

We here study the classical Cramér–Lundberg risk process {R(t) : t ≥ 0}, see [2]
or [14], given by

R(t) = u + ct −
N(t)∑
j=1

Xj , t ≥ 0. (1)

The constant u ≥ 0 is the initial capital, c > 0 is the premium per unit of time which
is also assumed to be constant, N(t) is a Poisson process with intensity λ > 0, and
X1, X2, . . . are i.i.d. random variables representing the claims’ amounts. It is usually
assumed that the process of claims’ amounts is independent of the Poisson process.

The model (1) is one of the simplest representations of the time evolution of the
capital of an insurance company. A historical exposition of it can be found in [11].
It was introduced by F. Lundberg in 1903, see [28], and was later revised in 1926,
see [29]. The model is now known in terms of the theory of stochastic processes and
that was due to the work of 1930 by H. Cramér, see [10]. The time of ruin τ is defined
as the first instant of time when a negative value is taken by the process (1), that is,
τ = inf {t > 0 : R(t) < 0}. In the case when this set is empty we define τ = ∞, i.e.
the ruin never occurs.

The ultimate ruin probability, denoted by ψ(u), is the probability of the occur-
rence of the event (R(t) < 0) for some finite t > 0. One of the major problems
in the mathematical theory of ruin is to find ψ(u) for a given distribution of the
claims, not only for the Cramér–Lundberg model (1) but also for the numerous gen-
eralizations that have been proposed and studied since the work of Cramér, e.g.,
[1, 8, 9, 13, 15, 17, 22, 24, 26, 27, 40, 41]. Unfortunately, closed-form expressions for
ψ(u) are hard to find in general, see [2], and much effort has been directed to approxi-
mate, bound, numerically compute or study the limiting behavior of ψ(u) as u → ∞,
see, e.g., [3, 6, 7, 12, 16, 18, 19, 31, 37, 46]. In particular, see the recent results of
A. Grigutis in [20] for a closed-form expression of ψ(u) for the discrete version of
the model (1). On the other hand, the Erlang mixture distribution has been frequently
considered as a claims’ distribution because of its flexibility, see [25, 30, 32, 43–45].

Our aim here is to give an alternative approach to finding ψ(u) in the Cramér–
Lundberg model (1) under the hypothesis that claims take values according to a finite
mixture of Erlang distributions. We will see that this assumption makes the connec-
tion with the theory of recurrence sequences possible. Theorem 1 stated below is
our main result. It is a generalization of our previous findings in [35] and states that
ψ(u) admits a representation as a linear combination of exponential functions. For
this to be possible, one needs to find the zeroes of a polynomial and solve a system
of linear equations. The case when the polynomial has only simple roots is studied
in [35], whereas in this work we allow for any multiplicity of the roots. Furthermore,
in [36] we have successfully applied the same procedure for a discrete-time risk pro-
cess with finite negative binomial mixture claims and found an expression for ψ(u)

in both cases: simple and general roots.
We first define the Erlang mixture distributions of our interest and then use the

known formula (6) below to prove our main formula (21). Two numerical exam-
ples are given to empirically show our results. The safety loading for the Cramér–
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Lundberg model (1), also known as the net profit condition, is given by c > λμ.
This critical condition can be written as c = (1 + θ)λμ for some θ > 0, and it
is also known as the premium loading factor. It is well known, see [2], that when
the net profit condition is not satisfied, the ultimate ruin is certain, which is not de-
sirable. It is also known, see [14], that for null initial capital, i.e. u = 0, we have
ψ(0) = λμ/c = 1/(1 + θ) for θ > 0. As it is customary, the survival probability
P(X > x) is denoted by F(x), and the letters d.f. refer to the distribution function of
a random variable.

2 Erlang mixture distributions

The density of the Erlang distribution is denoted by erlang(k, β)(x), that is,

erlang(k, β)(x) = (βx)k−1

(k − 1)! β e−βx, x > 0.

where k ≥ 1 is an integer and β > 0. We use Erlang(k, β)(x) for its d.f. In the case
k = 1, the above reduces to the exp(β) distribution. We denote by π the probability
function (fN(1), fN(2), . . .) of a r.v. N with values 1, 2, . . . On the other hand, a r.v.
S is distributed according to an Erlang mixture with parameters π and β > 0 when
its density is

f (x) =
∞∑

k=1

fN(k) · erlang(k, β)(x), x > 0. (2)

We denote this by writing S ∼ ErM(π , β). The identity (2) defines an infinite mixture
of Erlang distributions with the vector π being the discrete mixing distribution. The
variable N is referred to as the counting random variable of S and it is known that
E(S) = E(N)/β. If F(x) is a continuous d.f. on [0,∞) and for each natural number
n, one defines

Fn(x) =
∞∑

k=1

fn(k) Erlang(k, n)(x), x > 0. (3)

with fn(k) defined as the difference between F(k/n) and F((k − 1)/n), for k ≥ 1,
then a theorem by Schassberger, see [38], states that Fn(x) → F(x) pointwise as
n → ∞. Furthermore, when F(x) has bounded support, there is uniformity in the
convergence. A proof of these claims can be found in Tijms [42] and in Lee and
Lin [25]. On the other hand, some methods used to calculate ψ(u) require know-
ing the equilibrium distribution of the random variables used in a given risk model.
More specifically, given a nonnegative r.v. X with d.f. F(x) and mean μ < ∞, its
equilibrium distribution is defined as

fe(x) = 1

μ
[1 − FX(x)], x ≥ 0. (4)

We use the letters e.d. for the term equilibrium distribution. It is straightforward
to show that fe(x) is a genuine probability or density function. For example, it can
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be shown, see [37], that the e.d. of ErM(π , β) is ErM(πe, β), where π e is the distri-
bution of Ne given by the sequence

fNe(k) = FN(k − 1)

E(N)
, k = 1, 2, . . . (5)

where FN(k − 1) = P(N > k − 1).

