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Abstract This work obtains sharp closed-form exponential concentration inequalities of
Bernstein type for the ubiquitous beta distribution, improving upon sub-Gaussian and sub-
gamma bounds previously studied in this context.

The proof leverages a novel handy recursion of order 2 for central moments of the beta
distribution, obtained from the hypergeometric representations of moments; this recursion is
useful for obtaining explicit expressions for central moments and various tail approximations.
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1 Introduction

1.1 Background

The beta distribution is ubiquitous in statistics due to its flexibility. Among many
applications, it is used in analyses of uniform order statistics [17], problems in Eu-
clidean geometry [10], general theory of stochastic processes [24], and applied sta-
tistical inference; the last category of applications includes time estimation in project
management [5], hypothesis testing [34], A/B testing in business [28], modelling in
life sciences [31] and others [19, 20].

Unfortunately, the importance and simplicity do not go in pairs. The distribution
of X ∼ Beta(α, β) with parameters α, β > 0 is given by

P{X � ε} =
∫ ε

0

xα−1(1 − x)β−1

B(α, β)
dx, 0 � ε � 1, (1)
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where B(α, β) �
∫ 1

0 xα−1(1 − x)β−1dx is the normalizing constant; the integral (1),
also known as the incomplete beta function [7], is intractable. Thus, there is a strong
demand for closed-form approximations of tail probabilities, for example, in the con-
text of adaptive Bayesian inference [8], Bayesian nonparametric statistics [4], prop-
erties of random matrices [10, 26], and (obviously) large deviation theory [33].

The main goal of this paper is to give accurate closed-form bounds for the beta
distribution in the form of sub-gamma type exponential concentration inequalities [3],
that is,

P{X − E[X] < −ε}, P{X − E[X] > ε} � exp

(
− ε2

2v + 2cε

)
(2)

for any ε � 0 and the two parameters: the variance proxy v and the scale c, both
depending on α, β. Such concentration bounds, pioneered by Bernstein [2] and pop-
ularized by Hoeffding [14], are capable of modelling both the sub-Gaussian and sub-
exponential behaviors. Due to this flexibility, bounds of this sort are the working horse
of approximation arguments used in modern statistics [18, 3, 22, 30].

1.2 Contribution
The contributions of this work are as follows:

• Optimal Bernstein-type concentration inequality. We establish an exponen-
tial concenration bound (2) with v that matches the variance (which is optimal)
and, respectively, the optimal value of c which depends on the ratio of the third
and second moment. This bound is shown optimal in the regime of small devi-
ations.

• Useful recursion for central moments of the Beta distribution: it is of order
2 with coefficients linearly dependent on the moment order. This formula ad-
dresses the lack of a simple closed-form formula for higher-order moments.
We use it to estimate the moment generating function.

• Implementation and numerical evaluation. Symbolic algebra software has
been used to validate numerical comparison, and a numerical evaluation is pro-
vided to illustrate the new bounds. The code snippets are shared in the paper,
and the evaluation is also shared as a Colab notebook [27].

1.3 Related work
When judging the bounds in the form of (2), it is important to insist on the optimality
of the sub-Gaussian behavior. For small deviations ε the bound (2) becomes approxi-
mately Gaussian with variance v, thus we ideally want v2 = Var[X] and exponential
bounds of this type are considered optimal in the literature [1]. On the other hand,
bounds with v2 > Var[X] essentially overshoot the variance, leading to unnecessary
wide tails and increasing uncertainty in statistical inference.

Bearing this in mind, we review prior suboptimal bounds in the form of (2):

• Folklore methods give some crude bounds, for example, one can express a beta
random variable in terms of gamma distributions and utilize their concentration
properties; such techniques do not give optimal exponents.
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• Some bounds in the form of (2) can be derived from established inequalities on
the incomplete beta function. Using the well-known inequality [6], which de-
pends on a Kullback–Leibler term, unfortunately leads to suboptimal bounds in
the regime of small deviations (as seen from the Taylor approximation, we nec-
essarily obtain the variance factor of v2 = α+β+1

α+β
·Var[X], hence overshooting

the variance).

• The work [10] gives bounds with explicit but suboptimal v and c, only valid in

a limited range of deviations
√

6α
(α+β)2 < ε < α

α+β
.The proof relies on specific

integral estimates, and cannot be sharpened much.

