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Abstract The class of one-dimensional equations driven by a stochastic measure μ is studied.
For μ only σ -additivity in probability is assumed. This class of equations includes the Burgers
equation and the heat equation. The existence and uniqueness of the solution are proved, and
the averaging principle for the equation is studied.
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1 Introduction

In this paper, we consider the stochastic equation, which can formally be written as

∂u

∂t
= ∂2u

∂x2 + f (t, x, u(t, x)) + ∂g

∂x
(t, x, u(t, x)) + σ(t, x)

∂μ

∂x
, u(0, x) = u0(x),

(1)
where (t, x) ∈ [0, T ] × R, and μ is a stochastic measure defined on B(R) (Borel
σ -algebra in R). For μ we assume only σ -additivity in probability, assumptions for f ,
g, σ and u0 are given in Section 3. We consider the solution to the formal equation (1)
in the mild form (see (5) below).

If f = 0 and g(x, t, v) = v2/2 then (1) is the Burgers equation, for g = const
we get the heat equation.
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In the paper, we prove the existence and uniqueness of the solution and obtain
its L2-continuity. In addition, we obtain that the averaging principle holds for equa-
tion (1).

Equation (1) driven by the Wiener process was studied in [7] for x ∈ R, in [6] and
[8] for x ∈ [0, 1]. Equation driven by Lévy process was considered in [9]. The main
reason to study equation (1) is that it is a generalization of the Burgers equation which
is very important in fluid mechanics. The stochastic Burgers equation was studied, for
example, in [4], [11], [14], [16, Chapter 18], [26], [27]. All these equations are driven
by Gaussian processes or Lévy processes. In our paper, we consider a more general
integrator. Our proofs are based on methods and results of [7].

Stochastic equations driven by stochastic measures were studied, for example,
in [1] (general parabolic equation), [2] (wave equation), [17] (heat equation). The
averaging principle for such equations was considered in [3], [18], [13]. The detailed
theory of stochastic measures is presented in [20]. Note that in all these publications,
the functions in the equations are assumed to be bounded.

The rest of the paper is organized as follows. In Section 2 we have compiled some
basic facts about stochastic measures. The precise formulation of the problem and
our assumptions are given in Section 3, some regularity properties of the stochastic
integral are studied in Section 4, and one auxiliary equation is considered in Section 5.
The existence and uniqueness of the solution to equation (1) are proved in Section 6.
The averaging principle for our equation is obtained in Section 7.

2 Preliminaries

In this section, we give basic information concerning stochastic measures in a general
setting. In equation (1), μ is defined on Borel subsets of R.

Let L0 = L0(�,F , P) be the set of all real-valued random variables defined on
the complete probability space (�,F , P). Convergence in L0 means the convergence
in probability. Let X be an arbitrary set and B be a σ -algebra of subsets of X.

Definition 1. A σ -additive mapping μ : B → L0 is called stochastic measure (SM).

We do not assume the moment existence or martingale properties for SM. In other
words, μ is L0-valued measure.

Important examples of SMs are orthogonal stochastic measures, α-stable random
measures defined on a σ -algebra for α ∈ (0, 1) ∪ (1, 2] (see [21, Chapter 3]). The-
orem 8.3.1 of [10] states the conditions under which the increments of a real-valued
process with independent increments generate an SM.

Many examples of the SMs on the Borel subsets of [0, T ] may be given by the
Wiener-type integral

μ(A) =
∫

[0,T ]
1A(t) dXt . (2)

We note the following cases of processes Xt in (2) that generate SM.

1. Xt is any square integrable martingale.

2. Xt = WH
t is the fractional Brownian motion with Hurst index H > 1/2, see

Theorem 1.1 [15].
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3. Xt = Sk
t is the sub-fractional Brownian motion for k = H − 1/2, 1/2 < H <

1, see Theorem 3.2 (ii) and Remark 3.3 c) in [23].

4. Xt = Zk
H (t) is the Hermite process, 1/2 < H < 1, k ≥ 1, see [12], [24,

Section 3.1.3]. Z2
H (t) is known as the Rosenblatt process, see [22, Section 3].

The following analogue of the Nikodym theorem is satisfied for SMs.

Theorem 1 ([5, Theorem 8.6]). Let μn are SMs on B, n ≥ 1, and

∀ A ∈ B ∃ μ(A) = p- lim
n→∞ μn(A).

Then μ is an SM on B.

Applying Theorem 1, we can construct the following example of the SM on all
Borel subsets of R:

μ(A) =
∫
R

1A(t)ξ(t) dWt := lim
T →∞

∫
[−T ,T ]

1A(t)ξ(t) dWt , (3)

where Wt is the Wiener process, ξ(t) is an adapted process such that
∫
R

Eξ(t)2 dt <

∞, the limit is taken in L2(�).
For deterministic measurable functions g : X → R, an integral of the form∫

X g dμ is studied in [20, Chapter 1] (see also [10, Chapter 7]). In particular, every
bounded measurable g is integrable w.r.t. any SM μ.