3 Recurrence sequences applied to ruin probabilities

As in our previous work [35], the starting point in our analysis is the ruin probability
formula

ψ(u) =
∞∑

n=0

Cn P(Zβu = n), u > 0, (6)

for the Cramér–Lundberg model (1), where Zβu ∼ Poisson(βu) and

C0 = �(0) = 1/(1 + θ), (7)

Cn = C0

⎡
⎣ n∑

j=1

fNe(j) Cn−j + FNe(n)

⎤
⎦ , n ≥ 1, (8)

with claims having a distribution as defined in (2). The formula (6) can be found
in Klugman et al. [23] and a detailed proof is given in [35]. It is clear that the se-
quence C0, C1, . . . plays a crucial role in the determination of the ruin probability.
This sequence of positive numbers is defined recursively as shown in (8) and clearly
depends on N through the distribution of Ne. From the recursive relation (8), it can
be shown that C0 > C1 > · · · and that Cn → 0 as n → ∞.

For the method proposed in this work to successfully operate it is essential to
assume that N has finite support {1, . . . , m} for some fixed integer m ≥ 1, that is,
π = (fN(1), . . . , fN(m), 0, . . . ), where fN(1) + · · · + fN(m) = 1. In particular, we
assume that fN(m) > 0. For distributions π of this type we call (2) a finite Erlang
mixture distribution. That is denoted by finiteErM(π , β) and its density is given by

f (x) =
m∑

k=1

fN(k) · erlang(k, β)(x), x > 0. (9)

This will be the distribution assumed for the claims in the Cramér–Lundberg model (1).
The distribution of the associated r.v. Ne is given by the numbers fNe(1) ≥ fNe(2) ≥
· · · ≥ fNe(m), which are the first m terms of (5).

Example 1. Suppose that N = m (≥1) is constant, i.e. fN(m) = 1. Then the mix-
ture distribution (9) reduces to the erlang(m, β) distribution and it can be shown that
Ne is uniformly distributed on {1, . . . , m}. More particularly, when m = 1 the mixture
distribution (9) is the Exp(β) distribution and N = Ne = 1. In this simple case, the re-

cursive relation (8) for Cn can be easily solved giving Cn = C
n+1
0 = [1/(1 + θ)]n+1,
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for n ≥ 0. Substituting in (6) and some further simplifications yield the well-known
formula, see [2] or [14], of the ruin probability for Exp(β) claims,

ψ(u) = 1

1 + θ
exp{−β(

θ

1 + θ
)u}, u ≥ 0. (10)

Our goal is to solve the recurrence relation (8) for Cn in the finiteErM(π , β) case,
where the first m terms C0, . . . , Cm−1 are taken as initial data. Once this is done we
can substitute the values of Cn in (6) to find ψ(u). The following procedure is the
same as that used in [35]. Define the decreasing and strictly positive sequence

αj = C0 fNe(j) = FN(j − 1)

(1 + θ)E(N)
, j = 1, . . . , m, (11)

where, clearly, 1 > α1 ≥ α2 ≥ · · · ≥ αm−1 ≥ αm > 0 and α1 + · · · + αm =
1/(1 + θ) < 1. One can then prove, see [35], that the recursive relation (8) can be
written as the following m-order recurrence sequence

Cm+n −
m−1∑
j=0

αm−j Cj+n = 0, n = 0, 1, . . . (12)

where C0, . . . , Cm−1 are the initial values. The characteristic polynomial associated
with the recurrence sequence (12), see [5], being

p(y) = ym −
m−1∑
j=0

αm−j yj . (13)

It is known that, see [5] or [39], the solution of (12) can be written as a function of the
zeroes of (13). Using standard basic results from the theory of polynomials, see [35],
it can be shown that the polynomial (13) has a unique root z1 which is positive and
is such that 0 < |z| < z1 < 1 for any other root z. Also, the roots of (13) occur
in conjugate pairs since (13) has real coefficients. In the following section we will
solve (12) and write ψ(u) in terms of the zeroes of (13).

4 A new formula for ψ(u)

Suppose the solutions of p(y) = 0 are not necessarily simple. Let z1, . . . , z	 be the
roots and assume their multiplicities are n1, . . . , n	, respectively, where 1 ≤ 	 ≤ m

and n1 + · · · + n	 = m. Suppose z1 > 0 is the unique positive root which we know
has multiplicity n1 = 1. Thus, (13) can be written as

p(y) = (y − z1)
1(y − z2)

n2 · · · (y − z	)
n	 . (14)

It can be shown, see [39, p. 55], that the solution of (12) is

Cn =
	∑

k=1

nk∑
j=1

bk,j nj−1 zn
k , n = 0, 1, . . . , (15)
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where the m constants bk,j are chosen so that (15) meets the initial data C0, . . . , Cm−1.
This yields the system of linear equations

Zm×m · bm×1 = Cm×1, (16)

where

bm×1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1,1
b2,1
...

b2,n2
...

b	,1
...

b	,n	

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Cm×1 =

⎛
⎜⎜⎜⎝

C0

C1
...