• The work [21] determines the best bound assuming c = 0 (that is, of sub-
Gaussian type). They are not in a closed form, but can be numerically computed
as a solution of a transcendental equation. Although the bound is quite sharp
for the symmetric case α = β, it is much worse than our bound when the beta
distribution is skewed (the typical case).

• The work [33] obtains suboptimal v and c, shown to be far from the true values
by unknown constant factors. With these techniques, it is not possible to obtain
the optimal exponent, which is the focus of this work.

As for the central moment recursion, we note that:

• Little is known about formulas for higher central moments (as opposed to raw
moments, simpler to compute but not useful for concentration inequalities).
Textbooks do not discuss neither explicit formulas nor derivation algorithms
beyond the order of 4 (skewness and kurtosis)

• The modern literature [16, 12] credits the recursive formulas found in [25]. Un-
fortunately, that recursion is computationally inefficient due to its unbounded
depth and too complicated to be manipulated for the task of closed-form mo-
ment estimation.

Remark 1. While the current paper was under review, Henzi and Duembgen [13]
presented similar tail bounds, obtained by working with integral-derived inequalities.
When framed as Bernstein’s inequality, their constant c is worse for the heavier tail
(e.g., the right tail in case α < β), but better on the lighter tail (e.g., c < 0 for the left
tail in case α < β).

1.4 Organization

The remainder of the paper is organized as follows: Section 2 presents the results,
Section 3 provides the technical background, Section 4 gives proofs and Section 5
concludes the work. The implementation and numerical evaluation are shared in the
notebook [27].
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2 Results

2.1 Optimal Bernstein-type concentration bounds

The central result of this work is a Bernstein-type tail bound with numerically optimal
parameters. The precise statement is given in the following theorem.

Theorem 1 (Bernstein’s Inequality). Let X ∼ Beta(α, β). Define the parameters

v � αβ

(α + β)2(α + β + 1)
,

c � 2 (β − α)

(α + β) (α + β + 2)
.

(3)

Then the upper tail of X is bounded as

P {X > E[X] + ε} �
⎧⎨
⎩

exp
(
− ε2

2
(
v+ cε

3

)) , β � α,

exp
(
− ε2

2v

)
, β < α,

(4)

and the lower tail of X is bounded as

P {X < E[X] − ε} �
⎧⎨
⎩

exp
(
− ε2

2
(
v+ cε

3

)) , α � β,

exp
(
− ε2

2v

)
, α < β.

(5)

Remark 2 (Variance and Scale Parameters). The variance parameter equals v =
Var[X], and the scale parameter equals c = E[(X−E[X])3]

Var[X] .
Remark 3 (Mixed Gaussian-Exponential Behaviour). For small values of ε the bound
behaves like Gaussian with variance v = Var[X]. For bigger values of ε, the bound
is close to the exponential tail with parameter 2c

3v
.

The result below shows that the parameters c and v are best possible, in the regime
of small deviations ε, for the exponential moment method.

Theorem 2 (Best Cramér–Chernoff Bound). The best bound that can be obtained
from the Cramér–Chernoff method is

P {X > E[X] + ε} � e
− ε2

2v
+ cε3

6v2 +O
(
ε4)

, (6)

as ε → 0, with constants c, v as in Theorem 1.

Comparing this result with the tail from Theorem 1 as ε → 0 we obtain:

Corollary 1 (Optimality of Theorem 1). The values of constants c and v in the
Bernstein-type inequality in Theorem 1 are optimal.

2.2 Handy recurrence for central moments

Our optimal Bernstein inequality is proved using the novel recursion for central mo-
ments, presented below in Theorem 3 as the contribution of independent interest.
Being of order 2 it is not only efficient to evaluate numerically, but also easy to ma-
nipulate algebraically when working with closed-form formulas.
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1 from f u n c t o o l s i m p o r t cache
2

3 @cache
4 d e f b e t a _ c e n t r a l _ m o m e n t ( d , a , b ) :
5 " " " f i n d t h e c e n t r a l moment o f o r d e r d f o r Beta ( a , b ) " " "
6 i f d == 0 :
7 r e t u r n 1
8 e l i f d == 1 :
9 r e t u r n 0