To estimate the stochastic integral, we will use the following statement.

Lemma 1 (Lemma 3.1 [17], Lemma 2.3 [20]). Let fl : X → R, l ≥ 1, be measurable
functions such that f̄ (x) = ∑∞

l=1 |fl(x)| is integrable w.r.t. μ. Then

∞∑
l=1

(∫
X

fl dμ
)2

< ∞ a.s.

We consider the Besov spaces Bα
22([c, d]). Recall that the norm in this classical

space for 0 < α < 1 may be introduced by

‖g‖Bα
22([c,d]) = ‖g‖L2([c,d]) +

(∫ d−c

0
(w2(g, r))2r−2α−1 dr

)1/2
, (4)

where

w2(g, r) = sup
0≤h≤r

(∫ d−h

c

|g(y + h) − g(y)|2 dy
)1/2

.

By C and C(ω) we will denote positive constants and positive random constants,
respectively, whose values may change.
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3 The problem

We consider (1) in the mild form

u(t, x) =
∫
R

p(t, x − y)u0(y) dy

+
∫ t

0

∫
R

p(t − s, x − y)f (s, y, u(s, y)) dy ds

−
∫ t

0

∫
R

∂p

∂y
(t − s, x − y)g(s, y, u(s, y)) dy ds

+
∫
R

∫ t

0
p(t − s, x − y)σ (s, y) ds dμ(y),

(5)

where equality holds a.s. for each t ∈[0, T ] for almost all x ∈R, u∈C([0, T ], L2(R)).
Here

p(t, x) = 1

2
√

πt
e− x2

4t

is the heat kernel, and μ is an SM on B(R).
We will refer to the following assumptions on elements of (5).

Assumption A1. u0(y) = u0(y, ω) : R × � → R is measurable and u0(y) =
u0(y, ω) ∈ L2(R) for each fixed ω.

Assumption A2. f (s, y, r) : [0, T ] × R
2 → R is a Borel function satisfying the

linear growth and Lipschitz-type condition:

|f (s, y, r)| ≤ a1(y) + K|r|,
|f (s, y, r1) − f (s, y, r2)| ≤ (a2(y) + L|r1| + L|r2|)|r1 − r2|

for all s ∈ [0, T ], y, ri ∈ R and for some constants K , L and nonnegative functions
ai ∈ L2(R).

Assumption A3. The function g is of the form

g(s, y, r) = g1(s, y, r) + g2(s, r),

where
g1(s, y, r) : [0, T ] × R

2 → R, g2(s, r) : [0, T ] × R → R

are Borel functions satisfying the following linear and quadratic growth conditions:

|g1(s, y, r)| ≤ b1(y) + b2(y)|r|,
|g2(s, r)| ≤ K|r|2,

for all s ∈ [0, T ], y, r ∈ R, where K is a constant, and

b1 ∈ L1(R) ∩ L2(R), b2 ∈ L2(R) ∩ L∞(R)

are nonnegative functions. Moreover, g satisfies the following Lipschitz-type condi-
tion:

|g(s, y, r1) − g(s, y, r2)| ≤ (b3(y) + L|r1| + L|r2|)|r1 − r2|
for all s ∈ [0, T ], y, ri ∈ R and for some constant L and nonnegative function
b3 ∈ L2(R).
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Assumption A4. σ(s, y) : [0, T ] × R → R is measurable, and

|σ(s, y)| ≤ Cσ , |σ(s, y1) − σ(s, y2)| ≤ Lσ |y1 − y2|β(σ )

for 1/2 < β(σ) < 1 and some constants Cσ , Lσ .

Assumption A5. |y|τ is integrable w.r.t. μ on R for some τ > 1/2.

For example, Assumption A5 holds for the SM defined in (3) and given τ if∫
R

t2τ Eξ(t)2 dt < ∞.

If A4 and A5 hold, then, by Theorem of [1] (or Theorem 3.1 [20]), the random
function

ϑ(t, x) =
∫
R

∫ t

0
p(t − s, x − y)σ (s, y) ds dμ(y)

has a version ϑ̃(t, x) such that for any fixed

δ ∈ (0, T ), M > 0, 0 < γ1 < 1/2, 0 < γ2 < 1/4

there exists Lϑ̃(ω) such that

|ϑ̃(t1, x1) − ϑ̃(t2, x2)| ≤ Lϑ̃(ω)(|t1 − t2|γ2 + |x1 − x2|γ1),

ti ∈ [δ, T ], |xi | ≤ M, i = 1, 2.
(6)

In the sequel, we will use that∣∣∣∂p
∂y

(t − s, x − y)

∣∣∣ ≤ Cλ

t − s
e− λ(x−y)2

t−s (7)

for any λ ∈ (0, 1/4) and some constant Cλ.