Cm−1

⎞
⎟⎟⎟⎠ ,

and the matrix Z has the form

Zm×m = (
Z1 Z2,1 Z2,2 · · · Z2,n2

· · · Z	,1 Z	,2 · · · Z	,n	

)
,

where the vertical lines help to visually separate the column vectors

Z1 =

⎛
⎜⎜⎜⎜⎜⎝

1
z1

z2
1

...

zm−1
1

⎞
⎟⎟⎟⎟⎟⎠ , Zk,j =

⎛
⎜⎜⎜⎜⎜⎝

1(j=1)

zk

2j−1z2
k

...

(m − 1)j−1zm−1
k

⎞
⎟⎟⎟⎟⎟⎠ ,

for k = 2, . . . , 	 and j = 1, . . . , nk . Observe that the multiplicity of the roots deter-
mines the blocks of column vectors. For a better understanding of the system (16),
see Examples 2, 3 and 4 below for some particular cases of Z. The m initial values
C0 > · · · > Cm−1 are all real, positive and are computed using (8). On the other
hand, the numbers bk,1, . . . , bk,nk

are associated with the root zk , for k = 1, . . . , 	,
and can be real or complex depending on the nature of zk . This is explained in the
following statement.

Proposition 1. For the characteristic polynomial (13), the following holds.

1. If two roots zk and zj are complex conjugates and have multiplicity n, then
the associated coefficients bk,1, . . . , bk,n and bj,1, . . . , bj,n, are also complex
conjugates, respectively.

2. If a root zk is real with multiplicity nk , then all the associated coefficients
bk,1, . . . , bk,nk

are also real.

Proof. Taking complex conjugate of (16) yields the system Z·b = C, where the right-
hand side is the same real vector C, here the upper bar does not denote conjugate.
The matrix Z is the same as Z but now every complex root zk is interchanged with
its conjugate zk . Denote by (bk,1, . . . , bk,nk

) and (bk+1,1, . . . , bk+1,nk
) the subvectors
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of b associated with the roots zk and zk , respectively. Rearranging the columns of
the matrix Z so that the original matrix Z is again reconstructed, the positions of the
subvectors (bk,1, . . . , bk,nk

) and (bk+1,1, . . . , bk+1,nk
) are interchanged. Assuming

that the solution of (16) is unique, we have the equality

(bk+1,1, . . . , bk+1,nk
) = (bk,1, . . . , bk,nk

).

This means that the entries of b associated with a complex root zk and those of its
conjugate zk are also conjugates. For the second statement, when a root zk is real, the
same argument of taking conjugate of (16) and the assumption of a unique solution
for the linear system can be used to obtain that the associated values bk,1, . . . , bk,nk

are such that bk,1 = bk,1, . . . , bk,nk
= bk,nk

, that is, they are all real.

In Examples 2, 3 and 4 below we show particular instances of the system (16)
where the two statements of the last proposition can be verified. In particular, for the
unique positive real root z1 we know that it is a simple root and its associated term
b1,1, which can be written simply as b1, is real. We suspect b1 is a positive number,
however, a proof of this claim does not seem to be immediate and would require
further technical analysis of the linear system (16).

Conjecture 1. The coefficient b1 associated with the unique positive root z1 of the
characteristic polynomial (13) and determined by the linear system (16) is such that
b1 > 0.

This claim will be numerically verified for some examples in Section 6 and will
be used to propose an approximation for the ruin probability in Section 5.

Example 2. The equation (17) below shows a section of the system (16) related
with two conjugate roots zk and zk+1 = zk with common multiplicity n = 3. The
entries of the vector bm×1 related with those roots are written as (bk,1, bk,2, bk,3) and
(bk+1,1, bk+1,2, bk+1,3), respectively.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · 1 0 0 1 0 0 · · ·
· · · zk zk zk zk+1 zk+1 zk+1 · · ·
· · · z2

k 2z2
k 4z2

k z2
k+1 2z2

k+1 4z2
k+1 · · ·

· · · z3
k 3z3

k 9z3
k z3

k+1 3z3
k+1 9z3

k+1 · · ·
· · · z4

k 4z4
k 16z4

k z4
k+1 4z4

k+1 16z4
k+1 · · ·

· · · z5
k 5z5

k 25z5
k z5

k+1 5z5
k+1 25z5

k+1 · · ·
· · · ...

...
...

...
...

... · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

—–
bk,1
bk,2
bk,3
—–
bk+1,1
bk+1,2
bk+1,3
—–
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= C. (17)

As explained before, taking conjugate of this system and rearranging the columns of
the matrix so that the original matrix Z is again obtained, the position of the values
bk,1, bk,2, bk,3 and bk+1,1, bk+1,2, bk+1,3 are interchanged. Then the assumption of
a unique solution to the system implies that the identity (bk+1,1, bk+1,2, bk+1,3) =
(bk,1, bk,2, bk,3) must hold.