10 e l s e :
11 c1 = ( d−1) * ( b−a ) / ( ( a+b ) * ( a+b+d−1) )
12 c2 = ( d−1)* a *b / ( ( a+b ) **2*( a+b+d−1) )
13 r e t u r n c1 * b e t a _ c e n t r a l _ m o m e n t ( d−1,a , b ) +c2 *
14 b e t a _ c e n t r a l _ m o m e n t ( d−2,a , b )
15

16 # usage :
17 i m p o r t sympy as sm
18 a , b = sm . symbols ( ’ a l p h a b e t a ’ )
19 b e t a _ c e n t r a l _ m o m e n t ( 2 , a , b )

Listing 1. Efficient algorithm finding exact formulas for central moments

Theorem 3 (Order 2 Recurrence for Central Moments). For X ∼ Beta(α, β) and
any integer order d � 2, the following recurrence relation holds:

E[(X − E[X])d ] = (d − 1)(β − α)

(α + β)(α + β + d − 1)
· E[(X − E[X])d−1]

+ (d − 1)αβ

(α + β)2(α + β + d − 1)
· E[(X − E[X])d−2].

(7)

Corollary 2 (P-recursive Property). The recursion given in Theorem 3, after rear-
rangements, is of order 2 with coefficients linear in the index d .

The implementation of the recursion, performed in Python’s symbolic algebra
package Sympy [23], is presented in Listing 1. Scalability is ensured by memoization,
which caches intermediate results to avoid repeated calls.

To demonstrate the algorithm in action, we list some first central moments of the
beta distribution in Table 1.

Table 1. Central beta moments, generated from Theorem 3 using Listing 1

Central Moment Explicit Formula

E[X] α
α+β

Var[X] αβ

(α+β)2(α+β+1)

Skew[X] 2(β−α)
√

α+β+1√
αβ(α+β+2)

Kurt[X] 3
(
αβ(α+β+2)+2(α−β)2

)
(α+β+1)

αβ(α+β+2)(α+β+3)

E[(X − E[X])5]/√Var[X]5 4(β−α)(α+β+1)
3
2

(
3αβ(α+β+2)+2αβ(α+β+3)+6(α−β)2

)
α

3
2 β

3
2 (α+β+2)(α+β+3)(α+β+4)
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Note that the algorithm addresses the lack of simple derivations for such formulas,
as well as the lack of formulas beyond skewness and kurtosis.

Finally, we note that the recurrence implies, by induction, the following important
property:

Corollary 3 (Skewness of Beta Distribution). The odd central moments are of the
same sign as the value of β − α.

2.3 Numerical evaluation

The experiment summarized in Figure 1 (the code shared in [27]) demonstrates the
advantage of sub-gamma bounds obtained in Theorem 1 over the optimal sub-Gaussian
bounds from prior work [21].

Fig. 1. Numerical evaluation of the best sub-gamma bounds (Theorem 1) and the best sub-
Gaussian bounds ([21])

For skewed beta distributions, the bound from this work is more accurate than the
sub-Gaussian approximation. The chosen range of parameters covers the cases where
the expectation E[X] is a relatively small number like 0.02 or 0.2, a typical range for
many practical Beta models, particularly A/B testing. Note that there is still room for
improvement in the regime of larger deviations ε, where the bounds could potentially
benefit from refining the numeric value of c. The experiment details are shared in the
Colab Notebook [27].

3 Preliminaries

3.1 Gaussian hypergeometric function

The Gaussian hypergeometric function is defined as follows [11]:

2F1(a, b; c; , z) =
+∞∑
k=0

(a)k(b)k

(c)k
· zk

k! , (8)
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where we use the Pochhammer symbol defined as

(x)k =
{

1, k = 0,

x(x + 1) · · · (x + k − 1), k > 0.
(9)

We call two functions F of this form contiguous when their parameters differ by
integers. Gauss considered 2F1(a

′, b′; c′; , z) where a′ = a ± 1, b′ = b ± 1, c′ =
c ± 1 and proved that between F and any two of these functions, there exists a linear
relationship with coefficients linear in z. It follows [29, 15] that F and any two of
its contiguous series are linearly dependent, with the coefficients being rational in
parameters and z. For our purpose, we need to express F by the series with increased
second argument. The explicit formula comes from [32]:

Lemma 1 (Hypergeometric Contiguous Recurrence). The following recurrence holds
for the Gaussian hypergeometric function:

2F1(a, b; c; , z) = 2b − c + 2 + (a − b − 1)z

b − c + 1
2F1(a, b + 1; c; , z)

+ (b + 1)(z − 1)

b − c + 1
2F1(a, b + 2; c; , z).