4 Regularity property of the stochastic integral

In this section, we obtain some properties of ϑ̃ .
For any j ∈ R and all n ≥ 0, put

d
(j)
kn = j + k2−n, 0 ≤ k ≤ 2n, �

(j)
kn = (d

(j)

(k−1)n, d
(j)
kn ], 1 ≤ k ≤ 2n .

The following estimate is a key tool for the estimates of the stochastic integral.

Lemma 2 (Lemma 3.2 [17]). Let μ be defined on B(R), Z be an arbitrary set, and
q(z, x) : Z × [j, j + 1] → R be a function such that for some 1/2 < α < 1 and for
each z ∈ Z q(z, ·) ∈ Bα

22 ([j, j + 1]). Then the random function

η(z) =
∫

[j,j+1]
q(z, x) dμ(x), z ∈ Z,

has a version η̃(z) such that for some constant C (independent of z, j , ω) and each
ω ∈ �,

|η̃(z)| ≤ |q(z, j)μ([j, j + 1])|
+ C‖q(z)‖Bα

22([j,j+1])
{∑

n≥1

2n(1−2α)
∑

1≤k≤2n

|μ(�
(j)
kn )|2

}1/2
.

(8)
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Further, we study the properties of stochastic integral ϑ .

Lemma 3. Let Assumptions A4 and A5 hold. Then for version ϑ̃ that satisfies (6), we
have ϑ̃ ∈ C([0, T ], L2(R))

Proof. To prove the continuity in L2(R), for fixed ω ∈ � and arbitrary tn → t0,
consider

‖ϑ̃(tn) − ϑ̃(t0)‖2
L2(R) =

∫
R

|ϑ̃(tn, x) − ϑ̃(t0, x)|2 dx.

By (6), ϑ̃ is continuous in both variables, therefore ϑ̃(tn, x) → ϑ̃(t0, x) for each x.
We will find g ∈ L2(R) such that

|ϑ̃(t, x)| =
∣∣∣∫

R

∫ t

0
p(t − s, x − y)σ (s, y) ds dμ(y)

∣∣∣ ≤ Cg(x), (9)

then the dominated convergence theorem implies our statement.
We apply Lemma 2 for

q(z, y) =
∫ t

0
p(t − s, x − y)σ (s, y) ds, z = (t, x).

Our considerations will imply that the function q(z, y) is continuous in y (see (14)
and (15) below), thus the conditions of Lemma 2 are satisfied.

We fix ω ∈ �, θ > 1 and estimate

|ϑ̃(t, x)|2 =
∣∣∣∫

R

∫ t

0
p(t − s, x − y)σ (s, y) ds dμ(y)

∣∣∣2

=
∣∣∣∑
j∈Z

∫
(j,j+1]

∫ t

0
p(t − s, x − y)σ (s, y) ds dμ(y)

∣∣∣2

≤
∑
j∈Z

(|j |+1)−θ
∑
j∈Z

(|j |+1)θ
∣∣∣∫

(j,j+1]

∫ t

0
p(t−s, x−y)σ (s, y) ds dμ(y)

∣∣∣2

= C
∑
j∈Z

(|j | + 1)θ
∣∣∣∫

(j,j+1]
q(t, x, y) dμ(y)

∣∣∣2

(8)≤ C
∑
j∈Z

(|j | + 1)θ
(
|q(t, x, j)μ((j, j + 1])|2

+ ‖q(t)‖2
B

2,2
α ([j,j+1])

{∑
n≥1

2−n(2α−1)
∑

1≤k≤2n

|μ(�
(j)
kn )|2

})
.

(10)

Below we will use the following simple estimates:∫ t

0

1

r
e− b

r dr
b/r=z=

∫ ∞

b/t

1

z
e−z dz

≤ 1{b≥t}
∫ ∞

b/t

e−z dz + 1{b<t}
(∫ 1

b/t

1

z
dz +

∫ ∞

1
e−z dz

)

≤ 1{b≥t}e−b/t + 1{b<t}
(

ln
t

b
+ 1

)
,

(11)
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0

1√
t − s

e− b
t−s ds ≤

∫ t

0

1√
t − s

e− b
T ds ≤ Ce− b

T . (12)

We have that

|q(t, x, y)| =
∣∣∣∫ t

0
p(t − s, x − y)σ (s, y) ds

∣∣∣
≤ Cσ C

∫ t

0

e
− (x−y)2

4(t−s)√
t − s

ds
(12)≤ Ce− (x−y)2

4T .

(13)

To estimate ‖q(t)‖
B

2,2
α ([j,j+1]), we consider

q(t, x, y + h) − q(t, x, y) =
∫ t

0
p(t − s, x − y)(σ (s, y + h) − σ(s, y)) ds

+
∫ t

0
(p(t − s, x − y − h) − p(t − s, x − y))σ (s, y + h) ds := I1 + I2.