254 D.J. Santana, L. Rincón

Example 3. Here we consider the case m = 7 with 	 = 3 roots z1, z2 and z3, with
multiplicities n1 = 1, n2 = 4 and n3 = 2, respectively. Then the sysem (16) reads

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 1 0
z1 z2 z2 z2 z2 z3 z3

z2
1 z2

2 2z2
2 4z2

2 8z2
2 z2

3 2z2
3

z3
1 z3

2 3z3
2 9z3

2 27z3
2 z3

3 3z3
3

z4
1 z4

2 4z4
2 16z4

2 64z4
2 z4

3 4z4
3

z5
1 z5

2 5z5
2 25z5

2 125z5
2 z5

3 5z5
3

z6
1 z6

2 6z6
2 36z6

2 216z6
2 z6

3 6z6
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
—–
b2,1
b2,2
b2,3
b2,4
—–
b3,1
b3,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C0

C1

C2

C3

C4

C5

C6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

The vertical and horizontal lines on the left-hand side of (18) separate the terms asso-
ciated with the 3 different roots. Observe that the roots z2 and z3 are not conjugates,
otherwise, they would have the same multiplicity. Moreover, z2 and z3 are not com-
plex since their conjugates do not appear in the linear system.

Example 4. Consider the case when all the roots have multiplicity 1, i.e. 	 = m and
n1 = · · · = n	 = 1. The relation (15) reduces to Cn = ∑m

k=1 bk zn
k , n ≥ 0, where

bk is bk,1 and the linear system (16) is shown below in the equation (19). Observe the
matrix of this system is the transpose of a complex Vandermonde matrix, see [21],⎛

⎜⎜⎜⎝
1 1 · · · 1
z1 z2 · · · zm

...
...

. . .
...

zm−1
1 zm−1

2 · · · zm−1
m

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

b1
b2
...

bm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

C0

C1
...

Cm−1

⎞
⎟⎟⎟⎠ . (19)

This simple case is studied in [35], where some theoretical and numerical examples
are given. The formula derived for the ruin probability, in this case, has the rather
manageable form

ψ(u) =
m∑

k=1

bk e−β(1−zk)u, u ≥ 0. (20)

This is a ruin probability formula for the risk process (1) with claims following a
finite Erlang mixture distribution defined as in (9) and under the assumption that the
underlying characteristic polynomial (13) only has simple roots.

We are now ready to state and prove our main result. This is a general version
of (20) where now the roots of the characteristic polynomial have no constraints on
their multiplicity.

Theorem 1. For the Cramér–Lundberg model (1), let the claim sizes have a distri-
bution as in (9). Let z1, . . . , z	, 1 ≤ 	 ≤ m, be the zeroes of (13) with multiplicities
n1, . . . , n	, respectively, and let b1, b2,1, . . . , b2,n2 , . . . , b	,1, . . . , b	,n	

be the solu-
tion of (16). Then

ψ(u) =
	∑

k=1

nk−1∑
j=0

bk,j+1 e−β(1−zk)u Hj (zk, β, u), u ≥ 0, (21)
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where Hj(zk, β, u) = 1 for j = 0, and

Hj(zk, β, u) =
j∑

s=1

sj

s! (zkβu)sFk(j − s, β, u), j ≥ 1, (22)

and

Fk(x, β, u) =
x∑

v=0

(−zkβu)v

v! , for x = 0, 1, . . .

Proof. We make use of the following extension of Philipson’s formula, see [33],
which provides an expression for the moments of a Poisson distribution. Let λ be a
real or complex number, for any integer j ≥ 1,

∞∑
n=0

nj λn

n! =
j∑

s=1

sj

s! λ
sFλ(j − s)eλ, (23)

where Fλ(x) = ∑x
v=0(−λ)v/v! for x = 0, 1, . . . . A proof of (23) can be found in the

Appendix. Substituting the expression (15) for Cn in (6) yields

ψ(u) =
∞∑

n=0

⎡
⎣ 	∑

k=1

nk−1∑
j=0

bk,j+1 nj zn
k

⎤
⎦ e−βu (βu)n

n!

= b1,1 e−βu

[ ∞∑
n=0

(z1βu)n

n!

]
+

	∑
k=2

nk−1∑
j=0

bk,j+1 e−βu

[ ∞∑
n=0

nj (zkβu)n

n!

]
.

Observe that we have separated the cases k = 1 and k ≥ 2. In the first case, since
n1 = 1, the sum over j reduces to the constant b1,1. Using equation (23),

ψ(u) = b1,1 e−βuez1βu

+
	∑

k=2

nk−1∑
j=0

bk,j+1e
−βu

⎡
⎣ j∑

s=1

sj

s! (zkβu)sFk(j − s, β, u) ezkβu

⎤
⎦

= b1,1 e−βu(1−z1) +
	∑

k=2

nk−1∑
j=0

bk,j+1 e−βu(1−zk) Hj (zk, β, u)

=
	∑

k=1

nk−1∑
j=0

bk,j+1 e−β(1−zk)u Hj (zk, β, u),

where

Hj(zk, β, u) = 1(j=0) +
j∑

s=1

sj

s! (zkβu)sFk(j − s, β, u)

and Fk(x, β, u) = ∑x
v=0 (−zkβu)v/v! for x = 0, 1, . . . .