(10)

3.2 Beta distribution properties

We use the machinery of hypergeometric functions to establish certain properties of
the beta distribution. The first result expresses the central moment in terms of the
Gaussian hypergeometric function.

Lemma 2 (Central Beta Moments). Let X ∼ Beta(α, β), then we have that

E[(X − E[X])d ] =
(

− α

α + β

)d

2F1

(
α,−d; α + β; α + β

α

)
, (11)

where 2F1 is the Gaussian hypergeometric function.

The proof appears in Section 4.1.

3.3 Cramér–Chernoff method

Below, we review the canonical method of obtaining concentration inequalities from
the moment generating function, following the discussion in [3].

Recall that for a given random variable Z we define its moment generating func-
tion (MGF) and, respectively, cumulant generating function as

φZ(t) � E
[
exp(tZ)

]
,

ψZ(t) � log E
[
exp(tZ)

]
.

(12)

In this notation, Markov’s exponential inequality becomes

P {Z � ε} � exp(−tε)E
[
exp(tZ)

] = exp(−tε + ψZ(t)), (13)
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valid for any ε and any nonnegative t , and nontrivial when φZ(t) is finite. The optimal
value of t is determined by the so-called Cramér transform:

ψ∗(ε) = sup {tε − ψZ(t) : t � 0} , (14)

and leads to the Chernoff inequality

P {Z � ε} � exp(−ψ∗
Z(ε)). (15)

3.4 Logarithmic inequalities

It is well known that log(1+x) = x + x2

2 +· · · for nonnegative x. Below, we present
a useful refinement of this expansion:

Lemma 3 (Padé approximation of logarithm). For any x � 0 we have that

log(1 + x) � x − x2

2
(
1 + 2x

3

) . (16)

The bound is illustrated in Figure 2 below, and we see that it matches up to the
term O(x4). The proof appears in Section 4.3.

Fig. 2. The logarithmic inequality from Lemma 3

4 Proofs

4.1 Proof of Lemma 2

We know that the raw higher-order moments of X are given by [16]

E[Xd ] = (α)d

(α + β)d
. (17)
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Combining this with the binomial theorem, we obtain

E[(X − E[X])d ] =
d∑

k=0

(−1)d−k

(
d

k

)
E[Xk]

(
α

α + β

)d−k

=
d∑

k=0

(−1)d−k

(
d

k

)
(α)k

(α + β)k

(
α

α + β

)d−k

.

(18)

Finally, by
(
d
k

) = (−1)k
(−d)k

k! and the definition of the hypergeometric function,

E[(X − E[X])d ] = (−1)d
d∑

k=0

(−d)k(α)k

k!(α + β)k

(
α

α + β

)d−k

=
(

− α

α + β

)d d∑
k=0

(−d)k(α)k

k!(α + β)k

(
α + β

α

)k

=
(

− α

α + β

)d

2F1

(
α,−d; α + β; α + β

α

)
,

(19)

which finishes the proof.

4.2 Proof of Theorem 3

The goal is to prove the recursion formula (10). One way to accomplish this is to
reuse the summation formulas developed in the proof of Lemma 2. Below, we give
an argument that uses the properties of hypergeometric functions to better highlight
their connection to the beta distribution.

To simplify the notation, we define a = α, b = −d , c = α + β, and z = α+β
α

.
Define μd � E[(X − E[X])d ]. Then using Lemma 2 and Lemma 1 we obtain

(−z)d · μd = 2F1(a, b; c; z)

= 2b − c + 2 + (a − b − 1)z

b − c + 1
2F1(a, b + 1; c; , z)

+ (b + 1)(z − 1)

b − c + 1
2F1(a, b + 2; c; , z).

(20)

In terms of α, β, d we obtain

2b − c + 2 + (a − b − 1)z

b − c + 1
= (d − 1) · α − β

α(α + β + d − 1)
,

(b + 1)(z − 1)

b − c + 1
= (d − 1) · β

α(α + β + d − 1)
.