For I1, we obtain

|I1| ≤ Lσ hβ(σ)

∫ t

0
p(t − s, x − y) ds = Chβ(σ)

∫ t

0

e
− (x−y)2

4(t−s)√
t − s

ds

(12)≤ Chβ(σ)e− (x−y)2

4T .

(14)

For I2, assuming 0 ≤ h ≤ 1, we get

|I2| A4≤ Cσ

∫ t

0
|p(t − s, x − y − h) − p(t − s, x − y)| ds

= Cσ

∫ t

0

∣∣∣∫ x−y

x−y−h

∂p(t − s, v)

∂v
dv

∣∣∣ ds

(7)≤ Cσ Cλ

∫ t

0

1

t − s

∫ x−y

x−y−h

e− λv2
t−s dv ds

(11)≤ C

∫ x−y

x−y−h

e− λv2
t 1{λv2≥t} dv + C

∫ x−y

x−y−h

(∣∣∣ln T

λv2

∣∣∣ + 1
)

1{λv2<t}dv

≤ C

∫ x−y

x−y−h

e− λv2
t 1{λv2≥t} dv + C

∫ x−y

x−y−h

| ln |v||1{λv2<t}dv

(∗)≤ C

∫ x−y

x−y−h

e− λv2
t 1{λv2≥t} dv + C1{|x−y|<√

t/λ+1}
∫ h/2

0
| ln z| dz

(∗∗)≤ Che− λ̃(x−y)2

T + C1{|x−y|<√
t/λ+1}(z − z ln z)

∣∣∣h/2

0

≤ Che− λ̃(x−y)2

T + Ch| ln h|1{|x−y|<√
t/λ+1}

≤ Che− λ̃(x−y)2

T + Chβ(σ)1{|x−y|<√
T/λ+1} ≤ Chβ(σ)e− λ̃(x−y)2

T .

(15)
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In (*) we have used that the maximal value of
∫ x2
x1

| ln |v||1{|v|<C}dv for fixed
|x1 − x2| is achieved when x2 = −x1.

In (**) we applied

Ce− λv2
T ≤ e− λ̃(x−y)2

T ,

which holds for 0 < λ̃ < λ, x − y − h ≤ v ≤ x − y.
Further, we note that for y ∈ [j, j + 1]

e− (x−y)2 λ̃
T ≤ e

(1−(|x−j |−1)2)λ̃
T ,

and (14) and (15) imply that

|q(t, x, y + h) − q(t, x, y)| ≤ Chβ(σ)e
(1−(|x−j |−1)2)λ̃

T . (16)

Now, from (4), (13), and (16), for some 1/2 < α < β(σ) we get that

‖q(t)‖
B

2,2
α ([j,j+1]) ≤ Ce

(1−(|x−j |−1)2)λ̃
T . (17)

From (10), (13), and (17) we obtain (9), where

g2(x) =
∑
j∈Z

(|j | + 1)θ
(
e

2(1−(|x−j |−1)2)λ̃
T μ2((j, j + 1])

+ e
2(1−(|x−j |−1)2)λ̃

T

{∑
n≥1

2−n(2α−1)
∑

1≤k≤2n

|μ(�
(j)
kn )|2

})
.

(18)

We will check that g ∈ L2(R), and get∫
R

g2(x) dx ≤ C
∑
j∈Z

(|j | + 1)θμ2((j, j + 1])

+ C
∑
j∈Z

(|j | + 1)θ
{∑

n≥1

2−n(2α−1)
∑

1≤k≤2n

|μ(�
(j)
kn )|2

}
.

(19)

Here the sums with μ have a form
∑∞

l=1

(∫
R

fl dμ
)2

, where

{fl(y), l ≥ 1} = {(|j | + 1)θ/2 1(j,j+1](y), j ∈ Z},
{fl(y), l ≥ 1} = {(|j | + 1)θ/22−n(α−1/2)1

�
(j)
kn

(y),

j ∈ Z, n ≥ 1, 1 ≤ k ≤ 2n}.
We have ∞∑

l=1

|fl(y)| ≤ C(|y| + 1)θ/2.
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By A5,
∑∞

l=1 |fl | is integrable w.r.t. μ on R in both cases. From Lemma 1 it follows
that for

�θ,α =
{
ω ∈ � :

∞∑
l=1

(∫
X

fl dμ
)2

< +∞
}

(20)

we have P(�θ,α) = 1. For each ω ∈ �θ,α , we have g(·, ω) ∈ L2(R), and ϑ̃(·, ω) ∈
C([0, T ], L2(R)).

In particular, Lemma 3 implies that for each ω ∈ �θ,α it holds

sup
t∈[0,T ]

‖ϑ̃(t)‖L2(R) < ∞. (21)

We will need one more boundness result about ϑ̃ .