Formula (21) and its simple case (20) show that the ruin probability can be ex-
pressed as a finite sum of exponentials of functions of the roots zk , multiplied by a
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nontrivial polynomial in zk . It is very interesting to observe that those exponentials
are the probability generating functions of a Poisson(βu) distribution evaluated at zk

given by Hj(zk, β, u), and that there are as many exponentials as there are different
roots in the characteristic polynomial (13). Each root zk (real or complex) contributes
to the ruin probability ψ(u) and it is straightforward to show that the right-hand side
of (21) is equal to its conjugate so that the whole formula yields a real number. In
particular, the contribution of the unique positive root z1 is given by the real number
b1 e−βu(1−z1), which is a positive number provided the conjecture b1 > 0 holds. This
will turn out to be the leading term in (21) and will be proposed as an approximation
for ψ(u) in Section 5 below. It is also reassuring to notice that in the case when all
the roots zk are simple, we have 	 = m and n1 = · · · = nm = 1 and the formula (21)
reduces to the known solution (20), where the constants bk,1 are the solution bk to
the system of equations (19). Observe also that, even with the assumption that the
counting r.v. N has bounded support {1, . . . , m}, the number of summands in the ruin
probability formula (6) is always infinite, whereas the new formulas (20) and (21)
involve only m terms.

As an example, it is shown in [35] that a finiteErM(π , β) distribution can be
seen as a phase-type distribution and our solution (20), in the case of simple roots, is
the same as the well-known formula for ψ(u) for phase-type claims, see [2]. In the
general case, when not all roots are simple, it is still an open problem to show that
the standard formula for ψ(u) for phase-type claims is the same as our formula (21).
The difficulty here lies in finding the exponential of a matrix that is not necessarily
similar to a diagonal matrix.

5 An approximation

Formula (21) looks cumbersome as the whole expression contains four nested sums.
However, it is an explicit expression of the ruin probability and its computer im-
plementation is rather straightforward. In Section 6 below we give some numerical
results to show particular values of the roots of the characteristic polynomial, the so-
lution to the linear system, and the exact probability of ruin. The empirical results
obtained from those computer experiments suggest the following ideas: consider an
approximate solution to the linear system (16) of the form (b1, 0, . . . , 0), see (18) for
a particular example of the matrix Z, then the first two equations of the system yields

b1 ≈ C0 = 1/(1 + θ), (24)

z1 ≈ C1/C0. (25)

More explicitly, using (8) and the identity fNe(1) = 1/E(N), the approximate value
of z1 is

C1/C0 = fNe(1) C0 + FNe(1)

= 1

(1 + θ)E(N)
+ 1 − 1

E(N)

= 1 − θ

(1 + θ)E(N)
.
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Thus, when knowing the exact values of z1 and b1 we have the following approxima-
tion.

Corollary 1. For the Cramér–Lundberg model (1) with finiteErM(πN, β) claims,

ψ(u) ≈ ψ̂1(u) := b1 e−βu(1−z1), u ≥ 0. (26)

This is a Lundberg-type approximation and, as mentioned before, is the contri-
bution of the unique positive root z1 to ψ(u) in the formula (21). On the other hand,
when z1 and b1 are unknown, the approximations (24) and (25) can be used to obtain
the following estimate.

Corollary 2. For the Cramér–Lundber model (1) with finiteErM(πN, β) claims,

ψ(u) ≈ ψ̂2(u) := 1

1 + θ
exp

{
−β

(
θ

(1 + θ)E(N)

)
u

}
, u ≥ 0. (27)

It is interesting to observe that in the case of Exp(β) claims (N = 1), the approx-
imation (27) is the same as the exact ruin probability ψ(u) given before in (10).

6 Numerical examples

In this section, we show some numerical results of the calculation of the exact values
of ψ(u) using our main formula (21) and the two approximations ψ̂1(u) and ψ̂2(u)

given in (26) and (27). We use R commands, see [4] and [34], to find the zeroes
of (13) and to solve (16). Due to lack of space, we present only two examples. All
of them show the case when some of the roots are complex and have a multiplicity
larger than 1. In [35] we provided numerical examples in the case when all roots are
simple. In all the examples shown below the conjecture b1 > 0 is fulfilled and the
relations stated in Proposition 1 regarding the roots zk and their associated numbers
bk,1, . . . , bk,nk

are verified.

Example 5. Let m = 5 and set β = 1/10. Assume the coefficients αj of (11) are

(α1, . . . , α5) =
(

433

33500
,

2459

134 · 106
,

21593

134 · 109 ,
138453

1072 · 1012 ,
441

1072 · 1012

)
. (28)

The distribution of the counting r.v. N is

π = (fN(j))
j=5
j=1

=
(

αj − αj+1

α1

)j=5

j=1

= (0.99858, 1.4073 · 10−3, 1.2457 · 10−5, 9.9605 · 10−9, 3.1827 · 10−11), (29)

where α6 := 0. Also, C0 = ∑5
j=1 αj = 0.01294389, then θ = C

−1
0 −1 ≈ 76.25656,

E(N) = ∑5
j=1 jfN(j) = 1.001432 and

(fNe(j))
j=5
j=1 = (0.99857, 1.4177 ·10−3, 1.2449 ·10−5, 9.978 ·10−9, 3.1782 ·10−11).
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The characteristic polynomial is

p(y) = y5 − 433

33500
y4 − 2459

134 · 106
y3 − 21593

134 · 109 y2 − 138453

1072 · 1012 y − 441

1072 · 1012

=
(

y − 1

67

) ((
y + 1

2000

)2

+ 1

20 · 104

)2

,

with three distinct roots z1 = 1/67, z2 = −1/2000 + i/(200
√

5) and z3 = z2 =
−1/2000 − i/(200

√
5) with multiplicities, respectively, n1 = 1, n2 = 2 and n3 = 2.