(21)

The computations are done in SymPy package [23], as shown in Listing 2.
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1 from sympy . abc i m p o r t a , b , c , z , d , a lpha , b e t a
2

3 p = ( 2*b−c+2 + ( a−b−1)* z ) / ( b−c +1)
4 q = ( b +1) * ( z −1) / ( b−c +1)
5

6 subs = { a : a lpha , b:−d , c : a l p h a + be ta , z : ( a l p h a + b e t a ) / a l p h a }
7

8 p r i n t ( p . subs ( subs ) . f a c t o r ( ) )
9 p r i n t ( q . subs ( subs ) . f a c t o r ( ) )

Listing 2. Simplifying Hypergeometric Recurrence

Since we have

2F1(a, b + 1; c; , z) = 2F1(a,−d + 1; c; , z) = μd−1 · (−z)d−1,

2F1(a, b + 2; c; , z) = 2F1(a,−d + 2; c; , z) = μd−2 · (−z)d−2,
(22)

it follows that

z2μd = − z(d − 1)(α − β)

α(α + β + d − 1)
· μd−1 + (d − 1)β

α(α + β + d − 1)
· μd−2. (23)

Recalling that z = α+β
α

we finally obtain

μd = − (d − 1)(α − β)

(α + β)(α + β + d − 1)
· μd−1 + (d − 1)αβ

(α + β)2(α + β + d − 1)
· μd−2,

(24)

which finishes the proof.

4.3 Proof of Lemma 3

Consider the function f (x) = log(1 + x) −
(
x − x2

2(1+ 2x
3 )

)
for nonnegative x. Using

Sympy we find that

f ′(x) = − x3

(x + 1) (2x + 3)2 , (25)

as demonstrated in Listing 3. Thus, f is nondecreasing; since f (0) = 0 we obtain
f (x) � 0 as claimed.

1 i m p o r t sympy as sm
2 x = sm . symbols ( ’ x ’ )
3 fn = sm . l o g (1+ x )−x+x * * 2 / ( 2 * ( 1 + 2 * x / 3 ) )
4 fn . d i f f ( x , 1 ) . f a c t o r ( )

Listing 3. A Padé-type logarithm inequality
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4.4 Proof of Theorem 1

If X ∼ Beta(α, β), then for X′ = 1 − X we obtain X − E[X] = E[X′] − X′ and
thus the upper tail of X equals the lower tail of X′, and the lower tail of X equals
the upper tail of X′. Furthermore, from (1) it follows that X′ ∼ Beta(β, α). Thus, by
exchanging the roles of α and β accordingly, it suffices to prove the theorem for the
upper tail.

To facilitate calculations, we introduce the centred version of X:

Z � X − E[X]. (26)

With the help of normalized moments

md � E[Zd ]
d! , (27)

we expand the moment generating function of Z into the series

φ(t) � E exp(tZ) = 1 +
+∞∑
d=2

mdtd, t ∈ R (28)

(which converges everywhere as |Z| � 1), and expand its derivative as

φ′(t) =
+∞∑
d=2

dmdtd−1, t ∈ R (29)

(everywhere, accordingly).
The proof strategy is as follows: we start by expressing the cumulant generating

function as an integral involving the moment generating function and its derivative;
then we study series expansions of the functions involved, using the moment recur-
sion; this leads to a tractable upper-bound on the integral; finally, the cumulant bound
is optimized by the Cramér–Chernoff method. To achieve the promised optimal con-
stants, it is critical to keep all intermediate estimates sharp up to the order of 4. The
proof flow is illustrated on Figure 3.

Observe that the cumulant generating function ψ can be expressed in terms of the
moment generating function φ as follows.

Claim 1 (Cumulant generating function as integral). We have

ψ(t) � log φ(t) =
∫ t

0

φ′(s)
φ(s)

ds. (30)

Proof. This follows by the logarithmic derivative identity: log φ′ = φ′
φ

.

We now present a recursion for coefficients of the series expansions.

Claim 2. The coefficients of the moment generating series satisfy

d(α + β + d − 1)md = (d − 1)(β − α)

α + β
md−1 + αβ

(α + β)2 md−2, d � 2. (31)
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Fig. 3. The proof roadmap

Proof of Claim. This follows from Theorem 3 by simple manipulations.