Lemma 4. Let Assumptions A4 and A5 hold. Then, for version ϑ̃ that satisfies (6),
we have

sup
t∈[0,T ],x∈R

|ϑ̃(t, x)| < ∞ a.s.

Proof. In the proof of Lemma 3, for function g defined in (18), we obtained that
estimate (9) holds. From (18) it follows that

g2(x) ≤ C
∑
j∈Z

(|j | + 1)θμ2((j, j + 1])

+ C
∑
j∈Z

(|j | + 1)θ
{∑

n≥1

2−n(2α−1)
∑

1≤k≤2n

|μ(�
(j)
kn )|2

}
.

Further, we repeat the proof of Lemma 3 after (19), and for each ω ∈ �θ,α obtain that
supx∈R |g(x, ω)| < ∞.

5 Solution to the auxiliary equation

Consider the operator πN : L2(R) → L2(R) such that

πN(v) =
⎧⎨
⎩

v, ‖v‖L2(R) ≤ N,

N
v

‖v‖L2(R)

, ‖v‖L2(R) > N.

For the Hilbert space L2(R), it is easy to check that

‖πN(v) − πN(w)‖L2(R) ≤ ‖v − w‖L2(R). (22)

In this section, we study the auxiliary equation

u(t, x) =
∫
R

p(t, x − y)u0(y) dy

+
∫ t

0

∫
R

p(t − s, x − y)f (s, y, πN(u)(s, y)) dy ds

−
∫ t

0

∫
R

∂p

∂y
(t − s, x − y)g(s, y, πN(u)(s, y)) dy ds + ϑ̃(t, x).

(23)
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We consider (23) for fixed ω ∈ �θ,α (see (20)), and will prove the existence and
uniqueness of the solution.

Let us consider the linear operators

(J1v)(t, x) =
∫ t

0

∫
R

p(t − s, x − y)v(s, y) dy ds,

(J2w)(t, x) =
∫ t

0

∫
R

∂p

∂y
(t − s, x − y)w(s, y) dy ds,

where t ∈ [0, T ], x ∈ R, v,w ∈ L∞([0, T ], L2(R)).
We recall some lemmas from [7].

Lemma 5 (Lemma 3.1 [7]). The operator J1 is bounded from L2([0, T ], L2(R)) to
C([0, T ], L2(R)), and the following estimate holds:

‖J1v(t) − J1v(r)‖L2(R) ≤ C|t − r|1/3
(∫ t

0
‖v(s)‖2

L2(R)
ds

)1/2
, (24)

where 0 ≤ r , t ≤ T .

Lemma 6 (Lemma 3.2 [7]). The operator J2 is bounded from L5([0, T ], L1(R)) to
C([0, T ], L2(R)), and the following estimates hold:

‖J2w(t)‖L2(R) ≤ C

∫ t

0
(t − s)−3/4‖w(s)‖L1(R) ds, (25)

‖J2w(t) − J2w(r)‖L2(R) ≤ C|t − r|1/21
(∫ t

0
‖w(s)‖5

L1(R)
ds

)1/5
, (26)

where 0 ≤ r , t ≤ T .

The following statement is the analogue of Proposition 4.1 [7].

Lemma 7. Let A2 and A3 hold, and

u0 ∈ L2(R), |ϑ̃(t, x)| ≤ C(ω), ‖ϑ̃(t)‖L2(R) ≤ C(ω)

for some finite constant C(ω). Then for any fixed N > 0 and ω ∈ �θ,α equation (23)
has a unique solution u ∈ C([0, T ], L2(R)).

Proof. Step 1 (existence and uniqueness of the solution).
Denote

(A1u)(t, x) =
∫ t

0

∫
R

p(t − s, x − y)f (s, y, πN(u)(s, y)) dy ds,

(A2u)(t, x) = −
∫ t

0

∫
R

∂p

∂y
(t − s, x − y)g(s, y, πN(u)(s, y)) dy ds.

Fix λ > 0. Let H denote the Banach space of L2(R)-valued functions u(t, x) such
that u(0, x) = u0(x), with the norm

‖u(t)‖2
H =

∫ T

0
e−λt‖u(t)‖2

L2(R)
dt.
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Define the operator A : H → H such that

(Au)(t, x) =
∫
R

p(t, x − y)u0(y) dy + (A1u)(t, x) + (A2u)(t, x) + ϑ̃(t, x). (27)

We will prove that operator A is a contraction for large λ.
Using the inequality

∥∥∥∫ t

0
f (s) ds

∥∥∥ ≤
∫ t

0
‖f (s)‖ ds,

we have that

‖(A1u)(t) − (A1v)(t)‖L2(R)

≤
∫ t

0

∥∥∥∫
R

p(t−s, x−y)(f (s, y, πN(u)(s, y))−f (s, y, πN(v)(s, y))) dy

∥∥∥
L2(R)

ds

A2≤
∫ t

0

∥∥∥∫
R

p(t − s, x − y)(a2(y) + L|πN(u)(s, y)| + L|πN(v)(s, y)|)

× |πN(u)(s, y) − πN(v)(s, y)| dy

∥∥∥
L2(R)

ds

(∗∗)≤
∫ t

0
‖p(t − s, x − y)‖L2(R)‖(a2(y) + L|πN(u)(s, y)| + L|πN(v)(s, y)|)

× |πN(u)(s, y) − πN(v)(s, y)|‖L1(R) ds.