The system (16) is Z5×5 · b5×1 = C5×1, where Z5×5 is given by⎛
⎜⎜⎜⎜⎜⎝

1 1 0 1 0
1
67 − 1

2000 + i

200
√

5
− 1

2000 + i

200
√

5
− 1

2000 − i

200
√

5
− 1

2000 − i

200
√

5(
1
67

)2
(

− 1
2000 + i

200
√

5

)2
2

(
− 1

2000 + i

200
√

5

)2 (
− 1

2000 − i

200
√

5

)2
2

(
− 1

2000 − i

200
√

5

)2

(
1
67

)3
(

− 1
2000 + i

200
√

5

)3
3

(
− 1

2000 + i

200
√

5

)3 (
− 1

2000 − i

200
√

5

)3
3

(
− 1

2000 − i

200
√

5

)3

(
1
67

)4
(

− 1
2000 + i

200
√

5

)4
4

(
− 1

2000 + i

200
√

5

)4 (
− 1

2000 − i

200
√

5

)4
4

(
− 1

2000 − i

200
√

5

)4

⎞
⎟⎟⎟⎟⎟⎠

and the vector C5×1 and the solution b5×1 are given by

C5×1 =

⎛
⎜⎜⎜⎝

1.29439 · 10−2

1.85817 · 10−4

2.80055 · 10−6

4.18234 · 10−8

6.24001 · 10−10

⎞
⎟⎟⎟⎠ and

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1
—–
b2,1
b2,2
—–
b3,1
b3,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1.257457 · 10−2

—–
(1.846596 + 2.906937i) · 10−4

(4.519503 + 7.460651i) · 10−5

—–
(1.846596 − 2.906937i) · 10−4

(4.519503 − 7.460651i) · 10−5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Observe that the first term b1 is positive and is much more significant than any of the
other entries of b. As z2 and z3 are complex conjugates, their associated values b2,1,
b2,2 and b3,1, b3,2 are also complex conjugates, respectively. By Theorem 1,

ψ(u) = b1 e−βu(1−z1) +
3∑

k=2

(
bk,1 + bk,2 H1(zk, β, u)

)
e−βu(1−zk),

where the function H is obtained using (22). Table 1 below shows the exact values
of ψ(u) for different values of u, the values taken by the function H and the approx-
imations

ψ̂1(u) = b1 e−βu(1−z1) = 0.01257457 e−0.09851u,

ψ̂2(u) = C0 e−βu(1−C1/C0) = 0.012943885 e−0.09856445u.

These approximations are fairly accurate as the values of bk,1, bk,2 multiplied by
e−βu(1−zk), for k = 2, 3, are rather small.

Example 6. Let m = 7 and set β = 1/4. Assume that the coefficients αj of (11) are

(α1, . . . , α7) =
(

1

6
,

1

9
,

7

108
,

17

432
,

19

2592
,

5

2592
,

1

3888

)
. (30)
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Table 1. (Example 5) Ruin probabilities ψ(u), the values of the function H and the approxi-
mations ψ̂1(u) and ψ̂2(u) in the case of finiteErM(π , 1/10) claims and π given by (29)

u H1(z2, β, u) H1(z3, β, u) ψ(u) ψ̂1(u) ψ̂2(u)

0 0 0 1.294E − 02 1.258E − 02 1.294E − 02
1 (−0.5 + 2.24i)E − 04 (−0.5 − 2.24i)E − 04 1.173E − 02 1.140E − 02 1.173E − 02
2 (−1.0 + 4.47i)E − 04 (−1.0 − 4.47i)E − 04 1.063E − 02 1.033E − 02 1.063E − 02
3 (−1.5 + 6.71i)E − 04 (−1.5 − 6.71i)E − 04 9.630E − 03 9.357E − 03 9.630E − 03
4 (−2.0 + 8.94i)E − 04 (−2.0 − 8.94i)E − 04 8.727E − 03 8.479E − 03 8.727E − 03
5 (−2.5 + 11.2i)E − 04 (−2.5 − 11.2i)E − 04 7.907E − 03 7.684E − 03 7.907E − 03
6 (−3.0 + 13.4i)E − 04 (−3.0 − 13.4i)E − 04 7.165E − 03 6.963E − 03 7.165E − 03
7 (−3.5 + 15.7i)E − 04 (−3.5 − 15.7i)E − 04 6.493E − 03 6.310E − 03 6.493E − 03
8 (−4.0 + 17.9i)E − 04 (−4.0 − 17.9i)E − 04 5.883E − 03 5.718E − 03 5.883E − 03
9 (−4.5 + 20.1i)E − 04 (−4.5 − 20.1i)E − 04 5.331E − 03 5.182E − 03 5.331E − 03

10 (−5.0 + 22.4i)E − 04 (−5.0 − 22.4i)E − 04 4.831E − 03 4.695E − 03 4.831E − 03
11 (−5.5 + 24.6i)E − 04 (−5.5 − 24.6i)E − 04 4.377E − 03 4.255E − 03 4.377E − 03
12 (−6.0 + 26.8i)E − 04 (−6.0 − 26.8i)E − 04 3.966E − 03 3.856E − 03 3.966E − 03
13 (−6.5 + 29.1i)E − 04 (−6.5 − 29.1i)E − 04 3.594E − 03 3.494E − 03 3.594E − 03
14 (−7.0 + 31.3i)E − 04 (−7.0 − 31.3i)E − 04 3.257E − 03 3.166E − 03 3.257E − 03
15 (−7.5 + 33.5i)E − 04 (−7.5 − 33.5i)E − 04 2.951E − 03 2.869E − 03 2.951E − 03
16 (−8.0 + 35.8i)E − 04 (−8.0 − 35.8i)E − 04 2.674E − 03 2.600E − 03 2.674E − 03
17 (−8.5 + 38.0i)E − 04 (−8.5 − 38.0i)E − 04 2.423E − 03 2.356E − 03 2.423E − 03
18 (−9.0 + 40.2i)E − 04 (−9.0 − 40.2i)E − 04 2.196E − 03 2.135E − 03 2.196E − 03
19 (−9.5 + 42.5i)E − 04 (−9.5 − 42.5i)E − 04 1.990E − 03 1.935E − 03 1.990E − 03
20 (−10 + 44.7i)E − 04 (−10 − 44.7i)E − 04 1.803E − 03 1.753E − 03 1.803E − 03