Remark 4. Denote p = α
α+β

and n = α + β. Then we can write

md = (d − 1)(1 − 2p)

d(d + n − 1)
md−1 + p(1 − p)

d(d + n − 1)
md−2. (32)

The relation between φ′ and φ is given in the following auxiliary result.

Claim 3. For nonnegative t and c = β−α
(α+β)(α+β+2)

it holds that

φ′(t)
φ(t)

� vt

1 − ct
, α � β and t <

1

c
,

φ(t) � exp

(
vt2

2

)
, α > β.

(33)

Proof of Claim. The proof splits depending on the relation between α and β. The
case α > β is a bit easier and leads to sub-Gaussian bounds.

Case α > β: From Corollary 3 and (31) it follows that md is nonnegative when d

is even, and negative otherwise. Thus, for even d we have

md � 1

d
· αβ

α + β + d − 1
md−2 � v

d
· md−2. (34)

Repeating this d/2 times and combining with md � 0 for odd d , we obtain

md �
{

v
d
2

d!! , d even,

0, d odd.
(35)

Using d!! = 2d/2(d/2)! for even d , for t � 0 we obtain

φ(t) � 1 +
+∞∑
d=2

mdtd � exp

(
vt2

2

)
, (36)

as required.
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Case α � β: By (28) and (29) for any t and any c (to be determined later)

(1 − ct)φ′(t) − vtφ(t) =
+∞∑
d=3

(dmd − (d − 1)cmd−1 − vmd−2) td−1, (37)

where we use the fact that the expansion terms with 1, t , t2 vanish.

Using (31) to eliminate the term with md−2, and expressing v in terms of α, β,
we obtain

dmd − (d − 1)cmd−1 − vmd−2

= − d (d − 2)

α + β + 1
md + (1 − d)

(
α − β + c

(
α2 + 2αβ + α + β2 + β

))
α2 + 2αβ + α + β2 + β

md−1.

(38)

Since we assume t � 0, it suffices to show that (38) is nonpositive for d � 3, for
c defined as in Theorem 1.

Since α � β, we have that md � 0 for all d by induction in (31). In particular,
md−2 � 0, and from (31) we obtain the bound

md � (β − α) (d − 1) md−1

d (α + β) (α + β + d − 1)
(39)

(note that the bound is sharp for d = 3) which together with (38) yields

dmd − (d − 1)cmd−1 − vmd−2

� c (1 − d)md−1 + (−αd + α + βd − β)md−1

α2 + 2αβ + αd − α + β2 + βd − β
. (40)

The last expression is linear in c, with negative coefficient (because md−1 � 0 and
d � 3). Thus, it is nonpositive if and only if the condition

c � β − α

(α + β) (α + β + d − 1)
(41)

holds for all d � 3. Since β − α � 0, this is equivalent to

c � β − α

(α + β) (α + β + 2)
, (42)

and under this condition, (38) is nonpositive. Replacing in this reasoning c with c
2 , to

align with Theorem 1, finishes the proof.

The calculations are done in Sympy and shown in Listing 4.
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1 i m p o r t sympy as sm
2 from I P y t h o n . d i s p l a y i m p o r t d i s p l a y
3

4 v , c , a , b , d = sm . symbols ( ’v , c , a lpha , be t a , d ’ , n o n n e g a t i v e =True )
5 m = sm . IndexedBase ( ’m’ , r e a l =True )
6

7 # d i f f e r e n t i a l o p e r a t o r
8 L = d*m[ d]−(d−1)* c *m[ d−1]−v*m[ d−2]
9

10 # s i m p l i f y by t h e r e c u r s i o n − e l i m i n a t e te rm d−2
11 L0 = d *( a+b+d−1)*m[ d ] − ( d−1) * ( b−a ) / ( a+b ) *m[ d−1] − a *b / ( a+b ) **2*
12 m[ d−2]
13 subs = {v : a *b / ( a+b ) * * 2 * 1 / ( a+b +1) }
14 subs . u p d a t e ( {m[ d −2]: sm . s o l v e ( L0 ,m[ d −2]) [ 0 ] } )
15 L = L . subs ( subs )
16

17 # p r i n t t h e s i m p l i f i e d o p e r a t o r
18 d i s p l a y ( L . expand ( ) . c o e f f (m[ d ] ) . f a c t o r ( ) )
19 d i s p l a y ( L . expand ( ) . c o e f f (m[ d −1]) . f a c t o r ( c ) )
20