(28)

Here in (**) we used the inequality for convolution ‖v∗w‖L2(R) ≤ ‖v‖L2(R)‖w‖L1(R).
Further, we have

‖p(t − s, x − y)‖2
L2(R)

= C(t − s)−1/2,

‖(a2(y) + L|πN(u)(s, y)| + L|πN(v)(s, y)|)|πN(u)(s, y) − πN(v)(s, y)|‖L1(R)

≤ ‖(a2(y) + L|πN(u)(s, y)| + L|πN(v)(s, y)|‖L2(R)

× ‖πN(u)(s, y) − πN(v)(s, y)‖L2(R)

(22)≤ (‖a2‖L2(R) + 2LN)‖u(s) − v(s)‖L2(R).

Applying the Hölder inequality, we get

‖(A1u)(t) − (A1v)(t)‖2
L2(R)

≤ CN

(∫ t

0
(t − s)−1/4‖u(s) − v(s)‖L2(R) ds

)2

≤ CN

∫ t

0
(t − s)−3/4‖u(s) − v(s)‖2

L2(R)
ds,

(29)

where CN denotes some constants that may depend on N .
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For A2, we have

‖(A2u)(t) − (A2v)(t)‖2
L2(R)

=
∥∥∥∫ t

0

∫
R

∂p

∂y
(t − s, x − y)(g(s, y, πN(u)(s, y))

− g(s, y, πN(v)(s, y))) dy ds

∥∥∥2

L2(R)

(25)≤
(∫ t

0
(t − s)−3/4‖(b3(y) + L|πN(u)(s, y)|

+ L|πN(v)(s, y)|)|πN(u)(s, y) − πN(v)(s, y)|‖L1(R) ds
)2

≤ C

∫ t

0
(t − s)−3/4‖(b3(y) + L|πN(u)(s, y)|

+ L|πN(v)(s, y)|)|πN(u)(s, y) − πN(v)(s, y)|‖2
L1(R)

ds

≤ C

∫ t

0
(t − s)−3/4‖b3(y) + L|πN(u)(s, y)| + L|πN(v)(s, y)|‖2

L2(R)

× ‖πN(u)(s, y) − πN(v)(s, y)‖2
L2(R)

ds

≤ C

∫ t

0
(t − s)−3/4(‖b3‖L2(R) + 2LN)2‖u(s, y) − v(s, y)‖2

L2(R)
ds

= CN

∫ t

0
(t − s)−3/4‖u(s) − v(s)‖2

L2(R)
ds.

(30)

Therefore,

‖Au − Av‖2
H =

∫ T

0
e−λt‖(Au)(t) − (Av)(t)‖2

L2(R)
dt

(29),(30)≤ CN

∫ T

0
e−λt

∫ t

0
(t − s)−3/4‖u(s) − v(s)‖2

L2(R)
ds dt

= CN

∫ T

0
e−λs‖u(s) − v(s)‖2

L2(R)

∫ T

s

(t − s)−3/4e−λ(t−s) dt ds

≤ CN

∫ T

0
e−λs‖u(s) − v(s)‖2

L2(R)

∫ ∞

0
r−3/4e−λr dr ds

= CN‖u − v‖2
H

∫ ∞

0
r−3/4e−λr dr,

and for large λ we can get

CN

∫ ∞

0
r−3/4e−λr dr < 1.

Then the operator A on H is a contraction and has a unique fixed point which is the
solution of (23).

Step 2 (continuity of the solution in L2(R)).
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We will demonstrate that u ∈ C([0, T ], L2(R)) provided that Au = u. We con-
sider each term in (27), and obtain

‖(A1u)(t) − (A1u)(r)‖2
L2(R)

(24)≤ (t − r)2/3
∫ t

0
‖f (s, y, πN(v)(s, y))‖2

L2(R)
ds

A2≤ (t − r)2/32T (‖a1‖2
L2(R)

+ K2N2),

‖(A2u)(t) − (A2u)(r)‖5
L2(R)

(26)≤ (t − r)5/21
∫ t

0
‖g(s, y, πN(v)(s, y))‖5

L1(R)
ds

A3≤ (t − r)5/21 · CT (‖b1‖5
L1(R)

+ ‖b2πN(v)‖5
L1(R)

+ K5‖π2
N(v)‖5

L1(R)
)

≤ C(t − r)5/21(‖b1‖5
L1(R)

+ ‖b2‖5
L2(R)

‖πN(v)‖5
L2(R)

+ K5‖πN(v)‖5
L2(R)

)

≤ C(t − r)5/21(‖b1‖5
L1(R)

+ ‖b2‖5
L2(R)

N5 + K5N5),

therefore (A1u)(t) and (A2u)(t) are continuous. For ϑ̃ , we refer to Lemma 3, convo-
lution p ∗ u0 is continuous by standard properties of the heat semigroup.