The distribution of the counting r.v. N is

π = (fN(j))
j=7
j=1

=
(

αj − αj+1

α1

)j=7

j=1

= (1/3, 0.2778, 0.15278, 0.19213, 0.03241, 0.010031, 0.00154), (31)

where α8 := 0. Also, C0 = ∑7
j=1 αj = 0.3914609, then θ = C

−1
0 − 1 ≈ 1.554534,

E(N) = ∑7
j=1 jfN(j) = 2.348765 and

(fNe(j))
j=7
j=1 = (0.4258, 0.2838, 0.1656, 0.1005, 0.0187, 0.0049, 0.0007).

The characteristic polynomial is

p(y) = y7 − 1

6
y6 − 1

9
y5 − 7

108
y4 − 17

432
y3 − 19

2592
y2 − 5

2592
y1 − 1

3888

=
(

y − 2

3

) (
y + 1

3

) (
y + 1

6

)(
y2 + 1

12

)2

,

with five distinct roots z1 = 2/3, z2 = −1/3, z3 = i/(2
√

3), z4 = z3 = −i/(2
√

3)

and z5 = −1/6 with multiplicities n1 = 1, n2 = 1, n3 = 2, n4 = 2 and n5 = 1,
respectively. The system of linear equations (16) is

Z7×7 · b7×1 = C7×1,
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z1 = 0.0149

z2

z3
Re(z)

Im(z)

u

ψ

2 6 10 14 1820

0.004

0.008

0.012

0.016
ψ(u)

ψ̂1(u)

ψ̂2(u)

Fig. 1. (Example 5) Zeroes of (13) in the complex plane and the ruin probabilities for
α1, . . . , α5 given in (28)

where

Z7×7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 1 0 1
2
3

1
3

i

2
√

3
i

2
√

3
−i

2
√

3
−i

2
√

3
− 1

6( 2
3

)2 ( 1
3

)2
(

i

2
√

3

)2
2

(
i

2
√

3

)2 ( −i

2
√

3

)2
2

( −i

2
√

3

)2 (− 1
6

)2

( 2
3

)3 ( 1
3

)3
(

i

2
√

3

)3
3

(
i

2
√

3

)3 ( −i

2
√

3

)3
3

( −i

2
√

3

)3 (− 1
6

)3

( 2
3

)4 ( 1
3

)4
(

i

2
√

3

)4
4

(
i

2
√

3

)4 ( −i

2
√

3

)4
4

( −i

2
√

3

)4 (− 1
6

)4

( 2
3

)5 ( 1
3

)5
(

i

2
√

3

)5
5

(
i

2
√

3

)5 ( −i

2
√

3

)5
5

( −i

2
√

3

)5 (− 1
6

)5

( 2
3

)6 ( 1
3

)6
(

i

2
√

3

)6
6

(
i

2
√

3

)6 ( −i

2
√

3

)6
6

( −i

2
√

3

)6 (− 1
6

)6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the vector C7×1 and the solution b7×1 are given by

C7×1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.39146
0.29004
0.20552
0.14072
0.09001
0.06043
0.04042

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
—–
b2,1
—–
b3,1
b3,2
—–
b4,1
b4,2
—–
b5,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.46031
—–

−0.03312
—–

−0.01841 + 0.03962i

−0.004553 + 0.008344i

—–
−0.01841 − 0.03962i

−0.004553 − 0.008344i

—–
0.0010867

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Observe again that the first term b1 is positive and is much more significant than any
of the other entries of b. As z3 and z4 are complex conjugates, their associated values
b3,1, b3,2 and b4,1, b4,2 are also complex conjugates, respectively. By Theorem 1, the
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ruin probability reads

ψ(u) = b1 e−βu(1−z1) + b2,1 e−βu(1−z2)

+
4∑

k=3

(
bk,1 + bk,2 H1(zk, β, u)

)
e−βu(1−zk)

+ b5,1 e−βu(1−z5),

where the function H is obtained using (22). Table 2 below shows the exact values
of ψ(u) for different values of u, the values taken by the function H and the approx-
imations

ψ̂1(u) = b1 e−βu(1−z1) = 0.4603095 e−0.0833u,

ψ̂2(u) = C0 e−βu(1−C1/C0) = 0.3914609 e−0.0648u.

These approximations are again fairly accurate as the values of bk,1, bk,2 multiplied
by e−βu(1−zk), for k = 2, . . . , 5 are rather small.