21 # o p e r a t o r upper−bounds ( s k i p p i n g te rm wi th ’m[ d−2] ’ when non−
n e g a t i v e )

22 md_lbound = sm . s o l v e ( L0 . subs ( {m[ d −2] :0} ) ,m[ d ] ) [ 0 ] . f a c t o r ( )
23 d i s p l a y ( md_lbound )
24 L_ubound = L . subs ( {m[ d ] : md_lbound } ) . f a c t o r ( ) . c o l l e c t ( c )
25 L_ubound = L_ubound . a s _ p o l y ( [ c ,m[ d −1] ] ) . a s _ e x p r ( )
26 d i s p l a y ( L_ubound )
27 d i s p l a y ( L_ubound . subs ( { c : 0 } ) . f a c t o r ( ) )
28

29 # s o l v e f o r c which makes t h e upper−bound non−p o s i t i v e
30 R = L_ubound . c o e f f (m[ d −1])
31 c _ s o l u t i o n = sm . s o l v e (R , c ) [ 0 ] . f a c t o r ( )
32 d i s p l a y ( c _ s o l u t i o n )

Listing 4. Functional inequality on the moment generating function

We are now ready to estimate the cumulant generating function.

Claim 4. For nonnegative t and c as in Claim 3 we have

ψ(t) �
{

−v · ct+log(1−ct)

c2 , α � β, t < 1
c
,

vt2

2 , α > β.
(43)

Proof. This follows from the previous claim, by integrating the first branch of the
bound and, respectively, by taking the logarithm of the second branch.

Remark 5. Note that this bound, in case α � β, gives ψ(t) � 1 + t2v
2 + (β−α)t3v

3(α+β+2)
+

O
(
t4

)
, and comparing this with the actual expansion ψ(t) = 1 + t2Var[X]

2 +
t3E[(X−E[X])3]

6 + O(t4) we find that the bound is sharp up to O(t4).
Finally, in the next claim, we present the Chernoff inequality.

Claim 5. For nonnegative ε and c as in Claim 3 we have

ψ∗(ε) �

⎧⎨
⎩

ε2

2v
(

1+ 2cε
3v

) , α � β,

ε2

2v
, α > β.

(44)
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Proof. With the help of a computer algebra package, we plug the upper bound on
ψ(t) from Claim 4 into the Cramér–Chernoff bound, and find that it is maximized at
tbest = ε

cε+v
when 0 < t < 1/c. This yields the bound

ψ∗(ε) � sup{tε − ψ(t) : 0 � t}
� εtbest − ψ(tbest)

= v

c2 ·
(cε

v
− log

(cε

v
+ 1

))
.

(45)

The computations are done in Sympy, as shown in Listing 5.

1 i m p o r t sympy as sm
2 v , c , t , eps , x = sm . symbols ( ’v , c , t , e p s i l o n , x ’ , p o s i t i v e =True )
3

4 log_MGF_bound = −v *( c * t +sm . l o g (1−c * t ) ) / c **2
5 c h e r n o f f _ c r a m m e r = eps * t−log_MGF_bound
6 # d e f i n e t _ b e s t a s t h e c r i t i c a l p o i n t
7 t _ b e s t = sm . s o l v e ( c h e r n o f f _ c r a m m e r . d i f f ( t , 1 ) , t ) [ 0 ]
8 t _ b e s t
9 # show t h a t t _ b e s t i s a maximum

10 a s s e r t n o t c h e r n o f f _ c r a m m e r . d i f f ( t , 2 ) . s i m p l i f y ( ) . i s _ p o s i t i v e
11

12 # compute t h e Cramer−C h e r n o f f bound , and s i m p l i f y
13 e x p _ b e s t = −c h e r n o f f _ c r a m m e r . s u b s ( { t : t _ b e s t } ) . s i m p l i f y ( )
14 e x p _ b e s t = e x p _ b e s t . subs ( { c * eps : x*v } ) . s i m p l i f y ( ) . subs ( { x : c * eps / v } ,

e v a l u a t e = F a l s e )

Listing 5. Optimizing the Cramér–Chernoff Bound

Using (16) with x = cε
v

we finally obtain

ψ∗(ε) � ε2

2v
(
1 + 2cε

3v

) , (46)

which finishes the proof.