6 Solution to the main equation

We will use one more statement from [7].

Lemma 8 (Lemma 4.2 [7]). Let ζ = {ζ(t, x), t ∈ [0, T ], x ∈ R} be a continuous
and bounded function belonging to C([0, T ], L2(R)). Let v ∈ C([0, T ], L2(R)) be a
solution of the integral equation

v(t, x) =
∫
R

p(t, x − y)u0(y) dy

+
∫ t

0

∫
R

p(t − s, x − y)f (s, y, v(s, y) + ζ(s, y)) dy ds

−
∫ t

0

∫
R

∂p

∂y
(t − s, x − y)g(s, y, v(s, y) + ζ(s, y)) dy ds,

(31)

where u0(y) ∈ L2(R), and f and g satisfy the assumptions A2 and A3.
Then we have

‖v(t)‖2
L2(R)

≤ (‖u0‖2
L2(R)

+ C1(1 + R1(ζ ))) exp{C2(1 + R2(ζ ))}, (32)

where the constants C1 and C2 depend only on T and on the functions ai , bi and the
constants K and L appearing in the hypothesis A2 and A3, and

R1(ζ ) = sup
s∈[0,T ]

(‖ζ(s)‖2
L2(R)

+ ‖ζ(s)‖4
L4(R)

+ ‖ζ(s)‖2
L∞(R)),

R2(ζ ) = sup
s∈[0,T ]

‖ζ(s)‖2
L∞(R).

The main result of the paper is the following.
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Theorem 2. Let Assumptions A1–A5 hold. Then equation (5) has a unique solution
which is continuous with values in L2(R).

Proof. We consider equation (5) for each fixed ω ∈ �θ,α , take the version ϑ̃ that
satisfies (6).

We apply Lemma 8 to

ζ(t, x) =
∫
R

∫ t

0
p(t − s, x − y)σ (s, y) ds dμ(y) = ϑ̃(t, x),

assumptions on ζ are fulfilled by Lemmas 3 and 4.
For given ζ , set

N = N1 + sup
t∈[0,T ]

‖ζ(t)‖L2(R) + 1, (33)

where N2
1 is equal to the right-hand side of (32). For given N , take u which is a

solution of (23).
Denote

tN = sup{t : ‖u(t)‖L2(R) ≤ N},
for t ≤ tN we have πN(u) = u and v = u − ζ satisfies (31).

By Lemma 8, ‖v(t)‖L2(R) ≤ N1, and

‖u(t)‖L2(R) ≤ ‖v(t)‖L2(R) + ‖ζ(t)‖L2(R) ≤ N − 1, t ≤ tN .

Therefore, tN = T , and we never get ‖u(t)‖L2(R) > N . The solution of (23) will
satisfy (5).

Conversely, in (5) we have that ‖u0‖L2(R) ≤ N − 1, up to the moment tN = T

equation (5) coinsides with (23) and has a unique solution.

7 Averaging principle

In this section, we consider equation (1), where functions f and g do not depend on
the time variable t , and study the averaging of the stochastic term.

For ε > 0, consider equation

∂uε

∂t
= ∂2uε

∂x2 + f (x, uε(t, x)) + ∂g

∂x
(x, uε(t, x)) + σ(t/ε, x)

∂μ

∂x
,

uε(0, x) = u0(x).

(34)

Assume that for each y ∈ R there exists the limit

σ̄ (y) = lim
t→∞

1

t

∫ t

0
σ(s, y) ds. (35)

It is easy to see that σ̄ (y) satisfies Assumption A4 with the same constants Cσ , Lσ .
We will study convergence uε(t, x) → ū(t, x), ε → 0, were ū is the solution of

the averaged equation

∂ū

∂t
= ∂2ū

∂x2 + f (x, ū(t, x)) + ∂g

∂x
(x, ū(t, x)) + σ̄ (x)

∂μ

∂x
,

ū(0, x) = u0(x).

(36)
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The mild forms of (34) and (36) are, respectively,

uε(t, x) =
∫ t

0
p(t, x − y)u0(y) dy

+
∫ t

0

∫
R

p(t − s, x − y)f (y, uε(s, y)) dy ds

−
∫ t

0

∫
R

∂

∂y
p(t − s, x − y)g(y, uε(s, y)) dy ds

+
∫
R

∫ t

0
p(t − s, x − y)σ (s/ε, y) ds dμ(y).

and

ū(t, x) =
∫
R

p(t, x − y)u0(y) dy

+
∫ t

0

∫
R

p(t − s, x − y)f (y, ū(s, y)) dy ds

−
∫ t

0

∫
R

∂

∂y
p(t − s, x − y)g(y, ū(s, y)) dy ds

+
∫
R

∫ t

0
p(t − s, x − y)σ̄ (y) ds dμ(y) .