Table 2. (Example 6) Ruin probabilities ψ(u), the values of the function H and the approxi-
mations ψ̂1(u) and ψ̂2(u) in the case of finiteErM(π , 1/4) claims and π given by (31)

u H1(z3, β, u) H1(z4, β, u) ψ(u) ψ̂1(u) ψ̂2(u)

0 0 0 0.391461 0.46031 0.39146
1 0.07217i −0.07217i 0.366639 0.423505 0.36691
2 0.14434i −0.14434i 0.342903 0.389644 0.34390
3 0.21651i −0.21651i 0.320266 0.358489 0.32233
4 0.28868i −0.28868i 0.298728 0.329826 0.30211
5 0.36084i −0.36084i 0.278286 0.303455 0.28316
6 0.43301i −0.43301i 0.258928 0.279192 0.26540
7 0.50518i −0.50518i 0.240640 0.256869 0.24876
8 0.57735i −0.57735i 0.223402 0.236331 0.23316
9 0.64952i −0.64952i 0.207190 0.217435 0.21853

10 0.72169i −0.72169i 0.191975 0.200050 0.20483
11 0.79386i −0.79386i 0.177725 0.184055 0.19198
12 0.86603i −0.86603i 0.164405 0.169338 0.17994
13 0.93819i −0.93819i 0.151975 0.155799 0.16865
14 1.01036i −1.01036i 0.140396 0.143342 0.15808
15 1.08253i −1.08253i 0.129625 0.131881 0.14816
16 1.15470i −1.15470i 0.119620 0.121336 0.13887
17 1.22687i −1.22687i 0.110338 0.111635 0.13016
18 1.29904i −1.29904i 0.101737 0.102709 0.12200
19 1.37121i −1.37121i 0.093774 0.094497 0.11434
20 1.44338i −1.44338i 0.086408 0.086941 0.10717

Remark 1. As a subjective comparison of the two approximations ψ̂1(u) and ψ̂2(u)

and the numerical examples shown above, we observe that the approximation ψ̂2(u)

seems to be better than ψ̂1(u) for small values of the initial capital u, the opposite oc-
curs for large values of u. Also, there seems to be no apparent difference in the quality
of the two approximations when the values of the parameters θ and m are modified.
As expected, the ruin probability is larger in the case when E(N) is large and it seems
there is no significant dependence on the value of m. It is also numerically observed
that the ruin probability decreases as the surcharge factor θ increases.
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Fig. 2. (Example 6) Zeroes of (13) in the complex plane and the ruin probabilities for
α1, . . . , α7 given in (30)

7 Conclusions

We have given an alternative approach to calculating ψ(u) in the classical Cramér–
Lundberg risk process (1) when claims are distributed according to a finite mixture
of Erlang distributions. The method is based on the theory of recurrence sequences
and requires to solve such a sequence, which in turn called for finding the roots of its
characteristic polynomial and the solution of a linear system. One advantage of this
procedure is that ψ(u) can be seen as a finite sum of as many exponential terms as
the degree of the characteristic polynomial, see formulas (20) and (21), where there
is one term for each root. A mathematical computer program such as R, see [34], can
be used to solve the system (16) and to find the zeroes of (13), although the problem
might be computationally challenging when the parameter m is large. Indeed, this is
the case when an arbitrary claim distribution is approximated by a finiteErM(π , β)

distribution. This is an approximation problem we have left aside for future work.
On the other hand, further studies are also needed to quantify the accuracy of the
approximations (26) and (27).

It must be emphasized that the present work is a sequel of [35]. In that article,
we presented the case of simple roots, whereas in this work we have considered the
general case. On the other hand, using the same procedure shown here, it is possible
to find a closed-form formula for the ruin probability in a discrete-time risk process
with claims following a finite mixture of negative binomial distributions, see [36]. It
is interesting to observe that all the ruin probabilities formulas found in those works
are similar in the sense that they are expressed as linear combinations of probability
generating functions. For the continuous risk model, the probability-generating func-
tion is that of a Poisson(βu) distribution evaluated at each of the roots zk , whereas for
the discrete-time risk process, the probability-generating function is that of a negative
binomial distribution.

Since finding the roots of polynomials of the form (13) is crucial for the ruin
probability formulas (20) and (21), it is only natural to further the study of this type
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of polynomial and the solution to the linear system (16). Any knowledge about those
roots might lead to an approximation or bound for ψ(u). Finally, it must be recalled
that some quantities of interest in the mathematical theory of risk, such as the ruin
probability, are difficult to calculate but they sometimes satisfy a recursive relation.
Hence, the theory of recurrence sequences might as well be applied in many more
instances within the theory of risk following the procedure shown in this work.

A Appendix

The following result is an extension of Philipson’s formula [33] regarding the mo-
ments of a Poisson distribution. It was used in the proof of Theorem 1.

Theorem 2. Let λ be a real or complex number. For any integer j ≥ 1,

∞∑
n=0

nj λn

n! =
j∑

s=1

sj

s! λ
sFλ(j − s)eλ, (32)

where Fλ(x) = ∑x
v=0(−λ)v/v! for x = 0, 1, . . . .

Proof. By Philipson’s formula [33],

∞∑
n=0

nj λn

n! e−λ =
j∑

k=1

λk
k∑

s=1

(−1)k−s

(k − s)! s! s
j

=
j∑

s=1

sj

s!
j∑

k=s

λk (−1)k−s

(k − s)!

=
j∑

s=1

sj

s!
j−s∑
v=0

λv+s (−1)v

v!

=
j∑

s=1

sj

s! λs

j−s∑
v=0

(−λ)v

v!

=
j∑

s=1

sj

s! λsFλ(j − s),

where Fλ(j − s) = ∑j−s
v=0 (−λ)v/v! .
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