Theorem 1 follows now by (15) and replacing c = β−α
(α+β)(α+β+2)

by 2c.

4.5 Proof of Theorem 2
Fix ε � 0. Denote Z = X − E[X], and let φ(t) = E[exp(tZ)], ψ(t) = log φ(t)

be, respectively, the moment and cumulant generating functions of Z. By Jensen’s
inequality φ(t) � exp(tE[Z]) = 1, and so ψ(t) � 0 and tε − ψ(t) � 0 for t � 0.
Since ψ(0) = 0 we conclude that

ψ∗(t) = sup {tε − ψ(t) : t � 0} = sup {tε − ψ(t) : t ∈ R} , (47)

which shows that the Cramér–Chernoff exponent equals the global maximum of the
function t → tε − ψ(t) (the Legendre–Fenchel transform), achieved for t � 0.

It is known that the cumulant generating function is convex, and strictly con-
vex for nonconstant random variables [3]. Thus, ψ(t) is strictly convex. As a con-
sequence, we see that the function t → tε − ψ(t) is strictly concave. Thus, (47) is
maximized at the value t which is a unique solution to

ψ ′(t) − ε = 0. (48)
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The last equation defines t = t (ε) implicitly and seems to be not solvable with
elementary functions. Nevertheless, the Lagrange inversion theorem ensures that t

is analytic as a function of ε and gives initial terms of the series expansion. More
precisely, if y = f (x) where f is analytic at 0 and f (0) = 0, f ′(0) 	= 0 then x

expands into a power series in y around y = 0, with the coefficient of the term yk

equal to 1
k

times the coefficient of xk−1 in the series expansion of (x/f (x))k when
k > 0 and 0 when k = 0; for a reference, see for example, [9]. Applying this to
y = ε, x = t and f = ψ ′ we obtain

t = ε

v
− cε2

2v2 + O(ε3), (49)

where we do computations in Sympy as shown in Listing 6. Note that we use only
up to three terms of the expansion of f , since we are interested in the first two terms
for x.

1 i m p o r t sympy as sm
2 from I P y t h o n . d i s p l a y i m p o r t d i s p l a y
3

4 t , eps , v , c = sm . symbols ( ’ t , e p s i l o n , v , c ’ )
5

6 MGF = 1 + t **2* v / 2 + t **3* v* c / 6
7 log_MGF = sm . l o g (MGF)
8 d_log_MGF = log_MGF . d i f f ( t )
9 c r a m m e r _ c h e r n o f f = eps * t−log_MGF

10

11 ks = [ 1 , 2 ]
12 t _ e p s _ c o e f f s = [ 1 / sm . f a c t o r i a l ( k ) * ( ( t / d_log_MGF ) **k ) . d i f f ( t , k−1) .

s e r i e s ( t , 0 , 1 ) . subs ({ t : 0 } ) f o r k i n ks ]
13 t _ e p s = sum ( eps **k* c . s i m p l i f y ( ) f o r ( c , k ) i n z i p ( t _ e p s _ c o e f f s , ks ) )
14 t _ e p s = t _ e p s . s e r i e s ( eps , 0 , 3 )
15 d i s p l a y ( sm . Eq ( sm . symbols ( ’ t _ e p s ’ ) , t _ e p s ) )
16

17 b o u n d _ b e s t = c r a m m e r _ c h e r n o f f \
18 . su b s ( { t : t _ e p s } ) \
19 . s e r i e s ( eps , 0 , 4 )
20

21 d i s p l a y ( sm . Eq ( sm . symbols ( ’ \ p s i ^ { * } ( \ e p s i l o n ) ’ ) , b o u n d _ b e s t ) )

Listing 6. Best possible Chernoff-type tail bounds

Therefore, we obtain the following exponent in the Chernoff inequality:

ψ∗(ε) = tε − ψ(t) = ε2

2v
− cε3

6v2 + O
(
ε4

)
, (50)

which finishes the proof of the formula in Theorem 2. This expansion matches the
expansion of the exponent in Theorem 1 up to O(ε4), which proves the optimality of
the numeric constants.

5 Conclusion

This work established the closed-form sub-gamma type (Bernstein’s) concentration
bound for the beta distribution, with optimal constants. This solves the challenge
settled by the prior work on sharp sub-Gaussian bounds.
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