We also impose the following additional condition that is standard in the averag-
ing principle.

Assumption A6. The function Gσ (r, y) = ∫ r

0 (σ (s, y) − σ̄ (y)) ds, r ∈ R+, y ∈ R is
bounded.

This holds, for example, if σ(s, y) is bounded and periodic in s for each fixed y,
and the set of values of minimal periods is bounded. Obviously, A6 implies (35).

Theorem 3. Assume that Assumptions A1–A6 hold. Then there exists a versions of
uε and ū such that

sup
t∈[0,T ]

‖uε(t) − ū(t)‖L2(R) → 0 a.s. (37)

Proof. In Step 1 of the proof of Theorem 1 [19] (or Theorem 7.1 [20]), for the
stochastic integrals in

ξε(t, x) =
∫
R

∫ t

0
p(t − s, x − y)σ (s/ε, y)ds dμ(y)

−
∫
R

∫ t

0
p(t − s, x − y)σ̄ (y)ds dμ(y)

and some γ1 > 0 it was proved that there exists a version such that

|ξε(t, x)| ≤ C(ω)εγ1 (38)
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for all ω ∈ �1, P(�1) = 1 (here Assumption A6 was used).
As in the proof of Lemma 3, for function g defined in (18), we obtain that

|ξε(t, x)| ≤ Cg(x),

where g ∈ L2(R) for each ω ∈ �θ,α , P(�θ,α) = 1, and g is independent of ε.
By (38), |ξεn(t, x)| → 0, εn → 0. The dominated convergence theorem imply

that for each t ∈ [0, T ] and each ω ∈ �θ,α ∩ �1 it holds

(‖ξεn(t)‖L2(R))
2 =

∫
R

|ξεn(t, x)|2 dx → 0, εn → 0,

therefore
‖ξε(t)‖L2(R) → 0, ε → 0. (39)

In the proof of Theorem 2, it was obtained that

‖u(t)‖L2(R) ≤ N, (40)

where N is defined in (33).
We can see that also

‖uε(t)‖L2(R) ≤ N (41)

for all ε > 0 for the same N . To explain this, note that in (33) N1 depends only on T ,
on the functions ai , bi and the constants K and L appearing in the assumptions A2
and A3. For ζ(t, s) = ϑ(t, s), in the proof of Lemma 3 we obtained that

sup
t∈[0,T ]

‖ϑ(t)‖2
L2(R)

≤ C

∫
R

g2(x) dx,

where the right-hand side may be estimated by (19). The constants in (19) may depend
on Cσ and Lσ from assumption A4, but are independent of ε.

Further, we obtain

‖uε(t) − ū(t)‖L2(R)

≤
∥∥∥∫ t

0

∫
R

p(t − s, x − y)(f (y, uε(s, y)) − f (y, ū(s, y)) dy ds

∥∥∥
L2(R)

+
∥∥∥∫ t

0

∫
R

∂

∂y
p(t − s, x − y)(g(y, uε(s, y)) − g(y, ū(s, y)) dy ds

∥∥∥
L2(R)

+ ‖ξε(t)‖L2(R) := J1 + J2 + ‖ξε(t)‖L2(R).

For J1, as in (28)–(29), taking into account (40) and (41), we get

J 2
1 ≤ C

∫ t

0
(t − s)−1/4‖uε(s) − ū(s)‖2

L2(R)
ds.

For J2, as in (30), we obtain

J 2
2 ≤ C

∫ t

0
(t − s)−3/4‖uε(s) − ū(s)‖2

L2(R)
ds.
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Therefore,

‖uε(t) − ū(t)‖2
L2(R)

≤ C

∫ t

0
(t − s)−3/4‖uε(s) − ū(s)‖2

L2(R)
ds + 3‖ξε(t)‖2

L2(R)
.

We use the generalized Gronwall’s inequality (see, for example, Corollary 1 in
[25]) and get

‖uε(t) − ū(t)‖2
L2(R)

≤ C(ω)‖ξε(t)‖2
L2(R)

+ C(ω)

∫ t

0

∞∑
n=1

�n(1/4)

�(n/4)
(t − s)n/4−1‖ξε(s)‖2

L2(R)
ds.

By (21), ‖ξε(s)‖L2(R) ≤ C. It is easy to check that the function

h(s) =
∞∑

n=1

�n(1/4)

�(n/4)
(t − s)n/4−1

is integrable. Applying (39) and the dominated convergence theorem, we obtain (37).
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